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Uzi;:f the notation of two—-point tensors a boundary integral equation for
steady-state problems of thermoelasticity is derived. We point out that only

the fundamental solution Ug; and the Galerkin tensor Gg' have to be
known in order to formulate the problem in an arbitrary curvilinear system of
coordinates. After rewriting the integral equation for axisymmetric problems
“we solve this equation by means of the Boundary Element Method. Parabalic
elements are utilized where nonsingular and singular integrals are coraputed
numerically. The stress state in t?:a body region and on its boundary are
calculated with the help of suitable formulae which have been derived. Some
numerical calculations in comparison with the results obtained analytically
are given.

1. Introduction

In recent years, the Boundary Element Method (BEM) appears to be an econo-
mical and accurate numerical technique for solving various engineering problems
(Banerjee, Butterfield 1981; Brebbia, Telles, Wrobel 1984; Beskos 1987). In this :
method, the solution to some governing equations, usually partial differential equ-
" ations, is recast into the solution to integral equations. Such equations apply to
the boundary of the domain and incorporates the boundary conditions directly.
' Consequently, only the boundary of the solution domain needs to be discretized. It
is the main difference between the BEM and other numerical procedures, such as
- the finite element or finite difference method. In addition, the BEM is particularly
suitable for problems that involve high local stress gradients.

In order to arrive at the integral formulation for steady-state axisymmetric
problems of thermoelasticity, two alternative approaches have been investigated
(Bakr, Mihsein, Fenner 1985; Bakr 1986; Rizzo, Shippy 1986). In the first one the
three-dimensional fundamental solution of elasticity with the thermoelastic term
is integrated around the axis of rotational symmetry. The second approach makes
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use of the axisymmetric fundamental solutions (Cruse, Snow, Wilson 1977; Bakr,
Fenner 1983).

In this paper, on the contrary, by the help of the notation of two-point tensors,
we derive the boundary integral equation valid within an arbitrary -curvilinear
system of coordinates. Then, we rewrite this equation in the cylindrical coordinates
system where the fundamental solution Uki and the Galerkin tensor Gk are
. defined as integrals ‘around the axis of rotational symmetry (Section 2). The
BEM is employed to solve numerically the problem (Section 3). It is assume that
the temperature field in the axisymmetric body is a known function because the
solution of such a problem was given in the previous work by Blocki- (1991). The
formulae for stresses at internal points and on the boundary are described in the
Section 4. For the boundary stresses the relations proposed by Lachat (1975) or by
Brebbia, Telles and Wrobel (1984) are limited to flat boundary surfaces, therefore,
we cannot apply them here. On the other hand, we could apply the relations
given by Slidek and Slidek (1986) or Slidek and Slidek (1989). Nevertheless,
the relations derived in the Section 4 seem to be less complicated than those
by Slidek and Sladek. Comparisons of numerical results for displacements and
stresses obtained by the present procedure have been made with results of existing
analytical solutions. The method delivers sufficient results as can be seen from the
example described in the Section 5.

2. Intnga'l equation formulation

Let us consider a domain {2 which is enclosed by its boundary surface 5.
We assume that points denoted by ¢ or p lie inside the comain {2, but points
denoted by Q or P lie on the surface 5. Our aim is to find steady—state solutions
of thermoelastic problems, that is, solutions to the following equations (Nowacki
1970)

ViT(p)=0 pEN (2.1)
GV3u(p) + ﬁgrad divu(p) + F(p) =0 PEN | (2.2)
where .
Vix = grad dive - rot rotu (2.3)
. aFE
F(p) = F(p) - u_—wzde(P) (2.4)
6= L (2.5)

2(1 +v) -
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In the expressions given above the function 7T(p) represents the temperature, 4(p)
is a displacement vector, and F(p) is a vector of the body force. The constants
E, v and a are Young modulus of elasticity, Poisson ratio, and the coefficient of
thermal expansion, respectively.

For the temperature T'(Q) the following boundary conditions should be sati-
sfied

T(Q) = 1(Q) Q€S (2.6)
m;,(Q) #(Q) QeS, (2.7)

Sy and S, are different pa,rts_ of the boundary § such that their total gives §
(§=S5:uS; and SiNS, = 0). The symbol 3/3n represents the normal derivative
where n is a outward normal vector for the body 2. The quantities #(Q) and
§(Q) are known functions.

For the displacement field %#(¢)) the boundary conditions are as follows

u(Q) = %(Q) Q€ Su (2.8)
(i=1,2,3)
pi(Q) = Pi(Q) QeS, (2.9)
where
pi(Q) = oin’ (2.10)
75 = Guf,+ w|) + Tgmoit], - T (1)

Components of the displacement vector #%;(Q) and components of the surface
traction 7;(Q) are given functions of space. %/ (j = 1,2,3) denote components
of the unit vector m. The quantities o;; and g;; are the stress tensor and the
metric tensor, respectively. A vertical bar is a symbol of the covariant derivative.
As before, S,, and ,S are.diﬂ'erent part of the surface S such that their total

gives S.
Moreover, it will be useful to deﬁne two sta.rred quantmes
e e e " oF '
Lo =0 + mTyij : (2.12)

which are called pseudo—stress a.nd pseudo—tra.ctlon In the present paper, we will
. comsider only Eq (2.2) because numerical solutions of axisymmetric problems of the
‘heat transfer using the Boundary Element Method were presented in the earlier

4
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paper by Blocki (1991). Therefore, having solved Eq (2.1) with the prescribed
thermal boundary conditions (2.6) and (2.7), we can regard the temperature as a
known function of space and insert it into Eq (2.2).

To begin with we will derive the integral formulation of the problem under
consideration. Therefore, we consider a elastic body subject to the action of two
systems of the body forces, tractions, and temperatures. The first one (denoted by
" a bar over them) produces the displacements ;. The second one (without bars)
produces the displacements u'. It is well known that using the relations (2.4),
(2.12) and (2.13) we can transform each equation for the steady-state problem of
thermoelasticity into an appropriate elasticity equation. Therefore, we can make
use of the reciprocity principle of the theory of elasticity (Nowacki 1970), that
means

/ (%5 — pru)dS + j (F=ia; - Fruf)dV =0 (2.14)
s o
The tractions and body forces with bars are of the form
Fr = 8(a,p)gixce™ | (2.15)
f: = -,'jn" (2.16)

The quantity 6(p,q) is the Dirac delta function, and X are components of the

unit base vectors. The tensor g¢;x and some of tensors presented later are called
the two-point tensors. In order to distinguish between two curvilinear coordinate
systems, one connected with the point P or p and the second one connected
* with the point @ or ¢, indices of such tensors will be denoted by the upper case
characters for the first system and the lower case characters for the second system.
Moreover, from the Eq (2.15) we should notice that the temperature T is equa.l
to zero. The second system of forces (without bars) is defined as follows

. aF ..
F* = - —— _gYT 2.17
with the tractions defined by Eq (2.13).

The fundamental solution for three dimensional problems of elasticity in an
arbitrary curvilinear coordinate system is a second order tensor Ug;(p,g). The
components of this tensor in the cartesian coordinate system are known (Nowacki
1970)

Oxi(pra) = 2[(3 — )6 = rlrl] (218)

where r is the distance between the point p and the point ¢

r=lg-pl (2.19)
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and the constant C is equal to

1

C=TrGa=v)

(2.20)
From the definition of the fundamental solution, it is straightforward that the
following relation is satisfied
) ; = UkieX ' (2.21)

To calculate the stress field &;; we make use of Egs (2.11), and (2.21), and as-
sumption that 7 =0, i.e.

Gij = DKijCK (2.22)
where '
o= . . i ,..
Dxij = G(Ux: |J, + Uks|.) + Ux'| 95 (2.23)
Next, defining the tensor Tk; as it follows
Tki = Dgijn® (2.24)

we arrive at the relation which has the form
pi = Txie™ (2:25)
Substituting Eqs (2.13), (2.21), (2.25), (2.17) and (2.15) into the're-ciprocity Eq
(2.14) produces the integral equation
@ = [[Uk@@rQ - T Q@)+ |
oo S ! (226)
T @k, Q] dS(Q) + 45h)
where : : - | bis . . _
‘ j 5}((?) ?--—(T";%. ! U_x.-(ﬁ, g)g"'TL(q)dV(q) e (£90)
Next, integrating by parts the fast integral, gives ' |

O —(1—"_% ! Uki(p, @)T(Q)ndS(Q) + bx (p) (2.28)

in which
(o) = s [ Uil (.00 TV (@) (229)
0
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The foregoing volume integral above can be transformed into a surface integral,

w(e) = [ [V QT@ - Wp,Qpo]dS@)  (230)

where ’ , | o
Vi Q) = ~grr s G (231)
Wx(,Q) = g5, (232)

The last two relations will be tine provided the tensbr Gx' satisfies the following '
relation )
Gil| =21~ v)Uxi+ Hxi) @33)
and Hg; is such that ) ) ] — _
(H_Kill ~ Gx'lja)g" =0 '(2.34)
In the cartesian coordinate system components of the tensor Gk are known
(Danson 1981) N
i 14+v .
Gle= otk , (2.35)

The final form of the integral equation after the latest transformation is as :
follows

ux(p) = / [Uxitr, QF(Q) - Tx.-(p,o)u‘(a)] dS(@Q) +bx(p)  (236)

where bg(p) is given by Eq (2.30).
We should notice that the steady—state problem of thermoelasticity formulated

. by such a mtegral_ equation can be posed in an arbitrary curvilinear system of
coordinates. We only need to know the components of two tensors Ugk; and Gg'
in a specified system of coordinates.

If we let p —» P and compute the limit of the both side of Eq (2.36) we arrive
at the boundary integral equation (Kupradze 1963)

ex’us(P) = [ [0 P,QW'Q) - T P,OW(Q)]4S@) + bx(P)  (23)
S .
where

ww(P) = [ [Vx(P,Q)T(Q)-‘Wx(P,Q ]d-s'(o) (2:38)
s

01'(0)

ex? = 8% R S (2:39)
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The last.relation is true provided a unique tangent plane exists at P. But if this
" is not the case the quantity cx” has to be computed by applying special methods
(Hartmann 1981). However, it is known (Bakr 1986) that using the boundary
integral equation together with rigid-body movements and known solutions of
elasticity problems the components of cx’ can be indirectly calculated. The
details of this approach are discussed in the next section. _

One of the methods which leads to the fundamental solution in the cylindrical
coordinates system (p,6, z) is to’ mtegra.te the tensor. Uk; with respect to the
coordinate 8 =6, — 6,, i.e. :

2r
_ 1 _ ) .
Uk —.é;b/Ulﬁ de (2.40)

The integral above can be evaluated with the help of the following relation

r= J(zo -2zp)? + Pz_."‘_l’i = 2pypp cos(64 ~ 6;) (2.41)

where pg,64,2, and p,,6,,z, represent coordinates of the point Q and P,
respectively..
According to Eq (2. 40) the result of integrating takes the form

Uki = AK.[K(m) - E(m)] + B](.'_E_(m) (2.42)

_. where Ag; and Bk.- are given in the Appendix. The fanctions K (m) and E(m) -
are the complete elliptic integrals of the first and the second kind (Abramowitz i
‘Stegun 1974), i.e. .

s 1/2 ; : ‘ .
K -
1 1/2 ‘ e ek
E(m) = / 3 msin? Bdp i (2.44)
0 , :
where ‘ :
2b '
ke - (2.45)
a=pl+ph + (-2 = (246)
b=2p,pq . e

_ Using Eqs (2.42) and (2.24) we can cﬂculate,-the components of Tk; in the
cylindrical coordinate system (see Appendix).

i oy
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One can define the components of Gl in the following way

2 .
_. 1 7~ ;
Ge= 5 o/ Gicdo  (248)
which fes'nlts'in-
Gic = = G¢a+ E(m)6’K (2.49)

The tensor G% meets the condition (2. 33) Therefore, we make use of Eqs (2. 31)
and (2.32) in order to compute the components of the vectors Vi and Wi (see
Appendix). .
The final form of the boundary integral equation posed in the cylmdrxca.l co- -
ordinates system is of the form ]

x’(Pus(P) = 2x / [ﬂki'(P,Q)Pi(Q) - Txi(P, Q) (Q) +
o (2.50)
+ V(P,QIT(Q) - W(P.Q)a5]od5"@)

where §* is a curve lying on the surface. S and any radial plane passing through
. the axis of rotational symmetry. If the domain contains a part of this axis the
curve 5™ is open and in the opposite case S™ is a close one. :

3. Boundary element method

In this section, a general numerical scheme for the solution of the boundary
integral Eq (2.50) by the Boundary Element Method is presented. The starting
point in this method is to divide the boundary curve $* into N segments. Each
segment is a isoparametric quadratic element. It has three nodal points one at each
end, denoted by A and C, and one at the midpoint, denoted by B. Moreover,
the geometry of the body and distributions of the unknowns are expressed in
terms of quadratic shape functions of the intrinsic coordinate { €< ~1,1 >. The
cylindrical variables p and z which describe the geometry can be written as

p(Q) = ¢'p, + %05 + $°p
3.1)

HO= s ey 4 s,
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where p,, 2,, Pgy 25y pc and z, are coordinates of the nodes A, B and C,
respectively. The shape functions ¢!, ¢?i @3 are defined
. : )
¢‘=—5«1—0
—0 01+ 3:2)
=—d1+C)

From the relations above one can see that the nodal values of the variable ¢ are
-1, 0, and 1, respectively. The Jacobian of transformation is given by the following

relation ,
J= IR+ ]2 - (3.3)
where
,=2_4 2 3 3.4
p—dc—¢.(PA+¢.(Ps+¢.(Pc (3.4)
d
Jr= Ez = ¢l.(z,4 + ¢2.Czs + ¢3,(zc (3-5)
Thus,‘we(have
ds* = Jd( (3.6)

By the help of the foregoing relation above we can compute components of the
normal vector ®, namely )

dz Jz — dP —_ JP

T MECgS T (3:7)

Slmxla.rly, we can compute components of the tangent vector to the curve §”,i.e.

m,,=—n, AR e v - (3.8)

" As mentioned before, the variation of the unknown functlons are pa.rabolxc The-
- refore, for the ath element (a =1,...,N), we have

= ¢'Te + ¢’T; + $°T¢

‘ , e (3.9)
0T \a 0T\« T \a 8T\ a
(.5;) = (5)0 + ¢?(-5;)2 {¢a(%)3
o = lul® + ¢l + 4%

. : (3.10)

Psa - ¢1P'ia + ¢2pga + ¢3p§a :
where the qﬁa.ntities T, (8T/8n)*, uw*® and p*® with the subscripts 1, 2, or'3
represent their values at the points A, B or C, respectively.

‘
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Now, we assume that the poixit Pis taken successively to évéry nodal point
on the discretized boundary. This lea‘ds.td the following set of integral equa_.tions

x(BeYus(Bs) = 23 [ 10xi(Pa, Q' - Tri(Pa, Q@ +

01-'-15.
+ V(P Q)T - W(Po, O ]pqu"(Q) @11y
(_ﬂ = 1,2, M)
where S represents the ath element, and M is a number of nodes.

Substxtutmg the parametric representations (3.1), (3.9), and (3.10) into’ the_
last equations, gives .

N T\ a
cx” (Pg)us(Po) = Z[I}f “ = Tkl +K"Ta ”"(a ) ]

a=1

A=1,23; f=12..M) (312)

where
T =2 [ $0xipg I L (313)
21 :
| 1 N . . - -
J}(,- = 21’/¢'ITK,'pQ.de . (3.14)
-1 ;
; o
Kl =2x / $'Vicpo JdC (315)
-1 )
1 .
L =2r / ¢ WicpoJdc : (3.16)

-1

The functions Uk;, Tki, Vk, and Wx are expressed in terms of the elliptic
integrals (2.43) and (2.44). To evaluate this type of integrals we will apply the
approximated formulae proposed by Cody (1965).

In order to compute the integrals (3.13)+(3.16) we make use of the standard
. Gauss quadrature rules for all elements. However, in the case when the point
Q — Pg, the integrals IL;, K4 and LY become singular, because K(m) is not
bounded for m — 1, i.e.

Tim {K(m) - —ln } 0 (3.17)
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The evaluation of such singular integrals by using the standard Gauss method
would produce inaccurate results. Therefore, we employ special numerical stra-
tegy discussed by Telles (1987). This simple method is based upon the standard
Gaussian quadrature scheme and a cubic coordinate transformation, i.e.

Jrou=| O (319)
,mwm&' _—l o
, ' ((7)— (- 7)13:;:;' +3) /_ (3.19)

\[c-(c-—1)+|c-—1|+vfc-(c-—1) -1 @)

where (* feprese__nts the value of points at which the kernels of integrals become )
singular. The important feature of this method is self-adaptiveness of the scheme
what means that we can apply this method both for the singular kernels and the
nearly singular ones. : h
-Some of the mtegrals J}( exist only in the Cauchy principal value sense
‘because of their strong singularities involved in their kernels that is of the type -
1/r, where r = |Ps — Q|. However, there is no need to calculate these integrals -
explicitly because the evaluation of them can be carried out together with the
¢k’ coeflicients by using rigid-body translatlons and known solutions of elasticity.
problems (Bakr 1986).
The relations (3.12) represent the whole set of lmear algebraic equatlons which
_canbeexpressedmma.tnxformas e

Gp=Hutb g D, (3ny-

where p is a vector of nodal tractmns, % is a vector of nodal dxsplacements and

b is a vector of thermal loads.. L
The rigid-body translation in n thez coordmate gives a.ll the nodal dJsplacementa. s
u, equa.l to zero and in addition : o

p=0 i b;o b iy @zm"

Thatilivs, So0 live
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M
He1p=- ) Hio1aj
s

k=2%  (i=1,..,M) (3.24)

M
Hu=-)_ Hiyj
P
The rest of the elements of the matrix H which are to determine, that is, Hix
and Hiyyx (where k= 2i - 1; ¢ = 1,..., M) will be computed by means of the
following elasticity solution '

g _
U= —p2 ‘ (3.25)
with the tractions given by

Pp=1n, p:=0 (3.26)
After making use of the boundary conditions the final form of the algebraic equa-
tions is .
AX =F : (3.27)

where X represents unknown displacements and tractions.

4. Displacements and stresses

After solving the set of Eqs (3.27) all the boundary functions are known. To
calculate the value of the displacement field inside the body, that is for p € {2, one
can make use of the integral Eq (3.12) in which the point Pj is replaced by p and
in addition the coefficients of cx” are set to .6‘,’(. By differentiating this equation
with respect to the coordinates of p we arrive at the displacement gradients, the
strains and finally the stresses at p, namely,

N
. R OT\ a
osx(p) = 3 [Mixil® - Niganl® + Ok T¥ - Pic(3-)7]  (41)

a=1

Y
where

1
Ml =25 [ ¢'DiipoJac (42)
21
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1 .
Nig;=2nx / ¢'SikipgJd (4.3)
- (1=1,2,3)
. K 1
Oy = 2x / 8 XsxpgJdC (4.4)
-1 : :
l .
Pl =2 [ $¥ixoqJic (45)
-
b 2Gv .
Djki = el Lal L9IK + G(?.n'lx + Ukis) (4.6)
Saki = T grk + G + Tcs) @.7)
| 12" I K JilK KilJ .
IS 2Gv ) ,
Xk =15 VVL |Lg.rx +6G(Vyx + Vi), (4.8)
: 2Gv - : :
Yix = 1= 2yWL|quJK + G(W_"K + WKIJ) (4.9)

In order to avoid the singularities of the integral formulae for stresses (4.1)
when p — P, we will evaluate surface stresses from simple relationship between
the tractions and the local displacement gradients in the surfa.ce near the point
P, This is described below. ;

A local coordinate system with axes designated by 1, 2 and 3 is aligned along
the tangent and normal directions at the point P on the surface being considered.
For the axisymmetric problem components of the stress and strain tensors in this
coordinates system can be written as B 257 g i :

GE ;

; E v
'Uu—1_y,(€11+V€n)+l_V?3af1_yT i :
022 = Eegp + v(on +a33)—aET o e - (4.10)
o3=p Om=p3
where . s
: : LR ST pa, U3
& “1,1+R1 2k €22 % -i-R2 .
M=-ppttPly =P tmm @H)
i —u,n,+u,n, ua.-u,n,+u,n, '

R1 and R; are e the principal radii of curvature of §, p is a circumferential radius
‘of the origin of the system 1, 2, 3.

:
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Taking into account certain fundamentai relations from the differential geome-
try, namely, the conditions of Codazzi and Gauss, we have

£11 = —Azlp) + NpUs (412)
u
g5 = =2
p
in which
1,
Up1 = 7¢.(“m'
1 .. .
t,) = 7¢:cu,,- (1=1,2,3) (4.13)

U, = d""‘m'

where u,; and 4,; represent the nodal displacements.
Some transformations are needed to define the components of the stress tensor
in the cylindrical system of coordinates (p, 8, z), i.e.

2 2. ’
Opp = O110; + o3, — 20131‘&,,1‘&,
Jge = 032 (4.14)
Oz = 0110, + O33N, + 20130,0,

Opz = (033 - all)npnz + 015(": = ﬂi)

The rest of the stress tensor components are equal to zero.

5. Numerical results

A computer program based on the algorithm just described has been developed:
and used for obtaining numerical results. Comparisons of these results have been
‘made with existing analytical solutions to validate the present formulation. One
of such examples is described below.

Let us consider a thick-walled spherical shell (Fig.1). The temperature of the
outer surface of the shell is defined in the following way

T(Rz,‘y) =To sin27 (5.1)

where R; is the radius of this surface, Tp is a constant, and vy €< 0,7/2 > is
an angle measured from the axis of rotational symmetry (Fig.1). The inner shell
surface is kept at the temperature equal to zero. The material properties of the
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Fig. 1. Spherical shell

~ shell are Young modulus E = 2.07 - 108 kN/m?, Poisson ratio v = 0.3 and the
coefficient of thermal expansion a = 111075, 1/C?, respectively.

Hellen, Galluzzo, Kfouri (1977) conducted an analytical study of this example
and published results which for the temperature and displacement fields are

4 1y 8/, 1 )
T-..To[-s-(l—-ﬁ) +§(R - -}-ﬁ)(l-:}cos 7)] (5.2)
u = RyaTp [0.7077%15 - 1.24 4 1.01R + (1.5cos? v —-0.5)(0.0161-1.;Z -

(53)
1 _ _
—~0.183 7 — 0.122R — 0.052R%)]
1 1 o _
v = RyaTy (0.0161727 +0.234 7 + 0.183R - 0.120R°) sinycosy  (5.4)

where R = R/R;. R is a radius measured from the center of the shell, and R,
is a radius of the inner surface of the shell.

‘Taking into account only the upper symmetric half of the sphere, the compu-
tations were carried out using the division of the boundary into 20 elements. In
the Table 1. the results obtained analytically and numerically for R €< Ry, Ry >
and v = 7/2 are presented. l
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Table 1. Temperatures and displacements

R Temperatures Displacements

Analyt. | Numer. | Analyt. | Numer.
1.0 [ 0.0000 | 0.0000 | 0.7122 | 0.7117
1.1 | 0.1607 | 0.1607 | 0.6898 | 0.6889
1.2 ] 0.2963 | 0.2963 | 0.7048 | 0.7034
1.3 | 0.4139 | 0.4139 | 0.7470 | 0.7452
1.4 | 05182 | 0.5182 | 0.8097 | 0.8075
1.5 | 0.6125 | 0.6125 | 0.8883 | 0.8857
1.6 | 0.6992- | 0.6992 | 0.9799 | 0.9769
1.7 | 0.7801 | 0.7801 | 1.0820 | 1.0790
1.8 | 0.8566 | 0.8565 | 1.1940 | 1.1900
1.9 ] 0.9296 | 0.9296 1.3130 | 1.3090
2.0 | 1.0000 | 1.0000 | 1.4400 | 1.4360

For the equivalent stress defined in the following way

1 .
Ocq = 3\/ (01 = 02)? + (02 ~ 03)? + (03 — 01)? (5.5)
additional results are shown in the Fig 2. It is assumed that
Re<R,=10,R; =2.0> and y=m/2

The analytical formulae for o., were derived by a.ppiying (2.11) together with the
solutions (5.3) and (5.4). '

Easvalent stress

10 L1 12 13 14 15 16 1.7 18 19 20

.
Oistance from the center of the shell

Fig. 2. Equivalent stress

We can notice that reported results obtained from the two methods are quite
closed.
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Appendix

The components of Ag;i By are equal to

2 =2
A, = Csa+ % B,, =k
pp pqu( 4 ) pp
¥z
Apl = —p—; sz =¢£
A, =L B,, = B,, (A1)
© Pg .
Az =29Cy B, = _BPP
(K,i=p,z2)
where
Z=12zq—2p P=pqg—Pp (A-2)
1 .
= —— =3 - A.
Cs 1673G(1 <) .C4_ 3-4v (A3)
C; ’ 72 z
¥= \/aT K= —2’7(04 + —) &= 2‘7/’3 (A4)

The quantities a and b are defined by Egs (2.46) and (2. 47)
The components of the tensor Tk; are equal to

T = [CSUpﬂ.p +Ce (ﬁzﬁ.z + %ﬁg)]_"p + pt;:;n,
Q

] B=pz) (A5
Top = [Colups + Ca(Dnss + Ep:_ﬂ)].n, + utgn,

where ) ) .
ts = Upps+ Usp, (A.6)
26(1 - v) L 26 . E o
Cs = (1-2) Ce = (1-2v) G= 2(1 4 v) (A‘-’)_;

in which a comma represents the partial derivative with respect to the co'ordina;,tes
of the point Q.

In the cylindrical system of coordmates the components of Vx i Wx are equal -
to



BEM FOR AXISYMMETRIC THERMOELASTIC PROBLEMS 719

) 2+ 02 z 22
= apr{ (55 )ik 5+ 2((1 - )
+ :—P( —_pf—zp)"=]E(m)}

Ve = aE7{'(2n:, - ;’—i—n,) [K(m) - E(m)] + 2[(1 - g)n, - ":—jnp] E(m)}
W, = 2Z0{(a20,)[K(m) - E(m)] + 2pppq + #)E(m)} (a3)

W: = 2aEyzK(m)
where a and b are defined by Egs (2.46) and (2.47).

Metoda elementéw brzegowych w osiowosymetrycznych problemach
termosprezystoéci

Streszczenie

Stosujac ogdlny zapis tensorowy, wyprowadzono brzegowe réwnanie calkowe dla stacjo-
narnego- problermu termosprezystosci. Wskazano, ze jedynymi wielkoéciami potrzebnymi
do pelnego sformulowania problermu w dowolnym krzywoliniowym ukladzie wspélrzednych
83 rozwiazanie podstawowe Uk; oraz tensor Gk' nazywany tensorém Galerkina. W nu-
merycznym algorytmie zastosowano paraboliczne elementy brzegowe oraz proste metody
calkowania zaréwno dla calek osobliwych jak i niecsobliwych. Wyprowadzono odpowie-
dnie zaleznoéci umozliwiajace okreslenie stanu naprezenia wewnatrz obszaru oraz na jego
brzegu. Opisane wyniki obliczerr numerycznych uzyskane za pomoca programu kompute-
rowego wskazuja na poprawnoé¢ proponowanego algorytmu.

a

Manuscript received April 8, 1992; accepted for print May 11, 1992



