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Within this paper, the background and the substance of a surprising forma-
tion of the torsional buckling loads for thin-walled columns with variable,
bisymmetric [-sections is presented. Appropriate reference to flexural buc-
kling and to the originally mvestigated neigh ing problem of free torsional
vibrations is made. Author’s opinion on possible existence of similar features
in coupled flexural-torsional eigenvalue problems is expressed.

1. Preface .

Although in the past some reference to the title issue has already been made
(cf [11,12,13,14]), the corresponding papers, except the last quoted, appeared as
non—English written publications and were edited partly by a private foundation,
50 that they must be regarded to have only an extremely limited circulation.
Therefore, by presenting this problem now, still open, to the direct insight of a
highly specialized readership, it is hoped to achieve further development of the -
. governing theory with an expected impact on the practice of engineering design.

2. Background _

As far as the classic theory of Vlasov [34] is concerned, the generalization for -
thin-walled beam-shells with variable cross-sections was achieved a quarter of a
century ago (cf [4,5,6]). This theory was later extended, including free vibration
analysis, for cases of variable, built-up sections [7], with particular emphasis on bi-
symmetric I-profiles [8]. In both the latter papers, for the numerical example of an -
I-beam with variable bisymmetric cross-section, shown in Fig.1, the lowest natural
torsional frequencies kj¢ have been determined by the finite difference method.

- They were compared with those corresponding to cases of both the enveloping
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Fig. 1. Beam investigated for natural torsional frequencies

constant sections: minimal and maximal - calculated similarly, and on grounds of
an exact solution. The relevant results are given in Table 1.

Table 1. Natural torsional frequencies for beam of Fig.1

Cross- Type of solution
-section | Exact | FDM FDM FDM
20 segm. | 10 segm. | 4 segm.

Constant .
minimal | 544 543 532 509
Variable - 321 316 289
Constant
maximal | 494 493 489 466

It follows from Table 1 that the k;g—value, obtained for the variable cross—
section, falls beyond the interval defined by both the extreme constant sections.
This fact, in view of earlier conventional results of static torsion analysis was regar-
ded as uncommon and, consequently, treated with much reservation. Therefore,
in the next step, the related question of of torsional buckling has become a point
of concern: the controversial result of the dynamic inquiry could be, eventually,
explained by qualitative differences in the intensity of mass distribution for the case
of the variable section against both of the constant ones, but a similar phenome-
non within the problem of torsional buckling was considered as entirely impossible.
This opinion was strengthened by the existing investigations ‘concerning flexural
buckling of thin-walled bars with constant versus variable sections (cf [2]).
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3. Theory
3.1. Introduction

The general view of-the investigated, axially compressed, thin—~walled I-column
with variable, bisymmetric cross—section is presented in Fig.2. It is obvious that in
this case the problems of flexure and torsion are uncoupled and the determination
of all three critical forces, both the flexural and the torsional, can be approached
separately; in the continuation, the focus is put on torsional buckling alone.

In practice the determination of the torsional buckling load can be performed
by applying the usual finite element method based upon step wise constant sec-
tions. For reasoms of a more general treatment, it is worthwhile to define the
governing differential equation of torsional buckling and to analyze its practical
performance. the quoted differential equation has been derived in the previous pa-
per [9] - on the basis of static equilibrium and, independently, utilizing the energy
method of Bleich [1]; following this, the latter, together with the corresponding fi-
- nite difference solution, has been demonstrated by Cywirski and Kollbrunner [13].
In the present paper, the established theory will be reﬂected on with due reference
to the Jast paper cited. '

3.2. Torsional deformation

To find the fundamental differential equation of the problem, first the torsion
associated ‘str_ain‘-_displacement relations for an arbitrary point of the thin—walled
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bar middle surface must be established; a reference illustration is given in Fig.3..
In particular, it is necessary to determine the flange strains ¢; assumed to be
tangent to the corresponding flange curves; the z-axis parallel web strains ¢, are
. here equal to zero. )

&-&
B

Iy,

Fig. 3. Reference illustration for strun—-dlsplwement analysis

According to Fig.3, the coordinates of an arbitrary flange point @ and of both
the adjacent ones, R and §, are as follows .

Q(za,,2)
R(za,y + dy, z) ' 3.1)

S(z. + %,y,z+dz)

The foregoing points, due to the bar torsion about the axis of the centess of twist
A, move into new positions with the coordinates as follows

Q'(zs —6y,y + 024,z + u)

. 8
R’(za —Oy-—6dy,y+dy+6zs,2+u+ 5§-dy) (3.2)
dz, de o dz,
I by a——
§'(za —dz - Oy - —dzy,y + Oz, + —dzza + 6z,

fu
z+dz4+u+ 8—dz)

hereby u(y,z) represents the temporan'ly unknown displacement of point @ along
the bar axis z.
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The flange tangent. directed strain &3 of point @ can be expressed in the
~ following way
. _ @7 - @) ey
S= TRy
with (Q3)? and (Q'5")? given by the relations
; e s
2 _[1 4 (%

@ [(G -+ (GG (4 5) N 6

= [/d%a 6 dz,
g[(fd?.) Bk P r A ™ ]""‘2
By virtue of Eq (3.4), Eq.(3.3) becomes
. 1 du  d6 dz, |
LA (4= (&-Ta? (3.5)

Expressing now the quantities Q’R’ and Q’S’ in vector shape

Q'R'= —-6dyi + dyj + gﬁdyi
y (3.6).
P dx do » (dO
L Rted Bl o -

Qs'= (T2 - )i+ (T
and utilizing the usual hypothesis of mjddle surface zero shear deformation in the
form of

7+ (14 32)ack

— — ) ’ Qe '
cos(Q'R',Q'S") = —g.—w‘?i—- =0 (3.7)
| QR IIQ'S'I
~ one obtains the equation
dz, de dé dz, 014 0u Ou
Qd +9dy+dz.+9 8y 001/ =0 (3.8)

wherefrom, after reduction and negligence of small quantities of higher order, it
follows that o 4o

i % o iy : (3.9)

The integration of Eq (3.9) with respect to y yields the longitudinal displacement
u, expressed as follows

de '
U= uy— d—z'zay (3.10)
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with the function ug representing the z-axis parallel displacement of the web and
flange profile lines intetsection point (y = 0). Here uo = 0 and, thus

de
u= —d—zzay (3‘11)

The derivative of u with respect to z is given, evidently, by
ou &0 dé dx,

9z d2 VT d Y
and, taking this into account, Eq(3.5) becomes the following

(3.12)

t

d?0e do dx,
de—t(- 58 )=

1+ (%) T

Regarding z/, 2 compared to 1, as small (assumption- of moderate variation of
cross—-sectnon), it can be neglected and, thus, Eq (3.13) reduces to the simple form

1
Tz,z_(e" z.y + 20'z,y) (3.13)

es = —(0"z,y +20'z)y) (3.14)
Finally, introducing the expression for the sectorial area
w= 2,y (3.15)
Eq (3.14) can be expressed, most concisely, as
e = —(0"w + 20'w) ) (3.16)

It must be stressed that, when considering variable sections without a more tho-
rough investigation, solely on the basis of the theory a.ppropna.te for constant
sections, the flange strain £, becomes

€a = ~1py = —(62,)"y = —(6w)" (3.17)

with 1), being the flange deflection in the gy-direction. In view of the derived
Eq (3.16) it is evident that Eq (3.17) inherits an error that vanishes for z, being
linear (or constant) only.

3.3. Fundamental differential equation

In deriving this equation the application of the energy method will be shown. It
is assumed that at any cross—section of the I-column under consideration, besides
the usual normal stresses n due to P, also the normal stresses o and shear
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stresses T, as well as the Saint-Venant torsional moments T,, due to mixed
torsion (warping + Saint-Venant), occur, with the obvious restriction on ¢ and 7
to column flanges only. However, the internal strain energy U; is being produced
only by o and T, since shear deformation is not taken into account.

By virtue of Hooke’s law and in view of Eq (3.16) the normal stress ¢ can be
expressed as follows

o= -E(0"w + 20'w") (3.18)

" where FE is the Young modulus. The expression for the Saint—Venant torsional
moment T, is similar to that for constant sections

T, = GJ,6' (3.19)

with G and J, standing for shear modulus and the Saint—Venant moment of
inertia, respectively. The energy U; can be formulated in the following way

1 ro? 1
AR L —— - ¥
U, = 2‘/ EdV+ 2/T,6 dz (3.20)

where dV = dFdz, being the product of cross—sectional area and length elements
~ dF and dz, respectively, represents the column volume element; V is the column
total volume and ! denotes its entire length. By putting Eqs (3.18) and (3.19)
into Eq (3.20) one obtains

Ui=y / [E(6” / w?dF +40" / w?dF +46"0’ / ww'dF) +GJ,6""|dz (3.21)
{ F F . F

This equation, with the notations

/ wdF = F,,
/w'zdF = Fyiw (3.22)
/ww’dF = Fu

can be presented finally in the following form

1 a2
Ui=s / (EFun©" + 4EFyp6” + 4EF,s0"6' + GJ,0%)dz  (3.23)
{

Taking account of the cross-sectional variation, the potential energy of the external
loads U, can be expressed as follows

/ / n(€? + o*)dFdz (3.24)
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where

n=-z (3.25)

£ and 7 are the z- and y-axis oriented displacements of an arbitrary cross-
sectional pgint caused by the column rotation about the z—axis. For the I-column
considered Eq (3.24) becomes the following

1 ) .
U, =3 / n(2 / (€2 + 9. 2)dF, + / (& + 147)dF,) dz (3.26)
1 ‘Fa R
Taking into account the obvious relations _
& = -6y e = Oz, &6=0 n = Oz _-
o ~ | 3.27)
f: = _ely' . Th’l = 6’3¢ + 6’2; a ;—. 0 n‘ = elz

and integrating over the areas of flange and web cross—sections F, and F},
- respectively, Eq (3.26) transforms to the adequate form

U. = %/n((Fzz + Fw)'e'z + 2F¢(299:3¢3; + -922:.2))‘!2 (3;28).
! .

here Fr; and Fy, are the conventional moments of inertia -
F. = / 22dF Fpy = / PdF (3.29)
F F '

By putting Eq (3.25) into Eq (3.28) and with

b F.o +F, F,

%a =3 A = . SF =@ (3.30)

one obtains the potential U, in the following form
U, = _% / (PO +2aPOO'W + aPO™W?)dz (3.31)

J |
The total energy U is in general
U=U;+U. (3.32)
' becoming in the particular case investigated
U = % / (EFun®" + 4EFurs8” + AEF 16”6’ + GJ,0" -
24

(3.33)

— r2P6"” — 2aPOO'bY — aPG’b”)di
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. The usual condition of the total energy minimum is expressed by the well known
differential equation of Euler [1]

o6 d ;00 & ;09 :
56 ~ 4= (387) * a7 (3g7) = 534
hereby & represents the integrand of the integral expression (3 33) This results
in the following differential equation

(EF®” + 2EF.,,.,:9’)" ~ 2(EFuur®” + 2EFuw6') + 35
' 3.35

+((*P - G1)6") + ((aPY¥ + aP¥)6b =0
which, with P r@@d as constant, after appropriate transformation becomes
_ (3.36)

+((r’P GJ)e") + Plab'Y0b=0

. 'This equation represents the fundamental dlﬂ'erentxa.l eqnatzon of torsional buekling
for the investigated case of a thin—walled I-column with .variable, bisymmetric

3.4, mmdmwwm

‘The denved Eq (3.36) concerns the I—column mth a cross—sectlon that. varies in
an arbitrary way, i.e. changes can be attributed to lts web-height, flange-widths
and thicknesses of web and flanges. ;

Hereby the change of web-height has a spedal nnportance since it substantially
affects the shape of the fundamental differential equation in force.

For the case of a constant web-height , with all the other changes of the cross-
section rematmng as mentxoned a.bove, one obt.a.lns the simple equation

(EF 9”) + (r’P GJ.,)e') =0 (3.37)

since ¥ =" = 0. Intm,thxsequauonmduoutotheweﬂknawnfmmofWagnet
B9
‘ - 'EFWG"' +(P*P-GJ,)6"=0 ‘ (3.38)

- when the entire cross—section remains constant.
f
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Another special case is the tapered I-member investigated by Culver [3]; its
differential equation (6)3 can be written in the following form

E(Fuu6")"+ 45(%'”9')’ +(?P-G1)8) = 0 (3.39)
The same case considered on the basis of Eq (3.36) produces
(E‘;'“’(eb)'_')”b +((*P-ci)e) =0 (3.40)

since ¥’ =0 and o = 0. It has already been shown (cf [9,13]) that both the last
equations are jdentical.

3.5. Method of solution — boundary conditions

Obviously, exact solutions of the generalized equations are not available and,
therefore, approximate solution methods must be applied. One of them is the
finite difference method. For questions of thin—walled bars it has already been
used several times in the past (cf [4,5,7,8,13]), proving successfully its fitness. As
far as the torsional buckling problem is concerned the application of the finite
difference method was shown in detail in [13]). Because of its general character, it
is not discussed in this paper.

The boundary conditions for the four Euler-similar types of support are given
in Table 2.

Table 2. Types of support and boundary conditions

R Fo R R

H(i)=0 B{l}=0 ! B{()=0 a(l)=0

{ ] !

i | 1 .

| t
ollle|iie|) @

® ] 1
0(0=0 8(0}=0 0{0}=0 6(0)=0
wx T @(0)=0 — B(0l=0 * @{83:0 G%gLO

It follows from Table 2 that, besides the angle of twist 6 and the warping
rate 6’, the bimoment B, and the total torsional moment T .= T, + T, are also
involved; hereby 7, ia a new quantity, namely the flexural-torsional moment.
According to [7,8] B and T, result from the following equations

B= -%";((eb)" —er)  (3.41)
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T, = - [[E:;“'” (b - 68")]'b - E:;“'“’ ((ev)" - eb")b'] = (%)lb - %b’
' (3.42)

4. Numerical example

Applying the Mmd theoretical basis, the torsional buckling load FPg of
the considered I-column with variable cross-section can be determined. The prac-
tical conduct will be shown on the numerical example of I-column, illustrated in
Fig.4. Hereby interest was drawn only to the formal analysis side, abandoning the
questions of the column actual performance, which depends upon other features
like the stress range, material and geometrical imperfections, limit strength, etc.,
not considered in this paper.

The type of the assumed cross-sectional variation allowed the computations to
be based on the more simple form (3.37) of the fundamental differential equation.
It has been solved as an eigenvalue problem by the finite difference method, for the
boundary conditions corresponding to fork-type supports. The column has been
divided along its length into 20 equal parts. The obtained result is demonstrated
in Table 3 ~ where, for comparison, also the Euler buckling loads P, and P, due
to flexure about the z- and y-axis, respectively, are given.

Table 3. Comparison of buckling loads (*Approximate according to [18] -
Diagram 1 5) ‘
[ Cross- | Buckling loads [MN ‘
. -section P By Ps
Constant
minimal 1.73 6.05 | 3.34
‘Variable | 10.18* ] 10.39* | 9.51
Constant o
maximal | 13.82 | 11.23 | 8.54

It follows from Table 3 that for the variable cross—section investigated, in oppo-
sition to flexural buckling, the torsional buckling appears to produce the critical
load Pg located outside the interval, specified by the two values appropriate for
both the extreme comstant sections. This result confirmed the earlier reported,
qualitatively similar effect, obtained within the problem of free vibrations. It was
found to be very doubtful: one could get the impression that the weakening of the
column body results in its strengthening. This thesis contains all the features of
the paradmlz, i.e. the "paradox first form”.
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Fig. 4. Variable I-column analysed numerically
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5. Post—paradox research

After the paradox was discovered, prior to its first public presentation.[13],
its existence was carefully verified, also by applying another approach (Galerkin).
Each time the buckling load Pg = 9.51 MN was found formally legitimate. More-
over, an opposite cross—sectional variation: increase of flange widths towards the
member ends, brought up a decrease of the Pg—value, below those correspon-
ding to both the constant sections [10]; this properly reflects the "paradox second

‘form”. Thus, the quoted paradox appeared now in its complete form.

Because the paper by Cywiiiski and Kollbrunner [13] was distributed through
private channels only, comments were scarce. Corresponding notice was first made
by Lind [19]; the paradox existence was. fully confirmed by applying the method of
Rayleigh and Vianello. Similar observations were reported by Lindner [20], where .
the Ritz method together with the utilization of Hermite polynomials was used.
Finite element procedutes in different versions were applied later by Szymczak
[27], yielding the same qualitative results. Hereby, independently, besides the
paradox first form, also the appearance of its second form has been confirmed.
The substantial results of the last two comments, versus those of [13], are pomted
out in Table 4; related details are given elsewhere [11,14]. .

Table 4. Comparison of torsional buckling loads -

Cross-
-section - Solution Pg [MN]
Constant :
minimal | Exact 3.34

g Cywiiski/ 1971 FDM _
| Kollbrunner [13] Az=20 9.51 |
Variable |=| Lindner ~ 1976 Ritz +
: % ‘ [20] Hermite | 9.29
é Szymczak 1978 FEM
< [27] Az=20 9.40

. Constant : e

maximal Exact ‘ 1 8.54

In order to be precise it should be underlined that the Pg—va.lues of Tabled
correspond to I-shapes somehow different, as far as the web-height is concerned;
in [13] it was specified as the distance between the flange center lines, whereas in
[27] and, probably, in [20] - as the distance between the flange outer fibers.

A special investigation of the paradox second form was discussed by Szymczak
[27], with simultaneous research concerning the interconnected problem of com-
. pression and vibrations as presented in [26). Applying the criterion of dynamic
stability, th{e value of the compressive force was determined which corresponded
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to zero—value of the natural frequency in torsion — thus describing the approached
buckling load Pg; its paradoxical formation has been fully confirmed. The presen-
ted correlation of buckling and vibration problems supported the earlier Authors
statements [7,8] on the questioned location of the natural frequencies in torsion
(k16) of thin walled bars with variable cross-sections. This feature has been later
reliably confirmed by Wekezer [36)].

An additional confirmation of the paradoxical Pe—forma.uon was obtained by _
Szymczak [28,29,30] within the post—critical analysis of torsional buckling, where
the relevant bifurcation points were found symmetric and stable, thus excluding .
an eventual drop in buckling load due to the initial imperfections.

An advanced investigation of eigenvalue problems for bars with variable cross— -
sections, related to optimization problems was given by Grinev and Filippov [17].
- This monographic study concerned eigenvalues of longitudinal, torsional and fle-
xural vibrations, as well as of flexural buckling, whereby only bars with solid
cross—sections were considered. It was shown that in all three cases of free vibra-
tions, the frequencies corresponding to bars with variable cross—sections could be
found also outside the ranges determined by the extreme constant sections — on
the contrary to flexural buckling where, in such cases the respective buckling loads
have been found to be situated, necessarily, inside those ranges. The aforemen-
tioned type of approach has been extended later by Szymczak [31] into the family
of thin walled sections: The former statements on possible locations of Pe and
kye for variable sections outside the ranges specified by both the extreme constant
‘sections, have been fully confirmed in that way, as well.

- A particular view of the paradax was demonstrated by Dabrowski [15]. Expres-
sing the buckling load of mixed torsion Pg in the form of

Po=P,+P, (5.1)

where P, and P, represent the effects of Saint—Venant (primary) and warping (se-
condary) torsion, respectively, the analysis of the P,—component became a special
point of interest. It was proved that the mentioned component behaved paradaxi-
cally even when comparing I-columns with constant sections alone. The opinion
was expressed that just this P,~component should be blamed for the existence of
- the paradox within the class of columns with variable cross-sections considered. It
" has been shown previously (cf [11,12,14]) that the thesis of Dabrowski [15] should
be rejected. For the case of the variable cross—section under consideration, the
proof has been given that the P,—component had a more decisive impact (than
P,) on the formation of Pg, and that P, was also the subject of a paradoxical
performance, although the behaviour of P,, within the class of constant sections
was "normal”. A graphical illustration of those findings is given in Fig.5..
In the 80-ies some other studies were published on the problems concerned.
The mutual relationship of vibration and buckling problems for I-columns with
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PV £ P\' » P. [m] V . W ’ [MN]
Constont_seclions _ o st _
% : X 16
% Ry *%
© 12
6 6 B
J ‘
2 B 2 R,
0 0
D X W 0 &b o] D VD @ 0 0 bhylom]
) bg = 40 = corst.
Fig. 5. Beha.viour of P, P, and Pg for the column considered

variable flange-widths was investigated by Szymczak [32] with the aid of optimi-
zation analysis. ‘Szymczak considered also [33] optimal design of those columns.
Hereby, the torsional and flexural buckling questions were of interest. To clarify the
paradox, a special procedure was applied by Dubas [16]. The model of differently
tapered space truss was used — of square mid-span cross—projection, in particular.
Applying the method of Engesser—Vianello, the paradoxical formation of P, was
confirmed, formally, but the explanation of its substance was not sufficient.
Later, simultaneous action of torsion and compression of thin—walled I-.
-members with variable cross—sections was considered as a problem of optimization;
. a paradaxical increase of the angle of twist, together with the increase of the bar -
volume, was found.
. - The finite element analysis of lateral mstablhty of thin—walled bars with va-
riable sections has been shown by Wezeker [37] but the paradox has not been
established. Finally, the unconventional behaviour of those bars, within the nei-
ghbouring problem of free vibrations, was again reported by Wezeker (38,39).

6.. : Final commexitg

The recorded facts allow to state that, in the framework of the present theory of
thin—walled bars, the formal existence of the reported paradox is evident. However,
its essential explanation is, until now, insufficient. The paradox concerns the most
simple case of uncoupled torsional buckling but it is possible that similar problems
can arise with coupled flexural-torsional stability. The generated ™discrepancy”
can be thel' basis for the opinion that the theory itself is imperfect and needs
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verification. Some recent critics of this theory (cf [21,23,24,25]), based on different
data, suggest that a thorough reexamination of the governing theory is extremely
desirable. Nevertheless, an experimental verification of the paradox seems to be
necessary. In the event of its confirmation or the emergence of a more reasonable
theory, efforts should be made to modify the flexural-torsional instability formulas
currently observed [2], with an evident effect on practical design of thin-walled

structures.
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Paradoks wyboczenia skretnego

Streszczenie

W ramach szczegélowego praegladu przedstawiono tlo i istotq zaskakujacego ksztal-
towania si¢ skretnych sil krytyczn c{ch dla slupéw cienkoéciennych o zmiennych, bisyme-
trycznych przekrojach dwuteowy Dokonano stesownego odniesienia do wyboczenia
gietnego i do pierwotnie badanego, pokrewnego problemu skretnych drgaii swobodnych.
Wyrazono opini¢ o mozliwoéci istnienia podobnych zjawisk w sprzezonych, gietno—skret-
nych zagadnieniach wlasnych.
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