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A solution to the two—dimensional elastic—plastic contact problem taking into-
account the deformation of the surface roughness at the contact zone is pre-
sented. The problem has been described using an incremental variational
functional followed by the approximation typical of the element displace-
ment method. A special contact element composed of three discrete spring
elements has been used for the sirmulation of nonlinear properties on the con-
tact surface. The stiffiness of these spring elements has been determined on
the basis of some empirical mechanical characteristics of the contact flexibi-
lity of r surfaces. The correctness of the algorithm presented has been
illustrated by a computational example. The influence of parameters defining
the contact compliance on the distribution of stresses and displacements on
the contact surface is discussed. )

)

1. Introduction

The classical tool for the analysis of elastic contact problem is the Hertz's
theory put forward in 1881. However, this method does mot allow for analysis
of complicated problems, especially bodies with various complex geometries and
geometrical and physical nonlinearities both in the contact zone and inside the
- contacting bodies. In recent years large-scale computational techniques have been
developed, the most promising among them being undoubtfully the finite element
method. Most numerical investigations in the field of contact mechanics have
been restricted to Signiorini’s unilateral impenetrability conditions (which may
- be relevant for very hard and smooth contact surfaces) and the classical friction
model. The classical friction law of dry sliding (ideal Coulomb’s law) can be
summarized as follows: the coefficient of proportionality, known as the coefficient
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of friction, is independent of the apparent area of contact as well as of roughness’
and relative velocity in tangential motion, and the friction forces are proportional
to the normal contact forces.

Real surfaces are always rough; a machined surface is composed of micro-
asperities. As a result, when two surfaces approach each other contact occurs first
at the tops of the highest asperities. When the load is increased the asperities are
crushed and the surfaces sink together. We say that the interface compliance has
occured. The surface roughness of the joint has a significant effect on the contact
stiffness as it determines the global behaviour of the machine joint. To take into
account the influence of roughness upon the contact pressure and shear stress di-
stribution different analysis methods may be used. Some methods are based on.
the discrete model in which the asperities have simple geometrical forms, e.g. that
of a cylinder, wedge, sphere, etc. In these methods the analysis resolves itself into
the investigation of influence of the microgeometrical morphology and mechanical
material propertities on the interaction of the contacting rough surfaces (Tangena
and Wijnhoven (1985); Salamon, Tong, Mahmoud (1985); Plesha and Belytschko
(1986); Morawski, Rakowski and Skalski (1986); Skalski (1988) or Yamada and Ka-
kubari (1988). Another approach to the analysis of the contact problem consists
in the experimental determination of the load-displacement characteristics for real
surfaces and the substitution of simple mathematical expressions for them. Such:
a method has been employed in the present study. Back, Burdekin and Cowley
(1973a) were the first who used experimentally determined parameters (normal
compliance condition) in the calculation of examples of simple machine tool joints
by the finite element method. In their work the authors stated that it was not
necessary to know precise values of the normal compliance parameters for a suffi-
ciently accurate solution; some differences in the values of the parameters ¢, and
m (see the next section) were giving very small errors in the total normal surface
deflections. According to those authors, the calculation of the normal stiffness
and pressure distribution in the joints under the assumption that the structural
components are rigid gives the normal displacements several times smaller than
those obtained with a normal compliance. Even for a very low interface pressure
the errors obtained when assuming rigid components were large and increasing
with the increase of the interface pressure. The same authors (1973b) presented
three iterative methods of simulation of the surface roughness: the spring, plate
and hydrostatic method. When the methods described in their work are com-
pared, each of them presents some advantages over the other depending upon a
particular problem to be solved. In the case of 2 large relative displacement of
the pair of nodes in contact in the tangential direction to the surface, the spring
method was recommended (a tangential stiffness must then be introduced). Chvo-
rostuchin et al. (1980; 1981) used the finite element method to solve the press—fit
joint with surface roughness in the presence of waviness deviations after machi-
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ning operations. In Kops and Abrams (1984) the additional effect of the shear
and normal stiffness of the interface on the thermal deformation of machine tool
structure was discussed. An effective model of frictional interface behaviour was
proposed by Villanueva—Leal and Hinduja (1984). These authors were first to suc-
cessfully employ the incremental formulation to solve 3D-bolted joints with both
the normal and tangential contact stiffness. They limited the values of shear forces
by the Coulomb’s law of friction. The elastic—plastic plane contact problem with
the contact stiffness was first presented by Bloch and Orobinski (1983). These
authors used the elastic—plastic shear relations by Reshetov and Kirsanova (1970)
and assumed the ideal friction law. A single bolted joint was analysed by Kawiak
(1984) who also presented a solution to 3D-bolted model. Unfortunately, however,
the 20-nodal-hexahedral finite elements together with the spring contact elements
lead to erroneous numerical results (Gabbert, 1987). The problem of loading and
unloading of a flat circular punch contacting a half space was solved by Klarbring
(1986) by using mathematical programming (parametric linear complementarity

method). A’ linear normal model of the contact interface (m = 1, see section 2)
‘and a generalized hardening Coulomb friction was there assumed. Based on the
 analysis of some experimental results, Oden and Martins (1985); Martins and Oden
(1986) and Martins, Oden and Simoes (1990) gave a variational formulation (varia-
tional inequalities with a regularisation of the friction functional) for the dynamic
problem and solved it using finite element procedures. The existence and unique-
ness of solution to the contact problem with non-linear compliance of a metallic
body were proved by Rabier et al. (1987), Klarbring et al. (1988; 1990). Wriggres
(1987) and Wriggers, Vo—Van and Stein (1990) took advantage of the expressions
descnbmg the non-linear behaviour of the contact surface in the normal and tan-
gential direction. They reported the solution to two—dimensional static and dyna-
mic problems under large deformations and a non-linear friction law. Cheng and
Kikuchi (1985a; 1985b) presented an elastic—plastic problem of unilateral contact
in which the elastic-plastic friction law was extended to large deformations typical
of some metal forming processes. Altenbach and Buczkowski (1991) carried out an
incremental finite element analysis of an elastic, two—dimensional, axisymmetrical
contact problem taking account of non-linear properties of the contact zone. To
. limit the value of tangential forces Fredriksson’s fnctlon law was mtroduced. e

The present study deals with the solutlon toa pla.ne stress and plane straan_
_ elastic-plastic contact problem with linear hardening. The nonlinear problem is
solved by using an incremental-iterative modified Newton—Raphson procedure. A
. flat elastic punch pressed into the elastic-plastic foundation is analysed as a nume-
rical example. The structure is discretized by the eight node quadratic element of
_ the serendipity family. In what follows the elastic-plastic behaviour at the contact
interface is designated by (e—p) whereas the elastic—plastic deformation- of the
contacting bodies A and B by (E-P). :
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2. Modelling of interface surface roughness
2.1. Normal behaviour

Many researchers have observed that in the presence of surface asperities the
relationship between the interface pressure and the approach of the surfaces in con-
tact can be expressed by the following nonlinear power equation (Back, Burdekin
and Cowley, 1972; Oden and Martins, 1985; Levina, 1967)

Uy = CyPy H (2.1)

where u, is the deflection of the asperities, p, is the mean interface pressure and
the parameters ¢, and m are coefficients depending npon the materials in cor act,
matching process, height of the asperities, relative orientation at the surface layers,
hardness, flatness deviation and size of the contact area, respectively.

For different surface finishes and material combinations the values of ¢, and
m were given by Back et al. (1973). The parameters c, and m vary from
0.3 to 2.0 and from 0.3 to 0.7, respectively. For most metallic materials the
varameter c, is proportional to the modulus of elasticity whereas m is usually
equal to 0.5. As suggested by Levina (1967) and Martins, Oden and Simoes
(1990), these coefficients are applicable up to the contact pressure of 5 [MPal.
For a higher pressure range (from 0.8 [MPa] to 31 [MPa]) Connolly and Thornley
(1968) formulated an expotential law

Py = ae™y (2.2)

where a, b are the coefficients which depend upon the surface finish and the
" material combinations.

Taniguchi at el. (1984) proposed and experimentelly verified a linear relation
for the contact stresses and the surface approach for a heigh pressure range over
10 [MPa] up to 100 [MPa] in the form

vy, =Apy + B Py = Pc X 10 [MPa) (2.3)

where the coefficient A extends from 0 to 10 [nm/MPa] and the coefficient B
extends from 0 to 40 [um]; p, is called the critical interface pressure. The corre-
sponding coefficients ¢, and m in Eq (2.1) are evaluated for p;, < p..

In the field of engineering, there exist structures like plastic—injection molds
or bolted, machine-tool and shrink-fit joints which are subject to a pressure over
100 [MPa; it has not been cleared whether the equation can be applied to a much
higher contact pressure range while it is necessary to investigate the relationship
between the critical pressure and the surface roughness to know which of the
equations may be employed in the computational process.
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Experiments indicate that the higher contact pressure the steeper the contact

normal stiffness characteristics. At the same time the contact stiffness increases;

v = (8py/0u,) — oo. This fact can be ensured by taking ¢, — 0. In the
present computational procedure it is assumed that ¢, = 0.001 and m = 0.5.

- 2.2. Tangential behaviour

. In addition to normal loads the joint may be subject to tangential loading.
The behaviour of an interface loaded in the tangential direction was studied by
Courtney-Pratt and Eisner. (1957), Kirsanova et al. (1967, 1970), Masuko et
al. (1974), Koizumi et al. (1979) and recently by Thornley and Elewa (1988).

The experiments showed that both the relative displacement of the two-bodies.
and the area of contact between them were smooth, increasing functions of the -
. tangential force as long as this force was increasing monotonically from zero. It.
_was measured that the relative displacement of two metallic bodies in contact was

increasing with frictional force t,., tending to infinity as {, was approaching

asymptotically a value of tpner = Hmly, at which the thr&shold of macroslip

(continued sliding) was reached: The value of py,- defined and found in this way
agrees well with the values of the coefficients of static friction. Release and aven

‘reversal of the tangential force produces no further irreversible changes until the

force is increased again, in either d1rectlon, to a numerical value as heigh as the
highest one previously reached.

In this study the nonlinear behaviour has been approximated by two straight
lines (elastic and plastlc part) (Reshetov a.nd Kirsanova, 1970) as follows.

Uy = 5+ (12) (2, — 2F) e

where ur is the elastlc shear displacement, k? is the shear—plast;c stiffness coef-
ficient, denotes elastic limit for shear stress or initial yleldmg at the surface
and p, m the actual shear-stress.

It was found (Reshetov and Kirsanova, 1970) tlmt fm‘ repeated loads: which

did not exceed the first loading limit the displacements were only elastic. It was
-also observed that at the elastic limit the ratio of shear stress p¥ to the normal -

. pressure py was a.pp;mdmatel]y half of the coefficient of the static friction pm

y ¥,

Experiments of Courtney—Pratt and Eisner (1957) and Oden and Martins
(1985) suggested that the preliminary displacements were essentialy irreversible
(plastic). This apparently holds true for the soft materials (gold, platinium, tin,
indium) on}y.. Koizumi et al. (1979) taking into account the bolted joints as an

(2.5)
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example of jointed surface under a relatively high normal contact pressure found
that the soft material (such as aluminium) displayed a large micro—slip (plastic
displacement) and a hard mild steel displayed a relatively small micro-slip. Expe-
riments of Koizumi et al. (1979) indicated that the tangential elastic displacement
uf. decreased with an increase of the preload. An interesting observation is that
the elastic displacement is proportional to p, = t,/t, with the propartionality
coefficient depending on materials type, hardness, roughness and apparent con-
tact area of the joined surfaces. Thornley and Elewa (1988) in the framework
of experiments on shrink—fitted joints reported that the tangential displacement
‘was increasing almost linearly with the applied tangential load during the loading
cycles for large interference values. The value of interference plays an important
role in determining the magnitude of tangential displacement between the joint

. matching surfaces. When the tangential load reaches a magnitude equivalent to

the joint holding load, gross—slip (macro—slip, sliding) occurs and the _)omt can no
. langer be considered shrink—fitted.

It was found that the elastic displacement took place within the specific range
of loads. For a further increase in the shear force exceeding the limit, the resulting
displacements are elastic—plastic followed by macro-slip. Failure of the joint can
be generally determined or the basis of the coefficient of limited friction. It was
also noticed that elastic displacement of shrink—fitted joints during unloading was
about 90% of the overall tangential displacement for large value of interferences.
Therefore, the elastic displacement can be taken to represent the tangential displa-
cement of the shrink-fitted joint with a large value of interference. Some authors
have suggested that it is necessary to design the joint in such a way that the
tangential deformations remain below the plastic limit. Reshetov and Kirsanova
(1970) and Masuko (1974) found that shear stiffness depended upon the surface
finish and that it was decreasing with the decrease of the normal pressure. The
results obtained by Reshetov and Kirsanova (1970) indicate that the relationship
between the shear stiffness and the normal interface pressure can be presented as
(Back et al. {1973a))

k=P (2:6)

where 5 and R are again parameters dependent upon the pair of materials and
surface finish (Back et al. (1973a)).

2.3. Normal stiffness during loading

The direct iterative procedures cannot lead to an acceptable solution to the
interface problem because they do not follow the stiffness variation at the interface
as given by Eq (2.1). The use of the incremental method is thus unavoidable be-
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cause it makes it possible to gradually adjust the slope so that the resultant curve
2y — py follows the desired experimental curve. The stiffness value corresponds to

the slope of the pressure—deflection characteristics at the working interface pres- -

sure. Using the power law relationship in Eq (2.1) gives stiffness per unit area
(1-m) :
by=2Pw v T . (2.7)

where p, is the total mterfa.ce pressure acting at the contact node and "m m
are coeflicients.

For the first load increment (xtera.txon) the slope of the curve u, —p, camnot
be used because its value is zero at the origin. Hence the normal stxﬂ'ness per unit
area at this point on the interface for the first iteration is computed’ using the

secant . A,p[ ] :
1 Pm_ (28)
A“ A"N 28) .
where py, is the uniform pressure across the interface. Using Eq (2.1) we obtain "

i @l Al |
W= -Gk 9

where A fm is the incremental load for the first iteration and Ac is the apparent
area of contact.

Since the value of k, at the first iteration is ca.lculated usmg the secant,
the first incremental loa.d Af)[}] is chosen to be small (about 5 per cent of the
- ‘total load). The greater the initial load the greater the error incurred.at the first

~ iteration (Villanueva-Leal and Hinduja, 1984). -

For the second and next load increments loads the preqsure can be ca.lculated
as (Altmba.ch and Buczkowski, 1991) :

k[‘] (Aum + 2 Au[']) I
' p[:,l, A g (2.10)-" |

a;j

. and the normal stiffness is evdua.ted from the slope of the pressure—deﬂechan curve - :
(Eq (2.7)) as | .
(p[i l]) -m

TR o SR i : (2.11)

Ni cym .
where j is the number of a contact element, a; is the area ofxn.ﬂnem:e and i~
denotes the iteration number.

This approximation is valid only if the normal pressure remains oonstant If
during the iteration process a contact element is subject to tension it means that
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loadmg ha.s begnn For the discussion of this case the reader is referred to Al-
. tenbach and Buczkowski (1991). The point will stay in contact as long as the
resultant contact pressure p, updated by Ap, remains negative. When the
resultant pressure does not satisfy p, < 0 the contact stiffness submatrices are
removed from the global stiffness matrix. This mdmates tha:; a certain part of the
interface area has lost contact. .

2.4. 'lhngentatiﬂ'nees

: Duetothemeversiblechancteroftheﬁutmphmmammemental for-
mulation has been employed. After initial yielding 77 (see Eq (2.4)), we consider
a further load resulting in an incremental increase oi the tangential stress Ap,,
accompanied by a change of the tangential displacement Awu.. The tangential
displacement can be separated into elastic and plastic components as (see Fig.1)

Auy = Al + Al (2.12)
q -
 m o] // % ) ...kg
O,BZSMmPN
Ky
Ky ‘
Al Ag
Aup Uy
up | uf

Fig. 1. 'I‘angentu! contact behaviour in the pre-sliding phase, k) and k") are
coefficients of the contact stiffness in elastic and plastic range, respechvely

Whythedassicaltheﬁryofphsﬁdtytheﬁictimhardeningmoduhs H
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is expressed as
: Ap,
= 2.1
H =2 (2.13)
It results from Fig.1 that
. = k2 Au’
Apy = k1 Au; 2.14)
= kb Au,

where kZ and k2 are the elastic and the elastic—plastic stiffness coefficients,
respectively. Using Eqs (2.12) the relation (2.14); takes the form

T Apy = E(Ad! + Aw?) = k;(% + %) (2.15)
: b o .

. Using Eqs (2.13) and (2.15) the friction hardening modulus H caa be expressed
“ 3

Thism-behtép&edutkeskqedthemgmﬁﬁm—dkphmentm-~
rve after removal of the elastic displacement component. In this paper a linear
displacement-hardening relationship after reaching p! has been assumed (Fig.1).

Using Eqs (2.13), (2:16) As}, is expressed as follows

w A = Ap [@2) -2 ,' (217)

By snbstltnﬁng eq (214)1 and (2.17) into Eq (2.12) wearnve a.t acomp}ete
incremental friction relationship in the form
{- (lc,‘r)"A:-r for p, < pY = 0.6254im|pyl
Au, = . : - (218)
Aus + Ap [(B)1 — ()] for pY < pp < prmlpyl

where p,, denotes the macroscopic (ar static) coefficient of friction and pY is the
elastic shear stress limit.

" Under the condition that p,msmaﬂerthanoreqndtotheshwsumshmt

p}. the behaviour at the surface interface will be elastic exibiting the stiffness.of

=8P e (2.19)

with k¢ obtained from Eq (2.6).
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Suppose now p, is increasing until yielding of the surface interface. The
tangent stiffness for ‘elastic—plastic behaviour of the surface interface using Eqs
(2.12), (2.13) and (2.14) is then given as

A Ap ke :
(CP) 3 -pr — T - 2 — ¥
b = By - B+ A k(1- “T+E ) L )

where a = 0if p, < 0.625pn|p,| (elastic frictional behaviour or - frictional unlo-
ading) and a = 1if 0.625pm|p,| < Py o PPyl (pla.stic frictional be,havionr),
tm is the static friction coeflicient.

In Eq (2.20) the first term represents the elastic stiffness coeﬁiment as given by
Eq (2-19). The second term accounts for the stiffness reduction from the elastic
value due to yielding. For the perfectly plastic behaviour of contact surface after
yielding (Eq (2.16)), H = 0 is implied and the elastic-plastic stiffness coeﬂicrent
k(”) equals zero by Eq (2. 20)

" 2.5. The coefficient of friction

~ The coefficient of friction was determined experimentally by Lindgren (1973), -
Miiller (1975) and. Fredriksson (1975), among others. These experiments were
.carried out on metallic materials and indicated that coefficient of friction increased
with the effective-slip (plastic displacement) u? approaching the macroscopic
“-coefficient of friction p,,. It was also observed that the coefficient of friction varied
with the applied pressure. Higher pressure implied higher maximum coefficient of
friction. At lower pressure this effect was not observed. The maximum value of
the friction coefficient was observed to be greater for turned contact surfaces than
milled ones. In this comparison the contact pressures and saurface roughnesses
were approximately the same. In view of the results of Fredriksson (1975; 1976)
the normalized coefficient of friction may - ‘be related to the irreversible (plastic)
displacement as ”
£r _ 1 - (1= B)el—"F) ' :
s 1-(1-p)e (2.21)

where u,, is again macroscopic (or ;tatic) coefficient of friction, S defines the
~ initial coefficient of friction, = is the degree of slip hardening and u? is the
accumulated plastic dlsplacanent The parameters should be determmed experi-
mentally.
) 2.6. Friction therface law.

By liﬁ;iting the maximum shear force that can be transmitted through the
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joint, the coefficient of friction defines the position at which the tangential loading
‘stops and the macro-slip begins to occur.
We will now introduce a frictional isotropic law (Frednksson 1976)

S(rstysbte) = Ll + npty e (2-22)

‘where t, and t, are the tangential and normal contact traction components,
respectlvely and p, is the coefficient of friction determined by Eq (2.21).

. Assume now that the complete solution is known up to the current state and
the conditions on the contact surface at the next increment are of our interest.
The slip condition is satisfied if

f>0 o f=0 and Af>0 (2.23)

while the isotropic slip criterion implies that

Itel Itel 14t
>p or. =pr -and
Tl 7.7 ] |At,]

where - At,. and At,, are the incremental tangential and normal contact compo-
nents, reSpectlvely

' The macro-slip occurs when the shear stress increment At acting at contact
surface exceeds the limiting value of pu,|At,|. To reduce the excess strees an
iterative approach suggested by Buczkowski and Altenbach (1989) has been em-

ployed. At the next iteration the shear stiffness is calculated by assuming that the -
same value Au, (= At, /k ) exists and the excess of shear stress is reduced to
the limiting value as .

(2.24)

g sign(up|AL]) B i A 20 (2.25)
T A_-"T sign = —1 for Au, <0

whereas the irréversible macro-slip Aug = Aul is computed by Eq (2.26) given
now as A
t -
| AuE = Au, - %Ll | (2:26)
where k;, defines the elastic stiffness coefficient. The model is reanalysed until
the excess shear stress due to the friction limit becomes zero.

3. Variational formulation

-3.1. Incremental description of the contact p_roblein

We have indicated that for an effective numerical treatment of problems invo-
lving r_nate_x;ial nonlinearities and the irreversible nature of friction it is necessary
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to use an incremental formulation. We consider the contact problem shown in
Fig.2, where V denotes the body in the deformed state, A denotes the surface
of V, A, denotes the part of the surface with a prescribed displacement field u,

¥y A, denotes the part of the surface with a prescribed surface traction ¢ and A,

denotes the contact zone which is unknown a priori.

A~

e

|

«Q

)

Fig. 2. Contact area for two rough bodies: discrete formulation

For the small deformation elastic—plastic contact problem the fundamental sy-
‘stems of incremental equations can be written in the form of:

— equilibrium equations (intertial effects neglected)
Ad;j," =0 o in . VAuVvE ) ; _(3.‘1)

where Ag;; is Canchy incremental stress tensor, -

— geometric relations
245 = Augj + Auj, in VAuVE (32)

where Ag;; is the incremental strain tensor,

. — kinematic boundary conditions (prescribed displacements)
Au; = Ag; on 4fuaP T (33)

— static boundary conditions (prescribed boundary tractions)
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Agii(u)n; = Ati(u) on A, (3.4)

Apy(n) = Aoyj(u)nin;

Ap,.(u) = Ap(u) — Apyn

where Ap and Ap, are tangential (shear) and normal contact tractions; at the
contact interface surface the following relationships are valid

Au, = Aun .

i,j=1,2 % on A, (3.5)

(3.6)
Ay, = As - Au,n

— kinematical contact conditions to be specified below.

The current gap ¢ and the contact tractions (contact forces) are related thro-
ugh the inequality conditions

g= ((uB + AxB) - (w4 + Au)‘)n -9020 = p(am<0O

on A,
g= ((uB + AwB) - (vt + A!l“))n -90<0 = py(up=0
' (3.7)
g gives the current value of the gap, n represents the unit normal vector, p, is
the contact pressure, Au is the incremental displacement at the contact surface
and go represents the initial gap between the bodies A and B.

In the present work small elastic—plastic deformations have been assumed for
both the bodies A and B. Plastic deformations are governed by a yield criterion,
a hardening rule and a flow rule, respectively. The post-yield deformation is
described by the modification of the yield condition due to a strain—hardening
taking place during the plastic flow. The flow rule permits the determination of
the plastic strain rate components at each point during the progressive loading
- history. The yield condition is taken in the Huber—-Mises form as

floij) = F(o)) -0y =J3JP -0, =0 (3.8)

where JP = ag 05 denotes the second invariant of the deviatoric stress tensor,
ag = g4 — %a;,ké.',- and o, is the current yield point taken from the uniaxial
tension test. _

For numerical computations the isotropic linear strain hardening model has-
been employed (the Bauschinger effect is neglected). After initial yielding the
material behaviour is partly elastic and partly plastic. During any increment of
stress the changes in strain are assumed to be divisible into elastic and plastic
components as

Aeij = AT + Ael]) (3.9)
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where AE,(-JE) and Asf-;-)) stand for the elastic and plastic parts of the total incre-

mental strain, respectively.
For the Hookean material the elastic incremental strain part is assumed to be

related to the incremental stress by
Aoij = ClAey . (3.10)

where C( k), is the tensor of elastic moduli and the summation convention holds
for repeated indicies. The plastic part of the incremental strain is derived from
the associated flow rule OF
AelD) = NP — (3.11)
in which AAF is a factor of proportionality known as the plastic multiplier.
A number of successive algebric manipulations leads finally to the complete
elastic—plastic incremental stress — small strain constitutive relation (Kleiber, 1989)
E-P, :
Adi; = Cl D ey (3.12)

in which Cu’,-';, P) is refered to as the elastic-plastic constitutive tensor and can be

)
presented as

(E)
E- . n,,,C Rgt
ciu® =) [51:.51:- ?%') ] (3.13)
+nprcpmnnmn

where the indicies 1,j,k,/ run over 1,2,3, §;; is the Kronecker delta and n,',
represents the unit normal to the yield surface in the stress space as given by
(Owen and Hinton, 1986; Kleiber, 1989)

8F
Boi: 3 aP
o= 0% J
™= Tr5F oF J; o, (3.14)
Boyt Bogg .

The module & in Eq (3.13) is a hardening parameter which can be determined
experimentally from the uniaxial test data.

3.2. Approxiniation by the finite element method

The complete solution to the incremental problem described by Eq (3.1) +
(3.4) comes down to finding fields of incremental displacements Awu, incremental
strains A¢ and incremental stresses Ag which satisfy contact conditions (3.5) +
(3.7). Adopting the equalibrium state (N) as the reference state for the current
state (N + 1) (see Fig.3), the increment of the energy functional can be written as
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follows (the contact area is treated as given and the loading/unloading properties
in both the bodies, interior and the contact area are assumed known)

AJ) = / AoijAgidV ~ / Aul AtidA +

N ONPO) Al®)
4 VB Ae (3.15)

+ / ApTAu,dA + / ApfAu,dA
Aga) Ag')

Fig. 3. Actual and reference configuration

Two last terms in Eq (3.15) can be interpreted as fictious energy term repre-
senting the influence of the nonlinear Winkler foundation. ' The npper-index (e)
in Eq (3.15) denotes a typical eth finite element and (s) denotes a sth contact
element attached to the eth finite element. Substituting constitutive equilibrium
(3.12) into Eq (3.15) implies

al = 3 [ cEPacsAcuay - [ adfauda+
Vﬁe)uvge) A(qe'] '
(5.6
+ / ApT Au,dA + / ApT A, dA
Ag:) A&')
Let us assume now that the functions Aw can be approximated within each
element by means of the global shape function matrix N as

Au = NAg (3.17;
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where Ag is the vector of mcrementa.l nodal displacements. -
Using the incremental matrix form of the strain—displacement relations (3.2)

and constitutive equation (3.12)

Ag = DAu
(3.18)

o =CE-Plag

(D denotes the strain operator), the incremental functional (3.10) can be recast
into the finite element form as follows

Al = aq" [ BTCEPBAVAG-agT( [ NTAtA) +

vioyyle) (e
a Y . Ag (3.19)

+ /ApﬁAuNdA+ / Ap:Au,.dA
A A

where B = DN is the (global) strain operator.

For a given contact area A. the AJ, functional constitutes the basis for the
incremental form of the principle of stationary potential energy. The solution Ag
to the boundary-value problem (3.1) + (3.7) is given by the stationary conditions
of functional (3.19)

5(AJ,) = Z(ag‘(}j )))6(A )+Z({§(‘Z¢°) )6(A y=0  (3.20)

where N is the total number of finite elements, § is the total number of contact
elements and ¢, is written as

Ad. = Ay + ¢y = / ApTAu,dA + / AplAu.dA (3.21)
Ac

where A, is the area of the contact surface corresponding to the contact element
- (Appendix 1).
Eq (3.20) leads to the following set of nonlinear algebraic equations

(K5 + K(Ag)) ag= Af - Af. (3.22)
where K%P) is the elastic-plastic stiffness matrix given as

KEP) = / BTCE-P)Ray (3.23)
4
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and Af the incremental vector of equivalent nodal loads (ivithout the contact
nodes) due to applied surface traction which is given as

Af = / MTA2dA (3.24)
“and A f. is the incremental vector of contact forces which is obtained from the

last two integrals in (3.15). The Af, is expressed as the sum of the tangential
and normal contact forces as

Af, = / 5k, Au, dA + / Sk, Au dA (3.25)
Ac
Assuming infinitesimal increments of Ap, and Ap, expressed by (3.26) as.
_ Oy =9
Apy = du, Auy Ap, = Bu, Au, (3.26)

the relationship (3.21) can be rewritten as follows
/ (5 (Zrau,) v, |4 = 2k, / AuT Au,dA
| (3.27)
by = 2/[ ap"Au,,' Auy|dA = 2k, /AuTAu dA

where k, = 3—‘;: = constant (see Fig.1) and &k, = ;;;L expressed by means of
Eq (2.7) denote the coefficients of the contact. stiffness matrix in tangential and
normal directions, respectively.

By substituting Eq (3.17) into Eqs (3.27); and (3.27), we arrive at

Ad, = —k,.AqT[ / lTudA]Aq

el (3.28)

- 1 : 3
Ady = 3hyOL[ [ WTHaA|Ag,
The formula given by direct integration for typical C° shape fanctions (quadratic

of eight-node serendipity element) evaluates the consistent contact matrix which
has the full rank, cf. the consistent-mass matrix computation, as '

/ NTNdA = 3:) 2 16 2 (3.29)
-1 2 4

&
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Some of the algorithms become more efficient if one of the global matrices can
be diagonalized (lumped) (Zienkiewicz, Taylor, 1989). In practice, the diagonal
or lumped matrices are often employed due to their economy and because they
lead to some particularly attractive time integration schemes (so—called explicit
methods) (Hughes, 1987). Besides, the diagonalized matrix has often clear physical
interpretation. There are several ways of forming lumped matrices. One of them
is to employ the row—sum technique (Hughes, 1987, Zienkiewicz and Taylor, 1989).
The name originates from the fact that it is based on the relation

Y[ N'NdA= [ NTT N, dA = [ NTdA for i=j

Ac r Ac

T A (3.30)

) =
0 for i#j
in which Y. N, = 1, where r is the number of the element nodes, N, is the

rth shape f:mction and s is the number of the contact element. This algorithm
employs the diagonal sum of all terms in a given row.

Differentiation of Eq (3.28) and the use of the lumped matrix Eq (3.31) via Eq
(3.30) leads to the stiffness matrix of a single contact element for the tangential
and normal directions, respectively as

s[5 0 0
0 0 5

«T)y _aAqT - R 30

(3.31)

K(a) - a¢n = (APN.)l-m AS:‘)
W) 8Aq, eym 30

5 0 0
0 20 0
0 n 5

¢y, m, R, S being the coefficients defined in section 2 and A" is the area of
contact surface along three contact spring elements (see Appendix).

The submatrix (3.29) can be used in order to obtain the stiffness matrix for the
six-node bond—contact element. Because the contact stiffness matrix so—obtained
depends directly on the incremental contact pressure Ap, it is here assumed that
constant contact pressure p, changes in each spring—contact element. The spring-
contact elements can describe the nonlinear behaviour at the interface of surface
more accurately. When using the bond-contact elements the contact pressure
along the bond contact element must be assumed and, therefore, a more refined
mesh discretization of the contact zone is required.

The discretized area of contact surface for the isoparametric elements can be

expressed as
+1 +1

A, = / / det[j)dEdn (3.32)

—-1-1
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where det[j] is the jacobian determinant and ¢, 7 are the natural coordinates for
quadrialateral element. The stiffness matrix of three spring—contact elements is
given in the appendix.

4. Solution algorithm

An iterative procedure must be employed for solving the incrementally nonli-
near problem of elastic—plasticity at any stage of the deformation process. If we
.consider a typical load increment m + 1, at the beginning of which the state is
characterized by a set of known nodal displacement parameters Au,, and stresses
Ao, producing the internal nodal forces Af,, , we can write a set of nonlinear
algebraic equations for the m + 1 step in the following form [Zienkiewicz, 1977]

AYn i1 = ARy - (Af?n,+1 +(Af c):;+l) (4.1)

where Ay ., is the residual or unbalanced nodal force vector, m is the load
" increment number, = is the iteration number at the mth load increment, AR,
is the vector of egiuvalent nodal loads from applied surface tractions, (Af.)m4;
is the increment of the nodal contact forces, Af},,, is the increment of the
equivalent internal nodal forces related to the element stresses by

Af;-f-l /B m+19Y (4.2)

To obtain an xmproved solution the first order Taylor expansion is made yielding

AL = Avh + %&t)‘%ﬂ.: 0 . (43)

Using the relations (4 1) and (4.3) we can write

9L = (AR = (Afs + (ALn)] - KeJiiBln =0 (44)

where n is the nth successively updated tangent stiffness m.atnxforthe m+1>
loadxncrementwhmh,byumngEq(«il),canbeexpﬂssedas_ .

8(A¢,,,+1) (Af:;-n +(Af, c)m+l) G
s )m“ 3('".-“) O(%5,41) - (45)

or, in a more compact form, as

(K)o = (K5 ) + (xc),,m] | (4.6)
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where the first term in Eq (4.6) stands for the elastic—plastic stiffness. matrix
(Eq3.22) and the second term denotes the contact stiffness matrix (Egs (3.31)
and (3.31)).

The value of Au? ., from Eq (4.4) is used to determine an improved displa-
cement estimate after the n + 1 iteration at the m + 1 load increment as

G =+ Aun @

Different modifications to the above algorithm, such as the so—called modified
Newthon-Raphson algorithm or the initial load algorithm or the initial load algo-
rithm, based on the elastic stiffness matrix, have been implemented in the program
used to compute the example described below. The use of the algorithm based on
the constant elastic stiffness matrix has proved to be the most economical for this
problem (the shortest computational time), even though the convergence for this
algorithm has been the slowest. In this algorithm the relation (4.6) is replaced by

(K)o = [(KER)° + (Koo (4.8)

Independently of this build—up of the "tangent” stiffness matrix the modification of
the contact matrix in accordance with the contact condition (3.7) and the elastic-
plastic friction model (see section 2) is employed at each iteration.

5. Numerical example

The example to be discussed is taken from Lee and Kwak (1984). An elastic
(or elastic-plastic) punch A is pressed against an elastic—plastic foundation B
as shown in Fig.4. A uniform pressure { is applied to the upper face of the
body A. The actual external forces are scaled by dividing them respectively
by their values corresponding to the initiation of the plastic deformation. The
material of the body B is assumed to be elastic—plastic with the yield stress a’f
of 196 [MPa]; the yield stress o7 of the body A is assumed to be 1960 [MPa).
The elastic modulus for both the bodies is assumed to be 206 [GPa] while the
Poisson ratio is 0.3. The problem is solved under both the plane stress and the
plane strain conditions. Because of the symmetry only one half of each body is
considered. The appropriate kinematic boundary constraints are imposed on the
axis of symmetry. Numerical results were compared to the results of Lee and Kwak
(1984) by neglecting the tangential behaviour at the contact surface and assuming
¢,y =0.001 and m = 0.5.

Fig.5 shows the load ratio r versus displacement at the centre of the contact
region for both the plane stress and plane strain cases. The load-displacement
curve from Fig.5 for the plane stress has a sharp bend at the load ratio r = 1.42
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160
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o

160

Fig. 4. Elastic intendor pressed against a h elastic-plastic foundation. Initial:finite
N dunentmeshcms'mtso{eightnmhele!mmsafmendipityﬁn}ﬂy

-

(r = 1.34 according to Lee and Kwak). For the plane stress situation the plastic
yielding begins at the contact surface in the element situated close to the edge of
the intendor A. The total load corresponding to the first yielding is 7.17 [kN] per
unit  thickness (the value given by Lee and Kwak is 7.07 [kN]). Under the:plane
strain conditions the yielding starts at the load of 9.75 [kN] (the value of 9.73 [kN]
was obtained by Lee and Kwak). Taking into account the tangential behaviour
yielding for the plane stress problem begins at the load of 7.00 [kN]. The contact
pressure distribution for different external load levels for the plane stress problem
~ is shown in Fig.6a and 6b. It is seen that the contact pressure distribution is -
uniform at higher loads. For the plane strees problem the mean contact pressure
~ is found not to exceed the value of 240 [MPa]. According to Kachanov (see Lee
and Kwak Lee and Kwak, 1984) the maximum resistible load is (2/v/3)o, = 221
[MPa).

Assuming ¢, = 0.001 and m = 0.5 this plane stress example was next



876 R.Buczkowskl, M. KLEIBER

2.00

1.75

o Plane Stress (c,=0.001; m=0.5
o Plane Stroin (c,=0.001; m=0.5

Load ratio r
3
IS S0 U T N NN TN TN N NN TN NN NN W SN N S MY N |

1.00 T T T T T T T T T T T TT Yy rrryrrrrryrryrvrrryrvrirrig

0.00 0.10 0.20 0.30 0.40.
. Displacement (mm)
Fig. 5. Load—displacement characteristics of the center contact node for plane stress
problem (r = 1.0 for external load 7.17 [kN]) and for plane strain problem (r = 1.0 for
external load 9.75) :

considered to test the frictional interface law. The parameters 3, n and kf
(see section 2) are given in Fig.7. Fig.7a, 7b and 7c show the tangential contact
stress distributions along the contact surface. It is seen that the increase of the
external load results in the decrease of the tangential contact pressure; moreover,
the shear contact tractions change sign at some contact nodes. It was also found
that in the plastically deformed region of the bodies the shear contact pressure
P, did not exceed the friction forces u,|p, | that had been observed in the elastic
‘déformed state. By using the elastic—plastic friction model (kP # k:) the decrease
of the shear contact forces was found. This can be explained by observing that
with an increase of the external forces after initiation of the plastic deformation a
decrease of the shear influence in the contact zone takes place along with the effect
of the contact pressure distribution becoming more and more uniform. It can be
said that this phenomenon is strongly related to the the plastic deformation of the
foundation B.

Fig.8 shows the deflection of the upper surface of the body B versus the harde-
ning parameter h for the plane stress problem. With the increase of the parameter
h the overall hardening of the elastic—plastic foundation can be observed.
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Fig. 6. Contact pressure distribution for different external load levels (¢, = 0.001 sad
m = 0.5); (a) - plane stress problem, (b) — plane strain problem
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Fig. 7. Tangential contact distribution for different external load levels, plane stress

problem, ¢, = 0.001, m = 0.5;

(3) ) = 1.0k*), R=09,5=05,p=02, =10, n= 275 [1/mm],
(b) k¥ = 0.05k(*), R=09, S =05, 4 =02, = 1.0, n = 275 [1/mm)],
(<) kg) = D.%kg'), R=09,5S=05,p=02,8=02,n=275 [l/mm]
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Fig. 8. Deflection of the upper surface of the elastic—plastic foundation versus the

hardening plastic parameter h for the plane stress problem, ¢, = 0.001, m = 0.5. Total

external load equals 10.35 [kN]

6.  Conclusions

The following conclusions can be drawn from the analysis performed

1. in the plane stress probiem the plastic yielding occurs on the contact surface

starting at the edge of the intendor. Under the plane strain condition yielding
begins at higher external forces and it does not begin at the edge of the
mtendmbutafewmmoﬁ'theoutersurface _

.mtheplmeshemxdmmmmucmdamspmﬁsaaslom
rate,

. taking account of the tangential contact compliance results in a decrease of
the contact pressure close to the sharp edge of the intendor (singular point),

. accounting for the ta.ngenna.l contact compliance results in an elastu:——plastlc
foundation yielding at smaller external loads,

. friction implies a smaller pressure gradient near the singular point,

. tangential contact stresses in the plastically deformed region decrease along
with an increasing external load.
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Appendix

Contact stiffness matrix K. for the plane problem

Ac
Ke=%" .
skl o o (] 0 o -5 o 0 ] 0 0
5k o 0 0 0 o . -skf o (] 0 0
20k o o 0 0 o -k o 0 0
2067 0 0o o 0 o -kl o 0
I 0o 0o o 0 o sk o
SYM. sl o o 0 ° o -sfH
skl o ] 0 0 0
skl o 0 0 0
060 0 0
206l 0 0
: skfIr o
> “LII -
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A, is the contact area corresponding to three contact spring elements; for the
plane stress problem A, = [ t, where t is the thickness and [, is the lenght of tk=
contact segment.

Sprezysto—plastyczna analiza p!askmego zagadnienia kontaktowego z
uwzglednieniem podatnoéci stykowe) metoda elementéw skoiiczonych

Streszczenie

W pracy przedstawiono rozwiazanie sprezysto—plastycznego dwuwymiarowego zaga-
dnienia kontakt,oweﬁo z uwzglednieniem deformacji mikronieréwosci na powierzchni styku.
Zagadnienie sformulowaro w postaci przyrostowego funkcjonalu wariacyjnego w ujgcin
przemieszczeniowym i aproksymowano metoda elementéw skoniczonych. Do symulacii
nieliniowych wlasciwoéci na powierzchni styku zastosowano specjalny element kontak-
towy zlozony z trzech dyskretnych elementéw sprezymowych, ktorych sztywnosci okre-
slono w oparciu o doswiadczalne charakterystyki podatnosci stykowe] powierzchni chrope-
watych. Poprawnodé zaprezentowanego algorytmu potwierdzono przykladem obliczenic-
wym. Przedstawiono wp}yw parametrow okreslajacych sztywnoéé kontaktowa na rozklad
naprezen i przemieszczen na powierzchni kontaktu.
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