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Variational formulation for multi-walled carbon nanotubes subject to
buckling is derived by the semi-inverse method with governing equations
based on the nonlocal Timoshenko beam theory which takes small scale
effects and shear deformation into account. The nonlocal theory impro-
ves the range and applicability of the physical model by modelling the
nano-scale phenomenon more accurately. The natural and geometric bo-
undary conditions are derived, which lead to a set of coupled boundary
conditions for multi-walled nanotubes as opposed to uncoupled boundary
conditions in the case of simply supported and clamped boundaries and
also in the case of a local theory. The variational principle and the cor-
responding Rayleigh quotient facilitate the application of approximate
and numerical methods of solution.
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1. Introduction

The laws of continuum mechanics are known to be robust enough to treat in-
trinsically discrete objects only a few atoms in diameter (Yakobson and Smal-
ley, 1997). Subsequent studies established the accuracy of continuum based
approaches to the mechanics of nanotubes. A study on the range of applica-
bility of elastic beam theory to model nanotubes and nanorods was given by
Harik (2001). Beam models used to study the buckling behavior of carbon
nanotubes (CNTs) mostly employed the Euler-Bernoulli or Timoshenko beam
theories. The equation governing the buckling of an Euler-Bernoulli beam is
expressed in terms of only one unknown, namely, the deflection of the beam
and neglects the effect of transverse shear deformation. However, for nano-
tubes with low length-to-diameter ratio, the shear deformation can have a
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substantial effect on the buckling load and can be taken into account using
the Timoshenko beam model. In this case, the governing equations have two
dependent variables, namely, the slope and deflection of the beam and are able
to predict the mechanical behavior of CNTs more accurately. Several studies
on the buckling of nanotubes used these two beam models with the Euler-
-Bernoulli beam model used by Ru (2000), Wang and Varadan (2005), Wang
et al. (2005), Sears and Batra (2006), Zhang et al. (2008) and the Timoshenko
model by Zhang et al. (2006).

However, small scale effects were not taken into account in these papers.
The importance of size effects for nano-sized structures was emphasized in
Miller and Shenoy (2000), Chang and Gao (2003), Sun and Zhang (2003),
Lima and Heb (2004) and Huang (2008) where properties of nano materials
were obtained. Beam theories capable of taking the small scale effects into
account are based on the nonlocal theory of elasticity which was developed in
early seventies (Edelen and Laws, 1971; Eringen, 1972). The nonlocal theory
was applied to the study of nano-scale Timoshenko beams in a number of
papers (Wang et al., 2006; Reddy, 2007, 2008; Wang et al., 2007, 2008; Hsu et
al., 2008). The nonlocal Euler-Bernoulli and Timoshenko beam models were
employed to investigate the buckling and vibration characteristics of CNTs
by Sudak (2003), Wang (2005), Wang and Hu (2005), Wang et al. (2006),
Lu et al. (2007), Heireche et al. (2008) and Murmu and Pradhan (2009) and
comparisons between the local and nonlocal models were given in these papers.
These studies considered single and double-walled nanotubes involving mostly
simply supported boundary conditions leading to analytical solutions of the
differential equations in terms of sine and cosine functions. As such, they
covered a limited set of configurations with respect to boundary conditions and
with respect to number of nanotubes, mostly due to the complicated solutions
which arise for other boundary conditions and also with the increasing number
of nanotubes.

Variational formulations allow the implementation of approximate and nu-
merical methods of solutions and facilitate the consideration of complicated
boundary conditions, especially in the case of multi-walled nanotubes which
are governed by a system of differential equations. Recently, variational for-
mulations were employed in derivations of governing equations for various
beam theories applicable to nano-sized beams by Reddy (2007, 2008). Va-
riational principles and natural boundary conditions were derived for multi-
walled CNTs by Adali (2008, 2009a) where CNTs were modelled as nonlocal
Euler-Bernoulli beams subject to a buckling load (Adali, 2008) and under-
going vibrations (Adali, 2009a). The corresponding results for multi-walled
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CNTs undergoing nonlinear vibrations were obtained by Adali (2009b) again
using the Euler-Bernoulli model. Variational principles were derived by Kucuk
et al. (2010) for multi-walled nanotubes undergoing transient vibrations with
the model based on the nonlocal Timoshenko beam theory. The present study
extends the results of Adali (2008) to the shear deformable case and the re-
sults of Kucuk et al. (2010) to the buckling case by using nonlocal Timoshenko
beams to model the multi-walled CNTs. In this case, the formulation involves
two independent variables for each nanotube as opposed to one independent
variable for the Euler-Bernoulli beam model. The approach used in the present
study to derive the variational principles is the semi-inverse method developed
by He (1997, 2004). Several examples of variational principles for systems of
differential equations obtained by this method can be found in the papers (He,
2005, 2006, 2007; Liu, 2005; Zhou, 2006) and in the references therein.
In the present study, first the coupled differential equations governing the

buckling of multi-walled nanotubes based on the nonlocal Timoshenko beam
theory are given. Next, a trial variational functional is formulated, and an
unknown functional is introduced. Finally, this functional is determined, and
the variational principle and the Rayleigh quotient are obtained by the semi-
inverse method. The variational formulation developed for the multi-walled
nanotubes is employed to derive the natural and geometric boundary condi-
tions of the problem and the coupled nature of natural boundary conditions
are noted.

2. Multi-walled carbon nanotubes

We consider a concentric multi-walled carbon nanotube system consisting of n
nanotubes of cylindrical shape. The multi-walled nanotube lies on a Winkler
foundation with elasticity modulus k, has length L and is under compressive
stress σx. We define a difference operator given by

∆wij = wi − wj (2.1)

where wi and wj are the deflections of the i-th and j-th nanotubes. The
differential equations governing the buckling of multi-walled nanotubes based
on the nonlocal Timoshenko beam theory can be expressed as

Da1(w1, ϕ1, w2) = La1(w1, ϕ1)− c12∆w21 + η
2c12
d2∆w21

dx2
= 0

Db1(w1, ϕ1) = Lb1(w1, ϕ1) = 0



324 S. Adali

Da2(w1, w2, ϕ2, w3) = La2(w2, ϕ2) + c12∆w21 − c23∆w32

+η2
(

−c12
d2∆w21

dx2
+ c23

d2∆w32

dx2

)

= 0

Db2(w2, ϕ2) = Lb2(w2, ϕ2) = 0

...

Dai(wi−1, wi, ϕi, wi+1) = Lai(wi, ϕi) + c(i−1)i∆wi(i−1) − ci(i+1)∆w(i+1)i

−η2c(i−1)i
d2∆wi(i−1)

dx2
+ η2ci(i+1)

d2∆w(i+1)i

dx2
= 0 (2.2)

Dbi(wi, ϕi) = Lbi(wi, ϕi) = 0 for i = 3, 4, . . . , n− 1

...

Dan(wn−1, wn, ϕn) = Lan(wn, ϕn) + c(n−1)n∆wn(n−1)

−η2c(n−1)n
d2∆wn(n−1)

dx2
= 0

Dbn(wn, ϕn) = Lbn(wn, ϕn) = 0

where the operators Lai(wi, ϕi) and Lbi(wi, ϕi) are given by

Lai(wi, ϕi) = κGAi
d

dx

(

ϕi −
dwi

dx

)

+Aiσx
d2wi

dx2
− η2Aiσx

d4wi

dx4

+δin
(

kwn − kη
2 d
2wn

dx2

)

(2.3)

Lbi(wi, ϕi) = κGAi
(

ϕi −
dwi

dx

)

− EIi
d2ϕi

dx2

where the index i = 1, 2, . . . , n refers to the order of the nanotubes with the
innermost nanotube indicated by i = 1 and the outermost nanotube by i = n
with 0 ¬ x ¬ L. In Eq. (2.3)1, δin is the Kronecker delta with δin = 0 for
i 6= n and δnn = 1. In Eqs. (2.3), E is the Young modulus, G is the shear
modulus, κ is the shear correction factor, Ii is the moment of inertia, Ai is
the cross-sectional area of the i-th carbon nanotube and σx is the buckling
stress. The coefficient c(i−1)i is the interaction coefficient of the van der Waals
forces between the (i− 1)-th and i-th nanotube with i = 2, . . . , n. The small
scale effect is reflected by the parameter η = e0a, where e0 is a constant for
adjusting the model by experimental results, and a is an internal characteristic
length.
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3. Variational principle

According to the semi-inverse method (He, 1997, 2004), a variational trial-
functional V (wi, ϕi) can be constructed as follows

V (wi, ϕi) = V1(w1, ϕ1, w2) + V2(w1, w2, ϕ2, w3) + . . .

+ Vn−1(wn−2, wn−1, ϕn−1, wn) + Vn(wn−1, wn, ϕn)
(3.1)

where

V1(w1, ϕ1, w2) = U1(w1, ϕ1) +

L
∫

0

F1(w1, w2) dx

V2(w1, w2, ϕ2, w3) = U2(w2, ϕ2) +

L
∫

0

F2(w1, w2, w3) dx

Vi(wi−1, wi, ϕi, wi+1) = Ui(wi, ϕi) +

L
∫

0

Fi(wi−1, wi, wi+1) dx

for i = 3, 4, . . . , n− 1

Vn(wn−1, wn, ϕn) = Un(wn, ϕn) +
1

2

L
∫

0

[

kw2n + kη
2
(dwn

dx

)2]

dx

+

L
∫

0

Fn(wn−1, wn) dx

(3.2)

with Ui(wi, ϕi) given by

U(wi, ϕi) =
1

2

L
∫

0

[

κGAi

(

ϕi −
dwi

dx

)2
+ EIi

(dϕi

dx

)2
−Aiσx

(dwi

dx

)2

− η2Aiσx

(d2wi

dx2

)2]

dx

(3.3)

where i = 1, 2, . . . , n and Fi(wi−1, wi, wi+1) denotes the unknown functions
of wi and its derivatives to be determined such that differential Eqs. (2.2)
and (2.3) correspond to the Euler-Lagrange equations of variational functional
(3.1).
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The Euler-Lagrange equations of the variational functional in Eq. (3.1) are
given by

La1(w1, ϕ1) +
2
∑

j=1

δFj

δw1
= La1(w1, ϕ1) +

2
∑

j=1

∂Fj

∂w1
−

2
∑

j=1

d

dx

( ∂Fj

∂w1x

)

= 0

La2(w2, ϕ2) +
3
∑

j=1

δFj

δw2
= La2(w2, ϕ2) +

3
∑

j=1

∂Fj

∂w2
−

3
∑

j=1

d

dx

( ∂Fj

∂w2x

)

= 0

Lai(wi, ϕi) +
i+1
∑

j=i−1

δFj

δwi
= Lai(wi, ϕi) +

i+1
∑

j=i−1

∂Fj

∂wi
−

i+1
∑

j=i−1

d

dx

( ∂Fj

∂wix

)

= 0

(3.4)
for i = 3, 4, . . . , n− 1

Lan(wn, ϕn) +
n
∑

j=n−1

δFj

δwn
= Lan(wn, ϕn) +

n
∑

j=n−1

∂Fj

∂wn
−
n
∑

j=n−1

d

dx

( ∂Fj

∂wnx

)

= 0

Lbi(wi, ϕi) = 0 for i = 1, 2, . . . , n

where the subscript x denotes differentiation with respect to x and

δFi

δwi
=
∂Fi

∂wi
−
d

dx

( ∂Fi

∂wix

)

+
d2

dx2

( ∂Fi

∂wixx

)

+ . . . (3.5)

is the variational derivative of Fi with respect to wi as defined in the semi-
inverse method (He, 1997, 2004). Comparing Eqs. (3.4) with (2.2) and (2.3),
we observe that the following equations have to be satisfied for the Euler-
Lagrange equations to represent governing Eqs. (2.2) and (2.3), viz.

2
∑

j=1

δFj

δw1
= −c12∆w21 + η

2c12
d2∆w21

dx2

i+1
∑

j=i−1

δFj

δwi
= c(i−1)i∆wi(i−1) − ci(i+1)∆w(i+1)i − η

2c(i−1)i
d2∆wi(i−1)

dx2

+ η2ci(i+1)
d2∆w(i+1)i

dx2
n
∑

j=n−1

δFj

δwn
= c(n−1)n∆wn(n−1) − η

2c(n−1)n
d2∆wn(n−1)

dx2

(3.6)
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where i = 2, 3, . . . , n − 1. From Eqs. (3.6), it follows that

F1(w1, w2) =
c12

4
∆w221 +

c12

4
η2
(d∆w21

dx

)2

Fi(wi−1, wi, wi+1) =
c(i−1)i

4
∆w2i(i−1) +

ci(i+1)

4
∆w2(i+1)i

+
η2c(i−1)i

4

(d∆wi(i−1)

dx

)2
+
η2ci(i+1)

4

(d∆w(i+1)i

dx

)2

for i = 2, 3, . . . , n− 1

Fn(wn−1, wn) =
c(n−1)n

4
∆w2n(n−1) +

η2c(n−1)n

4

(d∆wn(n−1)

dx

)2

(3.7)

with Fi, i = 1, 2, . . . , n given by Eqs. (3.7), we observe that Eqs. (3.4) are
equivalent to Eqs. (2.2) and (2.3).

3.1. Rayleigh quotient

Next the Rayleigh quotient is obtained for the buckling stress noting that

U(wi, ϕi) =
1

2

L
∫

0

[

κGAi

(

ϕi −
dwi

dx

)2
+ EIi

(dϕi

dx

)2]

dx− Y (wi)σx (3.8)

where

Yi(wi) =
1

2

L
∫

0

[

Ai

(dwi

dx

)2
+ η2Ai

(d2wi

dx2

)2]

dx (3.9)

From Eqs. (3.1), (3.8) and (3.9), the Rayleigh quotient is obtained as

σx = min
wi,ϕi

1
∑n
i=1 Yi(wi)

{ n
∑

i=1

1

2

L
∫

0

[

κGAi

(

ϕi −
dwi

dx

)2
+ EIi

(dϕi

dx

)2]

dx

+
k

2

L
∫

0

[

w2n + η
2
(dwn

dx

)2]

dx+
n
∑

i=1

L
∫

0

Fi dx

}

(3.10)

where Fi, i = 1, 2, . . . , n are given by Eqs. (3.7) and wi(x) ∈ C
2(0, L),

φi(x) ∈ C(0, L).
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4. Boundary conditions

Next, we take the variations of the functional V (wi, ϕi) in Eq. (3.1) using
Eqs. (3.2) and (3.3) with respect to wi and ϕi in order to derive the natural
and geometric boundary conditions. Let δwi and δϕi denote variations of wi
and ϕi. We observe that first variations of V (wi, ϕi) with respect to wi and ϕi,
denoted by δwiV and δϕiV , respectively, can be obtained by integration by
parts and expressed as

δw1V = δw1V1 + δw1V2 =

L
∫

0

Da1(w1, ϕ1, w2)δw1 dx+ ∂Ωa1(0, L)

δϕ1V = δϕ1V1 =

L
∫

0

Db1(w1, ϕ1)δϕ1 dx+ ∂Ωb1(0, L)

δwiV =
i+1
∑

j=i−1

δwiVj =

L
∫

0

Dai(wi−1, wi, ϕi, wi+1)δwi dx+ ∂Ωai(0, L)

for i = 2, . . . , n − 1

δϕiV = δϕiVi =

L
∫

0

Dbi(wi, ϕi)δϕi dx+ ∂Ωbi(0, L)

for i = 2, . . . , n − 1

δwnV = δwnVn−1 + δwnVn =

L
∫

0

Dan(wn−1, wn, ϕn)δwn dx+ ∂Ωan(0, L)

δϕnV = δϕnVn =

L
∫

0

Dbn(wn, ϕn)δϕn dx+ ∂Ωbn(0, L)

(4.1)

where ∂Ωia(0, L) and ∂Ωib(0, L) are the boundary terms defined as

∂Ωa1(0, L) = −η
2A1σx

d2w1

dx2
δw′1

∣

∣

∣

x=L

x=0
+ η2A1σx

d3w1

dx3
δw1

∣

∣

∣

x=L

x=0

+
[

−κGA1

(

ϕ1 −
dw1

dx

)

+ (−A1σx + η
2c12)
dw1

dx
− η2c12

dw2

dx

]

δw1

∣

∣

∣

x=L

x=0
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∂Ωai(0, L) = −η
2Aiσx

d2wi

dx2
δw′i

∣

∣

∣

x=L

x=0
+ η2Aiσx

d3wi

dx3
δwi

∣

∣

∣

x=L

x=0

+
{

−κGAi

(

ϕi −
dwi

dx

)

+ [−Aiσx + η
2(c(i−1)i + ci(i+1))]

dwi

dx
(4.2)

−η2
(

c(i−1)i
dwi−1

dx
+ ci(i+1)

dwi+1

dx

)}

δwi

∣

∣

∣

x=L

x=0
for i = 2, 3, . . . , n− 1

∂Ωan(0, L) = −η
2Anσx

d2wn

dx2
δw′n

∣

∣

∣

x=L

x=0
+ η2Anσx

d3wn

dx3
δwn

∣

∣

∣

x=L

x=0

+
{

−κGAn

(

ϕn −
dwn

dx

)

+ [−Anσx + η
2(c(n−1)n + k)]

dwn

dx

−η2c(n−1)n
dwn−1

dx

}

δwn

∣

∣

∣

x=L

x=0

∂Ωbi(0, L) = EIi
dϕi

dx
δϕi

∣

∣

∣

x=L

x=0
for i = 1, 2, . . . , n

where δw′i is the derivative of δwi with respect to x. Thus the boundary
conditions at x = 0, L are given by

EIi
dϕi

dx
= 0 or ϕi = 0 for i = 1, 2, . . . , n

(−η2Aiσx)
d2wi

dx2
= 0 or

dwi

dx
= 0 for i = 1, 2, . . . , n

η2A1σx
d3w1

dx3
− κGA1

(

ϕ1 −
dw1

dx

)

+ (−A1σx + η
2c12)
dw1

dx
− η2c12

dw2

dx
= 0

or w1 = 0

η2Aiσx
d3wi

dx3
− κGAi

(

ϕi −
dwi

dx

)

+ [−Aiσx + η
2(c(i−1)i + ci(i+1))]

dwi

dx
(4.3)

−η2
(

c(i−1)i
dwi−1

dx
+ ci(i+1)

dwi+1

dx

)

= 0

or wi = 0 for i = 2, . . . , n− 1

η2Anσx
d3wn

dx3
− κGAn

(

ϕn −
dwn

dx

)

+ [−Anσx + η
2(c(n−1)n + k)]

dwn

dx

−η2c(n−1)n
dwn−1

dx
= 0 or wn = 0

It is observed that for the small scale parameter η > 0 (nonlocal theory),
the natural boundary conditions are coupled, and these boundary conditions
uncouple for η = 0 (local theory).
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5. Conclusions

Variational principles are derived using a semi-inverse variational method for
multi-walled CNTs under buckling loads with the model formulation based
on the nonlocal theory of Timoshenko beams. The nonlocal elasticity the-
ory accounts for small scale effects applicable to nano-sized objects, and the
Timoshenko beam model takes shear deformation into account which is not
negligible in the case of nanotubes with a small length-to-diameter ratio. As
such, the formulation used improves the accuracy of the results. The corre-
sponding Rayleigh quotient as well as the natural and geometric boundary
conditions are derived. It is observed that the natural boundary conditions
are coupled at the free end due to small scale effects being taken into acco-
unt. The variational principle facilitates the application of approximate and
numerical methods of solution and allows the computation of buckling loads
for complicated boundary conditions.
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Wariacyjne sformułowanie problemu wyboczenia wielościennych

nanorurek węglowych modelowanych jako nielokalne belki Timoszenki

Streszczenie

W pracy przedyskutowano wariacyjne sformułowanie zagadnienia wyboczenia
wielościennych nanorurek węglowych wyprowadzone metodą pół-odwrotną z równa-
niami konstytutywnymi opartymi na nielokalnej teorii belki Timoszenki uwzględniają-
cej efekty małoskalowe i odkształcenia postaciowe. Teoria nielokalna rozszerza zakres
stosowalności modelu fizycznego belki poprzez dokładniejsze odwzorowanie zjawisk
nanoskalowych. Wprowadzono naturalne i geometryczne warunki brzegowe dla wielo-
ściennych nanorurek, które ostatecznie ujęto jako warunki brzegowe sprzężone, w od-
różnieniu do warunków rozprzężonych w przypadku prostego podparcia lub zamuro-
wania brzegów oraz zastosowania teorii lokalnej. Wykazano, że wykorzystane zasady
wariacyjne i wynikający iloraz Rayleigha podnoszą wydajność przybliżonych metod
numerycznych.
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