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ON SOME PROBLEMS OF RODS WITH PERIODIC-VARIABLE
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The aim of the paper is an application of the non-standard method of ho-
mogenization (a method of microlocal modelling), [5,6,7,8] to constrained
torsion problems for straight linear—elastic rods with periodic-variable com-
act cross—sections. The paper is a continuation of the earlier contribution
3]. The method is based both on the concept of microlocal modelling and
the notion of internal constraints [1,4].

1. Fundamentals

In sec.l of [3] has been proposed a certain technical theory of constrained
torsion for straight linear—elastic rods with the e-periodic variable cross-sections.
In the undeformed configuration the rod occupies a regular region 2 in the 3-
space, parametrized by the orthogonal Carthesian coordinates X;,X2,X3. We
assume that X3 coincides with the rod axis and X, X; are pararell to the principal
central inertia axes of an arbitrary cross-section F(X3), X3 € [0,{] and that
F(X3) = F(Xs+¢), X3 € [0,] —¢]. It means that the rod has the £-periodic
structure, with ¢ << I.

We shall confine ourselves to the rod deformations xx = xi(X,t), X =
(X1,X2,X3) € 2, t € [0,t], t being the time coordinate, admissible by the
internal constraints of the form ! '

X" e Xmip = 0ap-

It means that projections of cross—sections of the deformed rod on the plane
0X; X, behave as rigid. Introducing the displacement vector field u(X,t) =
x(X,)-X, X € 2, te€|[0,t], after the linearization of constraints with

1The Latin indices take the values 1,2,3; the Greek ones take the values 1,2. Summation
convention holds for all kinds of indices.
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respect to u(X,?), we arrive at the following explicit form of the internal con-
straints [4]

v = —0(X3,1)X2 + Y(Xat),
uz = 9(X37t)Xl + (P(X:;,t), (11)
3 = uz(Xp, X2, Xst),

where O(-), ¥(-), ¢(-) are arbitrary differentiable functions.
We introduce the extra constraints in the explicit form [2]

u3( Xy, X2, X3,1) = &( X1, X2)¢(X3,t) + n(Xz,t), (1.2)

where &(-) is a certain a priori postulated function depending on the shape of
rod cross—sections, and {(-),7(-) are arbitrary differentiable functions.

Functions (), ¥(-), (-), ¢(-), n(:), called the generalized coordinates
[1], are assumed to be independent and are defined on [0,/] x [0,1/].

The motion of the constrained body is governed by the equation of motion [1]

T'j,j +pbx + pri = pih Xe 'Q, te [Ovt.flv (13)

where T = T(X,t) is the stress tensor produced by the material reaction, p =
p(X) is the mass density in the reference configuration, b = b(X,t) is the density
of external loadings and r = #(X,t) denotes the density of unknown reaction
body forces due to the internal constraints.

At the boundary 82 of the rod the following conditions hold [1}:

Tijnj = pi + 8, for almost every X € 812, t € [0,tf], (1.4)

where # = n(X) is a unit outward normal to 32, p = p(X,t) are the known
surface tractions and 3 = 8(X,t) stand for unknown surface reaction forces also .
due to the internal contraints.

We postulate that the contraints are ideal [1], i.e., that the condition

/ pr - 8xd2 + / 8- 6xd(80) = 0, (1.5)
0 an

holds for any virtual displacement §x(X,t) admissible by the internal contraints.

Eliminating the reaction forces from eq.(1.5) by means of eqs.(1.3),(1.4) and
substituting into the resulting relations the virtual displacements related to the
internal contraints (1.1),(1.2), for homogenous isotropic materials

T = T% = M®6s3+n3),

TR = p(-X205+¢3+(P,1),

T = p(X103+93+(82), (1.6)
T = (A+2u)(¢¢s+n3)s
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where 7 and A are Lame’s modulae, we arrive at the system of the 5 va-
riational equations (egs.(1.11) in [3]) for the unknown generalized coordinates
9(X3’t)a ¢(X3vt)’ ‘P(X?nt), ((X?nt)’ n(X3’t)v X3 € [Ovl]’ te [O’tf]'
Because for the small values of ¢ as related to the rod lenght /, the obtaining of
solutions of such differential equations system with variable e—periodic coefficients
is rather complicated. Hence we are going (in sec.2 of [3]) to approximate this
system by a certain system of differential equations with the constant coefficients.
We shall use the method of microlocal modelling [6], the general formulation of
which was outlined in [7,8,5].

The microlocal approximation postulates that we look for the approximate
solution in the class of functions given by

9(X3,t) QO(XS,t) + QG(XS,t)ha(XS),
¢(X3, t) = wO(X:!?t) + ¢G(X39t)ha(X3)’

(X3,t) = @o(X3,t) + @a(X3,1)h%(X3), (1.7
C(X?nt) = (O(X?nt) + (a(X-'J,t)ha(XS),
n(Xs,t) = mo(X3,t) + na(X3,)R%(X3),

where: e = 1,2,...,n, (summation convention holds), h%(-) are postulated a
priori e-periodic regular functions such that

/ h® 3 (X2)dXs = 0
0

and 60("t), @_a(',t), ¢0(',t), ¢a(',t), ‘PO(',t)’ ‘Pa("t), (0("t)’ Ca("t)v
no(+t), 7Ma(-,t) are sufficiently regular unknown functions. Functions Og(-),
Po(-), wo(-), Co(:), mo(-) will be called generalized macro-deformations. Func-
tions ©,(+), Ya(:), @al(-), Ca(+), 7a(-) describe the effects due to the micro-
periodic structure of the rod are called the microlocal parameters.

Defining

< f>= %/f(xa)dxa,
0

for any integrable e—periodic function f(-}, denoting

S] = Sl(X3) = ngFEO,
' F(Xs)
Sy = Si(Xa) = / X,dF = 0,
F(X3)
Jo = Jo(Xa) = / (X? + X2)dF,

F(X,)
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Jo = Jo(X3) = /(X145,2—X2¢,1)dF,

F(X3)
J = J(X3) = / #2dF, (1.8)
, F(Xa)
Bo= h(Xa) = [ @F+8})dF,
F(X3)
Ky = Ki(X3) = / ®,,dF,
FiXs)
Ky = K(Xs) = [ #.dF,
F(X3)
Se = Se(Xs) = / &dF,
F(X3)
and
P08 = [ n00dF,
F(0)
Ro) = [ pl0dF,
F)
M0,0) = / [p2(0, ) X1 — p1(0,1)X)dF,
F(0)
ML) = / [pa(ls ) X1 — pr(l, ) XJdF,
F(D)
Ma(0,1) = / 2s(0, )8(X1, X;)dF, (1.9)
F(0) ,
Ma(l,t) = / pa(l, (X1, X3)dF,
Fl

for X3 € (0,):

Pr = Px (X3,1)

V 9(77 Xa)Pk(Xa, t)d(aF))

8F(X3)
V97, X3)[p2(X3, ) X1 — n(Xs,t)X3]d(F),

m, = m,(Xa,‘t)

8F(X3)
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me = mo(Xa,t) = [/, Xa)pa(Xa,1)8(X1, X2)d(OF),

F(X3)

where g(v, X3) is the discriminant of the first quadric form of the lateral surface
of the rod, v is the parameter of the curve 9F(X3), we obtaining the following
equations system ’

ﬂ(( Jo > 90,33+ < Joha,3> 9,,,3-1- < Jg> Co,3) =p< Jo > éo— Mg,
(¥)

< Joh’3> Ooa+ < Joh® 3 hb s> Ou+ < Joh% 3> (o = 0,
p(( F> o3t < FI}“,3> Ya,3+ < K2 > Co,a) =

= —pby <F > +p < F > fio— P, (i)
< FRY 3> o3+ < FR®3hb 3> .+ < Kohb 3> (o = 0,

[l(( F> (P0’33+ < Fha’3> ()Da)3+ < Kl > 40,3) =

= ~pby < F > +p < F > Go— P, (iis)
<FR 3> o3+ < FR®5h 3> wut < K1hb 3> (o = 0,
' (1.10)

—p(< Jy > B0+ < k23> Ot < Ji > Go) + (A4 21) - (< T > Cozs +
"+ <Jh*3> (Gt < Se > moast+ < Seh3> ﬂa»a) = (iv)
=—pb3 < 83 > +p < J > lo+p < Sp > ijp ~ ma,

< Jhb3> Cos+ < Jh®3hb 3> (o +
+ < Sehb3> o3+ < Seh®3hba> 7, =0,

A+ 28)(< S0 > G + < Soh®3> Gzt < F > oy +
<Fha,3> 174,:3) =—pb3<F> +p.< Se >Eo+p<F>‘;)o-—;’3,

< Seh’s> Co3+ < Soh® s h i3> Gt < FRP 3> moa+
+< Fh®3hb3> 9, =0,
for z3 € (0,1), t€[0,t;], and boundary conditions

(< Jo > G0+ < Joh®;3 > Qat < J, > (o) = M,ns,
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I‘(< F> Yo,3+ < Fh®3> Y.+ < K2 > Co) = Ping,
I‘(<F><Po,3+ < Fh*3> ¢+ < K >Co) = Pyng3, (1.11)
(A+28)(< T > Gont < Jh®3> (ot < So > M3+

+ < Sph®,3 > na) = Mgna,

(A +21)(< Se > Coi3+ < Soh®3 > Cat < F > 3+

+ < Fh%3> 1),,) = Psng,

for X3=0, X3=1, te [O,tf].

If the exact analytical solution to the boundary-value problem given by eqs.(1.10)
and (1.11) is known then the following approximation formulae may be used to
evalute the solution to the primary (e- periodic) problem:

G(Xa,t) ~ 90(X3,t), 6,3 (X3, t) ~ 90,3 (Xs,t) + 90(X3,t)ha,3 (X3),
H(X3,t) ~ Po(X3,1),  $,3(X3,1) ~ 10,3 (X3,) + (X3, )h" 3 (X3),
‘P(X31t) ~ %(Xiht)a ¥P3 (Xa,t) ~ ¥0,3 (X3,t) + ‘Pa(Xiiat)haﬂ (X3),
((X3,t) ~ Co(X3,t),  (a(Xa,t) ~ (0,3 (X3,2) + ((X3,8)h%,3(X3),(1.12)
7(Xs3,1) ~ n0(X3, 1),  7,3(X3,2) ~ 70,3 (X3,2) + 7a(X3,8)h%3 (X3).
We see that the microlocal parameters have the negleclible influence on the di-
splacement field (1.1),(1.2), but they play an essential role if we calculate the

stresses (1.6). We can also calculate the reaction forces produced by the internal
contstraints (1.1),(1.2), using eqs.(1.3),(1.4).

2. Some special solutions

We consider the étraight linear—elastic axial symmetric rod with lenght /. The
radius of the cross—section is £—periodic and given by the formula

R(X3) = Ro(l + é cos 27rEX3), (2.1)

where Rg =const, § =const, ¢ << I. Rp stends for the adverage radius and Rof
is its amplitude.

Taking into account the axial symmetry of the rod one should introduce also
the axial symmetric function ¢ which characterizes the out of plane displacement
u3. Let ¢(-) has the form

&(Xy, X3) = X} + X3, (22)
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In this case the characteristics (1.8) attain the following values

Jo
Js
J

Je
Ko
S¢

R4
Jo(X3) = %—,
Js(X3) = 0 (for each axial symmetric function &),
\ TRE .
I(Xs) = ——, (2.3)

Jk(X:;) = 4J0(X3)
Ko(X3) = 0 (for each axial symmetric function @),
Se{X3) = Jo(Xa).

Using the microlocal approximation we are looking for the approximate solution
given by (1.7). We assume the shape function 2%(-) in the form

E . a27rX3

h(X3) = = 7 sin ———= (2.4)

The phase displacement between (2.1) and (2.4) follows from the simple rea-
soning that functions @(-), ¥(-), {(-), n(:) (which determine the displacement
vector by means of egs.(1.1),(1.2)) must increase if the rod radius decreases and

inversely.

Introducing constant characteristics of the mean cross—section of the rod

F = =R}
. TR
Jp = 4Jo, (2.5;
S‘Q = .fo,
= T RS
J = e
3 k]

after simple calculations we obtain the following averages (here for n = 2)

< Jo>=Jo(1+436+ -Z-é“), W
<lp>=4<Jdy>,

< 8 >=< Jo >,

< Johlg>= J},Zl’-(45+353),

< Johts>= J—O%(ﬁéz + 8%,

2
= , D
< Joh' g b g >= JoTr (24 96% + 789,
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; _ r2
< Joh'3h?3>= Jo”—(sa +868%),

< Joh2,3 h2,3 >= Jo (8 +246% + —54),
15 4

<J>= J(1+— 5‘+—65),

< Jhlg>= f%(sa + 15453 + Tzs-"),

< Jh3>= .i1(1562 +156% + %a"),

< Jh'3h! 3 >= J (2+ 6’+Z5—5‘+%68),

< Jh'3hl3>= J (126 +406° + 65),

0
< TR gkl >= JT,-(8+ 6062 + - 554 + -—6“),

= §?

< Fhlz>= F%za,

< Fh?3>= F%a’

< Fh' 3kl 3 >= F (2 + 6’),
< Fhl,s'hz,a >= FT46
< Fh?3h?3>= F (8 +46%).

are applied. In this case

mn(X3) =

6o = 60(X3), Oa=0.(X3), ¢o=wo(X3), ¢a=paX),
'I’O = %(XS), 'l’u = 'l’a(XS), CO = <O(X3)a Cu = (a(XS)a
o= 70(X3), N2 = Na(X3).

On the lateral surface of the rod distributed torsional moments

V14 R3[p(X3) X1 — p1(X3)X2]d(OF)

8F(X3)

(2.6)

For simplification we assume that the rod-is weightless and only static loading

are given (for X3 € (0,1)), on the ends of the rod (for X3 = 0 and X3 = 1)
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concentrated torsional moments
M) = [ [p(0)X: ~ p(O)X:)dF,
F(0)

[ ba)Xs = () XaldF,
F()

M,(1)

and axial forces
PO = [ mOdF, P@)= [ p()iF
F(0) FQ)
are also known. :
The transverse components of the resultant forces
Pu= [ 1+ REdOF) (for Xs € (0,),
8F(X3)

P0)= [ pu(0dF,  Pal)= [ palaF
. F(0) T FO)

and the axial external forces ps on the lateral surface of the rod (for X3 € (0,1))

vanish. Then eqs (1.9) attain the following form

P,(0) = 0, P,(l) =0,
T RO = [ RO RO= [ wOdF,
: F(0) F()
M(0) = [ [pa(0)Xs - pa(0)XaldF,
F(0) -
MO = [ OX - pO)XdF, 2.7)
. F() .
Mo(0) = [ pa(@)(X? + X})dF,
F(0)
Ms() = / pa(1)(X2 + X2)dF,
F()

for X3 € (0,1)
P = D (X3) =0
me = my(Xs)= / V14 B2p2(X3) X1 — pr(X3)Xo]d(OF).

8F(X3)
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Substituting (2:6) and (2.7) into (1.10) we obtain the system of 5(n + 1) linear -
differential equations (with constant coefficients) of the first order for 57 micro-
local parameters O4(-), %a(-), ®a(*); Ca(-), 7a(-) and the second order for 5
generalized macro-deformations Og(+), o(+), ®o(), Co(-), mo(:)-

In the some manner the boundary conditions (1.11) can be treated.

Because of J, =0 and K, = 0, egs.(1.10) result in 4 independent system
of equations. The microlocal parameters can be eliminated from this systems
and thus we obtain 5 effective equations for 5 generalized coordinates (macro-
deformations) — 3 equations are independent (obtained from systems (i) — (iii) in
egs.(1.10) - for Oo, %o, o) and 2 equations are interrelated (for (o and % -
obtained from system (iv) in egs.(1.10)).

Functions %o, %, $0, . disappear since equations (ii) and (iii) (1.10) toge-
ther with the required boundary conditions for (2.7) are homogenous.

As an example assume m,(X3) = m, p3(0) = —q, p3(!) = q, where
m =const, ¢ =const (fig.1).

Mo Ms00) + ml = - Ms(L)

— ! :
T el = Laraniaam
S; « £ i =
Z2T @

A

P
b3
»

L
} . --- $
Fig. 1.
For n =1 we obtain the following solution
. m Xg M,(O)
- [ : ,(O)] ( (26 +1.56%) )
pJSE Xs (1 + 4.562 + 0.62564)/°

R qu ( 5.562 — 3664 ) 1 shy (X3 — -)
= 0+ 2p)J5T \T+ 6.7562 — 98.6256%/ 7 EETA
o= ¢Je 1 —16.56° + 186.3756°
T O+ 2u)If w11 413,567 — 151.68756%
chy (K3 -4 _ 8 -5.045458° - 53.0055265] 9.8
ch2y! 1+ 24.45462 — 146.0965954)" (28)
w = F 16.562 + 362.256*

(A + 2p)FeR [_ 1+ 34.256% + 6364
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1 shy (X5 -
" chll—
qF l 336% + 64265
M= (N T 2u) P 7 LT ¥ 40562 + 336.37564
chya(Xs—4) | 26-13.56 - 13.565]
chy! 1+ 2162 4 6.7564 !’

+X]+D

where

T 1-0.562 + 2.56% — 0.93756% + 0.4687568) j
o - ( 1+ 4.56% + 1.256% 0
1-3.756% - 66% -
= 2.
it (1 + 6.7562 ~ 98.62564)J’ : (29)
1+ 20.56% ~ 105.187564
iy ( 14 2462 + 30.562564 )

F,

_[p(1 4+ 382 4 0.37564)J;
e (A +2p)0.25JF

and C, D are arbitrary constants (that may be equal to zero).

Functions G and ©O; have been exactly calculated (in eqs.(2.8)) while
o, (1, M0, m with the accuracy up to 6.

Becauce for n > 1 to get the solution in the general form is rather complicated,
to order to compare the results we are to use the solutions obtained for some fixed
values of the parameter §. Therefore we also calculate in the exact form functions

¢oy (15 M0y 11, and for 6 = 0.1 we have
m X3  M,0)
pisT 2 pIst

O = (- e - Sagd) (-oaomn),

6 = — g Xs+C,

G = (A+q—2J;"‘)Jeﬁoo 855 t%‘f’f—), (2.10)
G = ﬁf_ﬂﬂ"""“m% 0.07893),

o = m—gi)ﬁﬁé[—o;uuss%fhlg—",_—é—)+xa] + D,

m = (T’JF%%FW [00261359%;—+015393]
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where

0.95228Jq,
0.90939J, (2.11)
0.93742F,

B 4.12015pJ, _ 5.21384 i
TE N 2T T R Vavo

m X2 M,(0)
B~Bp= ——e2 -
° pIst 2 pIST

pIsk

144

we have

X3+C

](1 ~ 0.38562 co 2"53),

6,3~ O0,3+61h' 3= |-

qJi 1 Sh‘n(Xs- )

—0. 4855-———-—-—————
(A + 2p)J5% n

chy (X3 - %)

 ~ Bl = _ 2) .
(3~ (o3 +61h 3 (,\+2p)Jfﬂ[ ch:%-l-

¢~ o= ’ (212)

2 X
-(0.04855 — 0.02618 cos 27“’(“) - 0.15786 cos "e 3]

1 Sh71(X3 2)
~ —_ | =0.14285— T + X + D
TR (A + 2;4)1“eﬂ [ N chlg— ]

Ch‘h(Xs -1

1
N3~ M3 tmh' 3 (’\_’_2,‘)1;'@5[

X
-(-0.14285 + 0.05227 cos 2 3) +1 + 0.30786 cos 2“:( 3] :

For n = 2, functions 6; and 6, have the following general end exact form

m X2 M,(0)
Go=— =8 _ 22X+ C

T TWIE e T g ¥
_ M,(0 :

6, = [— o )] (2.13)

02
_[_ 26 + 6.56% + 6.3756°% + 2.0312567 + 2.56° ]
14 4.56% + 10.06256 + 6.4062566 + 0.117187568 4 0.2734375610)°

M,(o)

0, = [_ pJIcH X3 - ]

_ 1.256% + 1.256% + 0.468758° + 0.39062563 —0.078125410 ]
1+ 4.562 4+ 10.062564 + 6.4062566 + 0.117187568 + 0.2734375610)°
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where

s = 5]

A = (1-0.56%-0.56256* 4 2.031256° + 6.1718756% +
0.8789065° + 0.31738286'2),

(1+ 4.56% 4 10.06256* + 6.406256® +

+ 0.11718756° + 0.273437561°).

Similarly, for é = 0.1 we have

>
l

m X3 M,(0)
Oy = —— 23 _Vel)y 10
0 ”Jgaﬂ‘ 9 Jgg 3+ ’
‘ m M,(0)y1
Oy = |- X 0.19748),
| pigd e quéf] w )
m M,(0)11
0, = |- X3~ —0.01207,
rIss pIes Iz

JE = 0.95118Jp.

The remaining macro—deformations and microlocal parameters for n =

8§ = 0.1 take the form

qJ_ lsh‘)’g(Xa—- )
Tk 005748 — 12372
© = G )J;fr T awl
gJk chyy(X3 —
qJi chy2(Xs — §)
(2 oA 10 001353 ————2= + 0.011918
(AN 2p)J5 [ ng_ ]
—0.16820 shy, (X3 — )
= X
™ (Hmpﬂ[ gt 3| + D,
F chya(X.
m = W;[mwn—"ia—ﬁw.wogs],
2 2
_ gF 1 chy2(X3 — §)
m o= mﬁ;[-aomsss—w 0.01928],
where
JS = 0.90120J,
Ff% = 0.92787F,

_ 5 23747 [
72 Ro A + 2[1

325

(2.14)

(2.15)

(2.16)
2 and

(2.17)

(2.18)
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Hence

m X2 M,(0)X;3
23 C,
WE 2wk T
mXs _ M,(O)] .
#Joz -785’
X3)

6~90=—

6,3~ Boy3 +61h1 3 +02h% 3= [—

2rXs + 0.04828 cos

qJk 1 shyy(Xs - §)
~(g= —————0.05748 —— =2/
(~6o 07 2#)Jeﬂ0 72 %

(1 — 0.39496 cos 2

Ca~ Coa +Gih' 3 +(2h% 3 Ot 2m)U5" , (2.19)

21X,
[c—hl’—c(f;_—ﬁ (o 05748 — 0.03326 cos —72 + 0.00541 -

- 0.17992 cos + 0.04767 cos

2r X 4r X
Ccos '4—1;&) - 3 ﬂe 3]7
0. 1682 shya(Xs —

n~mp= -
(A+2p)reﬂ[ ch %!

F
~ +mhlgmhlas — .
M3~ No,3 TR 3 T720 53 O+ 20)F5%

chy(X;5 - £ X,
[L",'-’—) (~0.16820 + 0.06634 cos 2r2s
%l

X.
X") + 1+ 0.36190 cos 2”5 3

2)+X3] + D,

~0.007552 -

4rX
— 0.07712 cos “E "].

In order to calculate the displacements it is enough to take n = 1, since almost
identical values of JET and J&¥, Ji and J§, Fef and F§% (table 1), here been
obtained and the values of functions O(-), {(-), n(-) differ insignificantly.

Table 1

§=0.1
n=1 n=2

o _ ~ Jeﬂ' - Jeﬂ'
J§™ | 0.95228J, | 0.95118Jp | “2L—02.100% = 0.11%
o1

- _ Jeﬂ' - Jeﬂ' .
J | 0.909397 | 0.90120J —175—2—100% = 0.90%
1

_ _ el _ pefl .
P | 0.93742F | 0.92787F 5F,F—2°—100% = 1.02%
_ 1
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We consider the rod represented on fig.1 assuming the following data

M,(0)=0, m=const, ¢=const,

Ry = 5cm,

6=0.1,

I = 100cm, . (2.20)
€= % = 4cm,

= 78.846GPa,

A = 118.269GPa.

Hence, we obtain the diagrams of functions ©(X3), {((X3), 7(X3) for = = 1 and
n=2(fig2-17).
We can calculate that
) 9(X3)for n=1 " Q(X-?:)forn:z
9(X3)for n=1

for 0 < X3<1, (G(O)forn:l = G(O)for n=2 = 0)
The maximum of function

-100% = —0.11%,

(XS)for n=1 — (XS)for n=2
-100%
U(XS)for n=1

for X3 = [ equals to — 0.98 %, the maximum of function

C(XS)for n=1 — C(XS)for n=2
: - 100
C(X3)for n=1 100% ¢

for X3 =0and X3 =1is equal to - 15.31 %.

Basing on the analysis of the obtained functions ©(-), {(-) and 7(-) notice that
the cross—sections.of the twisted rod with e—periodic variable radius loaded by m
and M,(0), M,(l) remain plane. After the stretching of this rod the cross—sections
are warping: this phenomenon occurs only on the end near segments of the rod,
i.e. for X3 € [0,0.1!] and [0.91,]] cf. fig. 4,5).

To compare the results consider the rod loaded as shown on fig.1 (m = const,
¢ = const) but with the constant radius Rp.

In this case ( from (2.8) and assuming § = 0) we get

9=_1X_§_M)£+C,

ulo 2 rJo
mX; M,(0)
9,3 = ——— —,
uJo 1Jo

0 (2.21)
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Fig. 4.
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A+2u

qF
=—2 __X;+D,
7 O+ 2;1)FX3 +
. __9F
L P WY
For the some data (2.20) we obtain
ml?
O(l) = —0.52506——  for n=1, §=0.1,
pJo
mi?
o) = —0.52566—  for n=2, § = 0.1, (2.22)
sJdo
o(l) = —0.5™% for 6=0
— Tedo o
Analogously, we also have
4!
= - = 1, = .1,
nl)=1 06402)\ o for n §=0
q .
H=1 = = 0. 2.
nh) = 1074505 for m=2, 6=0.1, (2.23)
() = —2 for §=0.1.

Its evident that for § = 0 function ((X3)=0.

In the forthcoming paper [2}, the stress analysis and the analysis of the reaction
forces due to the internal constrains introduced in the ‘problem considered will be
carried on. ‘
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Streszczenie

Tematem pracy jest zastosowanie niestandardowej metody homogenizacji (modelowa-
nia mikrolokalnego) (6,7,8,5], do rozwigzania problemu nieswobodnego skrecania prostego,
liniowo—sprezystego preta o okresowo zmieniajacym sig zwartym przekroju. Praca stanowi
kontynuacje artykulu {3]. Stosuje si¢ modelowanie mikrolokalne, rozwazajac zagadn,enie
w ramach mechaniki analitycznej osrodkéw ciaglych z wewretrznymi wiezami [1,4].

Praca wplynela do Redakeji dnia 10 maja 1989 roku



