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In the paper the methods of finding strength criterion for compressed wood
with orthotropic properties have been discussed and analyzed. Besides, we
also have taken into account the tensile strength in the directions of the
arthotropy axes.

As a point of departure we take three terms of the polynomial tensorial
criterion for anisotropic strength in the form:

Pijoij + Rijuoijort + Qijklmn0ijOLiOmn + ... = L.

The following particular cases are discussed: 1) the first term, 2) the first
and second terms, 3) the second term, 4) the second and third terms. The
best description has been obtained in the case of the second term criterion,
then the minimum number of tests was necessary.

In the paper, the description proposed by E.K.Ashkenazi based on the simi-
larity of the strength tensor to the elasticity tenosr is also compared with our
models.

For the generalization of results of the failure investigation, additional inve-
stigations of biaxial compression were carried out. On considering only the
first two terms of the criterion it was found that in the planes of orthotropy,
three failure elipses were displaced and turned in the system of the orthotropy
axes.

1. Introduction

Wood based materials are anisotropic in general and orthotropic in particular.
For ‘description of the orthotropic material mechanical properties, different crite-
ria are applied among others those of: ‘'E.K.Ashkenazi [1], A.K.Malmeyster [2],
J.I.Goldenblat and W.A.Kopnov [3], J.Marin [4], K.W.Zakharov [5].

The aim of the paper was to study the compression strength of anisotropic
materials by the criterion of failure given by A.K.Malmeyster [2] in the form

FPijoi + Rijioijon + Qijkimn0i;0ki0mn + .- = 1, (1.1)
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where: P, R, (.... anisotropy tensors, and to find the most appropriate case
of the criterion for the accuracy of the description with, at the same time, a

minimalization number of tests.
In this paper the description given by E.K.Ashkenazi {1], based on the similarity

of the strength tensor to the elasticity tensor is also proposed.

2. Experimental data

2.1. Samples and method of investigations

2.1.1. Samples and tnvestigation method with uniarial compression

The compression strength tests were carried out according to standard PN-
$5/D-04215, on rectangular prisms measuring 10 x 10 X 15 mm (the longer dimen-
sion being, in the direction of the action of the force). The test samples were cut
out of bars of compressed wood for which the technical specifications of production
was given in the paper by M.Czech [6]. The directions in which the samples were
cut out are shown in fig.1.

N J - airection of pressing

Fig. 1. Direction of cutting samples from compressed wood slats

The tests were carried out on samples of compressed beech wood of a density of
p = 990 kg/m>, determined by standard PN-78/D-04210, humidity of 8.7% and a
compression ratio n = 1.45. For every direction 10 samples were taken. Before the
tests, the samples were conditioned at a humidity of 65 + 5 % and a temperature
of 293 & 3 K. The compression strength tests were carried out under identical
conditions.

2.1.2. Samples and ezperimental method for uniazial tension

The tensile strength tests were carried out according to standard PN-65/D-
04218. The samples for tensile tests were prepared as shown in fig.2. The expe-
rimental conditions were the same as those for the compression strength experi-
ments.
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Fig. 2. Diagrams of samples for.the tensile strength tests; a - in direction 1 (in direction
of grain), b — in direction 2, ¢ - in direction 3 (in direction of pressing)

2.1.3. Samples and experimental method wilh biazial siress siales

The biaxial compression tests were carried out on samples 15 * 15 % 7.5 'mm in
dimension (the longer dimensions being in the direction of the force action). The
samples were cut out in the principal orthotropy directions. The experimental
conditions were the same as those for uniaxial compression.

Because of great deformations in the plane 23, the strength was assumed to be
equal to the proportionality limit.

2.2. Results of tests

2.2.1.  Results of the uniazial compression lests

The results of the tests are presented in Tab.1.
The standard deviation calculated from the following

n—li=1

Soy = \J LS mi- By, @1

and teh coefficient of variation from:

s .
v= =2 - 100%, (22)
R
where: R; — compression strength of the ith sample, n = 10 — number of samples
for given angle.
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- 2.2.2. Results of the uniazial lensile lests

691

The results of the tests are shown in the Tab.2. The standard deviation was
calculated from eq.(2.1) and the coefficient of variation from eq.(2.2), where: R; —

tensile strength for ith sample, n = 10 samples for given direction.

Table 2. Results of the tensile strength tests in the directions of the orthotropy

axes

Direction R, | Sn-t V| Rpin | Bmax

of the sample
cutting [MPa] | [MPa] | [%] | [MPa] | [MPa]

1 195.1 | 20.94 | 10.73 | 162.8 ) 216.5
2 28.0 231 | 8.30 24.6 31.7

3 8.6 0.32 | 3.70 8.1 3.0

2.2.3. Results of lests in biazial siress stales
The results of the tests are shown in Tab.3.

2.3. Estimate of confidence intervals of the mean value and single observa-

tions of uniaxial compresssion

Before, calculating the confidence intervals, the variance homogeneity was ve-

rified by means of the Cochran test in the form:

S:—l,maz
““Ta
,'§1 -1

b

2,rel.
n— l,max
Grd. -

Z S 2,rel

-1
where .S'....l with eq.(2.1) and § '"‘ - from the following equation

g, b 1 o~ (Ri—R)
S'T"l—Jn—lz R )

i=1

The results of the calculations are given in tab.4

(2.3)

(2.4)

(2.5)
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Table 4. Results of calculations of the G and Gy,

Values Plane

G, Gy, 12 23 31
G 0.2231 | 0.3150 | 0.1987
Grel. 0.2816 | 0.2649 | 0.2158

On comparing the values G and G, with the critical value ¢(0.05;7;9) =
0.3259 (0.05 — level of confidence, 7 — number of saniple cutting angles in a given
plane, 9 = n — 1 — number of degrees of freedom for given angle) it is been that
there is no basis for rejection of the hypothesis that variances are homogeneous.

For homogenity of variances, the confidence intervals are calculated from the
equations:
— for single observations with absolute error

R-A1<R<R+A4y, (2.6)
— for single observations with relative error
R(1 - AF") < R < R(1+ AFY), (2.7

— for the mean population with absolute error

= A = A
R——J_;<R<R+ﬁ, (2.8)

— for the mean population with relative error

R(1- %) <R< R(l +. ’i;_d ), (2.9)

A,:ta,.,\J EE(R._, R;)?, (2.10)

=1 j5=1

Ay _tc.,,J iE(R" , (2.11)

=1 j=1

= 0.05 - level of conﬁdence., v = 70 - 7 = 63 — degrees of freedom. The "
calculations according to egs.(2.6) — (2.11) are given in tab.5.
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Table 5. Results of calculations of the confidence intervals of mean values and
single observations

Intervals Plane

of confidence 12 23 31
A, [MPa) 5.5800 | 10.530 | 8.150
%L [MPa] | 1.7600 | 3.330 | 2.580

=

Agel 0.0960 | 0.191 | 0.146
& 0.0304 | 0.060 | 0.046

3. General of strength criterion and its variants

The general strength criterion proposed by A.K.Malmeyster [2], is presented
in eq.(1.1). We shall now examine the seperate terms of this criterion and its

variants.

3.1. SDescription of strength by means of the first term criterion, eq.(1.1)

from eq.(1.1) we obtain
Pjoi; = 1. (8.1)

For uniaxial compression ¢ = j = 1. The transformation formula for a tensor
of rank two will be

P{, = Py cos? o + Ppasina + Pysin’ a. (3.2)
For a = 45° eq.(3.2) will be
45 1 1
Pll =_P11§ + Pia + Pzgi. (3.3)

Then substituting P2 from eq.(3.3) into eq.(3.2) we have

Py = Pycosafcosa ~sina)+ Py sin 2a +
+ Py sinafsina — cos a). (3.4)
From eq.(3.1) we obtain
1 1
Py = 7 Py = = Py = —. (3.5)
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.« where RS and R§, — mean experimental strengths for principal orthotropy axes.
On substituting eq.(3.5) into eq.(3.4) we obtain

1 1
— = ——siu2a+ == cosa(cosa —sina) +
RS R45 R
1
+ —=—sina(sin @ ~ cos a). (3.6)
Rgy

On determining
1 1

RV OER, Y
1 . | S .
——=-cosa(cosa ~ sina) — =——sina(sina — cosa) = 4, (3.7
R R
sin 2a = z, N
we obtain
y = az — A. (3.8}

On calculating coefficient a by the least square method (LSM), its value is the first
aproximation in the nonlinear regression of the eq.(3.8) transformed into:

¢ _ i ’
R"'—asinQCx——A' (3-9)

3.2. Description of strength using the second term of eq.(1.1)

From eq.(1.1) we obtain the criterion
Rijuoijqu =1. (3.10}

After similar transformations as at the point 3.1. we obtain the equations:

ly11 = Rimicos® acos2a + Riyy, sin® 2a +
~  Raypsin?acos 2a, (3.11)
— = ——cos’acos2a + ~=——— sin’ 2a +
R} (R§)? (R45)2
- (—}_{:—)2 sin? a cos 2a. (3.12)
w’
On determining in (3.12)
1 1
=Y ~ — &
(Rg)? (Rgs)?
1 2 sin? a cos 2a
— = Cos acos2a + ——=——— = A, (3.13)
(#5)? (Rs)?

sin?2a = z,
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we obtain an equation in the form (3.8). The value of coefficient a calculated by the
least square method constitutes the first aproximation in the nonlinear regression
of eq.(3.12). On taking into account eq.(3.13), we obtain from eq.(3.12)

RS =t (3.14)

" Vasin?2a-— A4

3.3. Strength criterion by Ashkenazi method

The method of E.K.Ashkenazi is based on the assumption that the strength
of orthotropic materials are transformed like similarity to the anisotropy tensor
coordinates in the linear elasticity theory, i.e. as in eq.{3.11), but with coeflicients
R;;;; which are the inverse of strength in a given direction. Hence this criterion
takes the form

11, 1, 1,
R_f,z -I-chos acos2a+-1-2§;sm 2a—-ﬁgsm acos 2a. (3.15)
Determining:
> = ! + A =a
TR, Ry T
A= : cos? a cos 2a + ! sin? a cos 2a (3.16)
TR R ’ '
sin®2a = z,

we obtain the equation in the form (3.8). The value of coefficient calculated by
the least square method is the first aproximation in the nonlinear regression of
€q.(3.15). On taking inio account the results of (3.16), eq.(3.15) takes the form

RE=— (3.17)

T asin*2a—- A’

3.4. Description of strength by means of the first two terms of eq.(1.1)

From the eq.(1.1) we obtain
Pijoii + Rijuoiion = 1. (3.18)
For uniaxial comression (t = j = k = | = 1) we put together egs.(3.4) and (3.11):

Py, = Py cos a(cos @ — sina) +. Py sin2e + Py sina(sina — cosa),  (3.19)
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2

Ri111 = R cos? acos 2a + RYZ|, sin? 2a — Raz225in? @ cos 2a. (3320):

Assuming that eq.(3.18) is satisfied for the strength of the principal or'.'ﬁmv‘z;mgy
axes 1 and 2, then for : = j = k=1=1,2 from this equation we obtaimz

PuR§ + Run(R§)? =1,

Py Ry + Roma(Rg)? = 1.

Substituting eqgs.(3.19) into eq.(3.18) and taking eq.(3.21) into consideration: we
obtain:

(B21)

2
Pn [cos a(cos a — sin a) R, — ( ;o) cos? o cos 2a] +
+P{PRE sin 2a + R{%;;(RE)? sin® 22: + (3:22)

+ P22 [Rc sina(sin a — cosa) + sin’ a cos 2a] +
2

)2
cos” a cos 2a —
( RO)2 (Rgo)?
Solving the system of egs.(3.22) (for five different a) since two angles were: tadlen:
into account in (3.21), by the least square method we obtain Py;, P{, R{%i,, Fin-
Having the values of the above coefficient from (3.19) and (3.20), we calculate: Py,
and R{,,, and then R from the equation obtained from (3.18), i.e.

R = —P{1+\/Pu +4Run

( c 2
sin® a cos 2a = 1.

< 3.23)
: 2R (
3.5. Description of strength using second and third terms of eq.(1.1)-
From eq.(l.f) we have:
Rijk0ijon + Qijkimn0ijOkiOma = 1. (i)

For uniaxial compression (i = j =k =I!=m =n = 1) we combine eq.(3.11)}and!
the equation obfained from the“transformation formula for the tensor of rank:six;
we have:

Ry = Rumn cos® acos2a + Ry, sin? 2 — Rappe sin? o cos 2ar,.

10 : ,
Quuu = Quuulcosa—~ 3 cost asin? a + cos? asinta) +

+ @3 111(8cos? asin’a — gcos2 asin?a) + (3:25)
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+ Qlum(“g cos? asin® a + 8 cos? asin? a) +

. . 10 .
+ Q222222(sin® @ + cos* asin® a — 3 cos? asint a).

Assuming that eq.(3.24) is satisfied for compression strength and tensile strength
in the direction of the principal orthotropy axes 1 and 2, thenfor t=j=k=i=
m=n=1,2 from eq.(3.24) we obtain

Rnu(Ribe) + Qunn(Ri)® = 1,

Rin(R§e)? - Quun(Rig)® =1, .
Ra222(R30)* + Q222222 B)° = 1, (3.26)
Ro222(R500)? ~ Quanam(R500)° = 1,

where:
R, — tensile strength in direction of axis 1,
RZ, — tensile strength in direction of axis 2,
R; o — compression strength in direction of axis 1,
RS0 — compression strength in direction of axis 2.
Inserting eq.(3.25) into eq.{3.24) we have:

= . 8 .
R (RS)? sin? 2a — Q??uu(s costarsina — 3 cos’ asin'a) -
(RS - Q¥ (~ cos asin® o + 8 cos? asin® a)(RE)® =

=1 — (Ry111 cos? acos 2a — Rapog sin® a cos 2a)(RE)* + (3.27)
5 10 2 .
-%-[Quun(cos6 o— £ cos? sin? a 4+ cos® asint a)+

2

10 -
+Q222222(sin6 o+ cos?asin® a — T cos® asint a)](Rf,)a.

Or solving the linear system of equations (3.27) — LSM — {or five different «,
since two angles were taken into consideration in eq.(3.26), on determining Ryy13,
Qii111, Ao2222, Q222222 we obtain the values of coefﬁcients:Rﬁ‘u, Q??uu , Q?&Jnu‘
Having the values of the these coefficients we calculate Rf;,; and @f;;;,; from
€q.(3.23) and then the RS from the equation which we obtain from eq.{3.24}, on
substitutionof i=j=k=l=m=n=1,

(RS + Qhnn (R = 1. (3.28)

The egs.(3.9), (3.14), (3.18) and (3.28) are also applied for the orthotropy
pianes 23 and 31 by cyclic index change.

The description of strength presented by eqgs.(3.9), (3.14) (3.18) and (3.28),
with the mean experimental data, is shown: for plane 12 in fig.3, for plane 23 in
ng.4 and for plane 31 in fig.5.



ON METHODS OF MODELING...

100 & T T— 71— T -I
R —  P.g, =1 -l
g . 158
[ee) .‘ < - qullf’u O =t A
90 \\ | —-— Ashkenazi’s method J
y == Py Rijia 05 O =1
B N = RT3 Yipimn %t 1
\‘\‘\
8o} X -
70—
60
50
w0 | ! L ! |

Fig. 3. Comparison of the strength description in plane 12 by different methods
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Fig. 5. Comparison of the strength description in plane 31 by different methods

)

In these figures, the black points are the mean experimental values of the
strength on the principal orthotropy axes, through which all the curves pass. These
points are the reference points for all three planes.

4. Choice of criterion for a minimal number of measuring points

In calculating the coefficients from equations containing only one term
(egs.(3.6), (3.11), (3.15)), three coeficients are to be determined, two of which
are determined on assuming curve transition through the mean values of strength
in the principal orthotropy axes. One coefficient is, however, determined by the
least square method. For a given orthotropy plane, this requires investigation of
the strength in at least four directions. Where the least square method is not
applied, in order to reduce the investigation range, one can select three directions
only and on the basis of the strength in these directions determinre the constants
(usually the principal orthotropy axes and the directions for angle a = 45° are
chosen).
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- 4.1. Description of compression strength by the use the first term of eq. (1 1)
in the minimal test number method (MTNM)

Transforming eq.(3.6), we have

pc
o = - .R" — , (4.1}
cos a(cos a — sin a) 4 bsin 2a + ¢sin afsin a — cos a)
where: e _
= -—D-, C= -— (4.2)
Ris Rgo

4.2. Description of compression strength by the use the second term of
eq.(1. 1‘3 in of the minimal test number method (MTNM)

On transforming eq.(3.10), we obtain

RS = L , (4.3)

Vcost a+ by sin® 2a + ¢ sin* a

where:

b_R8 14 ¢
1= 7 4
45

(4.4)

) cp =

GE

4.3. Ashkenazi’s method of compression strength description in the minimal
test number method (MTNM)

On transforming eq.(3.15) we obtain

= Rg
¢ = 4.
Ry cost a + bo sin? 2a 4 ¢3sinta’ (4.5)
where: _. e

TR 4 TR

The compression strength “described by eqs.(4.1), (4.3), (4.5) is shown in

figs.6,7,8 (full line). In these figures, the curves (broken line) which were caleulated

from eqs.(3.9), (3.14) and (3.18) are presented. The equations were obtained by
the least square method (LSM) for the single terms of eq.(1.1), i.e.. for:

Pijoij =1,  Rinoijon =1

and for Ashkenazi’s method.
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Fig. 6. Comparison of the strength description using the first term (Pyjoi5 = 1) MTMN
— full line, LSM - broken line

3

75 90
af( -]

Fig. 7. Comparison of the strength description using the second term (Rijuioijon = 1):
. MTMN - full line, LSM - broken line ‘
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40

[ 30 45 60 75 90
af )

Fig. 8. Comparison of the strength description using of Ashkenazi’s method: MTMN -
full line, LSM - broken line
In figs.6,7,8 the full dark points are the mean experimental values of the
strength in the principal orthotropy axes. The curves obtained by both methods,

LSM and MTMN pass through these points. The half dark points are the mean
values of strength through which only curves calculated by the MTMN pass.

5. Analysis of the results

5.1. Analysis of the results of uniaxial failure on compression

For comparison of the different methods of description and for assessment of
correctness of this description, we calculate the mean square absolute and relative

error {rom the egs.:

71

F (Rei = Rt)2a
N i=1

lN(R,;—Rm
= \1;2 R,

(5.1)
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where: R.; — experimental strength, R; — theoretical strength, N = 70 — number
of measurements. The results are shown in tab.6.
Table 6. Results of calculations of r; and r

Method of Plane
description ' 12 23 31
T1 r 1 T

[MPa] . | [MPa] [MPa]

LSM
FPijoi5 =1 6.000 | 0.0906 | 5.057 | 0.0919 | 7.020 | 0.1278
eq.(3.9)
MTNM
F;joi5 =1 6.060 | 0.0915 | 5.088 | 0.0924 | 7.021 | 0.1319
ec.(4.1)
LiM

R noison =1 6.017 | 0.0911 | 5.089 | 0.0926 | 6.099 | 0.1091
eq (3.14)
[ MTNM
Rijnoi5000 =1 6.060 | 0.0915 | 5.107 | 0.0925 | 6.099 | 0.1082
eq.(4.3) :
L§SM

Ashkenazi’s meth. | 6.043 | 0.0914 | 5.088 | 0.0923 | 7.180 | 0.1321
eq.(3.17)
MTNM
Ashkenazi’s meth. | 6.060 | 0.0915 | 5.101 | 0.0921 | 7.348 | 0.1289
eq.(4.5) '
Pijoi; + Riju-
0ok =1 .| 5.773 | 0.0888 | 5.022 | 0.0913 | 3.961 | 0.0676
eq.(3.23)

Ri5n0i00+
+Qiikimn ;ORI 5.508 | 0.0884 | 5.050 | 0.0912 | 4.312 | 0.0741
“Omn = 1, €q.(3.28)

5.2. Analysis of the failure investigation results in biaxial stress states

For generalization of the failure investigation results which are given as mean
strengths in tabs.1,2,3 it is advisable to destribe the failure ellipses in the three
orthotropy planes: 12, 23 and 31. For this purpose the first two terms from eq.(1.1)
must be taken into consideration. Thus for failure in biaxial stress states, limited
to the directions of the orthotropy axes, the general equation will be taken the
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- form
Pijoii + Pjjoj; + Riucl; + Rjjji0%; + 2Riijj0u055 = 1, (5.2)

where for planes: 12,1 =1,3j=2,23,1=2,7=3,3,1=3,j=1.

Assuming that eqs.(5.2) are satisfied for strength on compression and tension
in the direction of the orthotropy axes, and in biaxial compression stresses in the
direction of these axes, for every plane of orthotropy, we obtain five equations
from which we determine the constants. The values of coefficients of eqs.(5.2) are
given in tab.7. On the basis of these of the coefficient values it can be shown that
eqs.(5.2) in our a case are ellipses.

Table 7. Values of the orthotropy coefficients for eqs.(5.2)

Orthotropy Coefficient values

coefficients Plane 12 Plane 23 Plane 31

P; [MPa~1] - 4.9247 -10~3 [ 0.013343 -0.10199

P;; [MPa~] 0.013343 0.10199 - 4.9247-107°

Riw [MPa~2] | 5.1513-10-° | 7.9898:10~% | 1.6611-10-3
R;;;; [MPa~?] | 7.9898-10% | 1.6611-1073 | 5.1513-10~°
Riij; [MPa~2] |- 1.3307-10~% | 0.5656-10~° | - 0.9644-10~7

zrnﬁ \
[Hﬁull

03y MPa]
) } {ﬂ:ai'x'”.' ol 03

»2r .
Fig. 10. Ellipse of failure in orthotropy plane 23
The description of the compressed wood failure according to eqs.(5.2) are shown

in the form of ellipses with their parameters: for plane 12 in fig.9, for plane 23 in
fig.10, for plane 31 in fig.11.
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Fig. 11. Ellipse of failure in orthotropy plane 31

6. Conclusions
6.1. Uniaxial failure on compression and tension

On comparing the values 7, and A;, r and A} (tab.6 and 5) the following
conclusions can be drawn:

1. All the descriotion methods provide correct results (for three planes
r < AFh).

2. The best description is obtained on applying both the second and the third
terms of eq.(1.1) because the conditions r < AZ®" and 7, < A; for all planes
are satisfied. In this method, the number of angles must be greater than seven.
However where there are seven the tensile strength in the principle orthotropy axes
should be investigated. In this study the latter method of approach was appled.
For other methods, these two conditions are satisfied only for the planes 23 and
31. This is confirmed by the data in figs.3-8. From tab.6 it is also seen that
slightly better results are obtained by methods which have two terms (r; and r
are less than those in other methods). However, for these methods it is necessary
to investigate the failure for a greater of number of angles because there are more
constants to determine.

3. From tab.6 and figs.6-8 it is seen that reducing the number .:f angles to three
and taking into account only single terms of eq.(1.1) (first, second or Ashkenazi’s
method), we obtain a corret description with, a minimal test number in all these
methods. However, the best results were obtained from equation containing the
anisotropy tensor of the fourth rank.

6.2. Failure in biaxial stress states

1. The correctness of the failure description by the hypothesis (5.2) was verified
above (the first conclusion under p. 6.1).

2. From figs.9-11 it is seen that in our case, the hypothesis (5.2) describes the
failure ellipses which are displaced and turned in all, the orthotropy planes. The
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- greates displacements in the ellipse midpoint occur in the direction of orthotropy
axis 1 in plane 12 and in the direction of orthotropy axias 3 in plane 23 and 31.
The largest angle of the ellipse turn occurs in the plane of orhotropy 23.
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Streszczenie

W pracy badane s mozliwosci stosowania réznych opiséw anizotropii wytrzymalosci na
éciskanie materialu drewnopochodnego, o wlasnoéciach ortotropowych 1 nastepnie podda-
nie ich krytycznej analizie. Badania wytrzymalosci na sciskanie uzupelniono koniecznymi
badaniami na rozcigganie w kierunkach osi ortotropii. Przy rozpatrywaniu tylko trzech
pierwszych wyrazéw wielomianowego tensorowego kryterium anizotropowej wytrzymalosci
w postaci: .

Pijoij + Rijrioijon + Qijkimn 0 0110mn = 1,
zbadano opis: 1) przy pomocy pierwszego czlonu, 2) pierwszego i drugiego, 3) drugiego, 4
drugiego i trzeciego. Stwierdzono, ze najodpowiedniejszy opis ze wzgledu na liczgl‘x; pro
doéwiadczalnych uzyskuje si¢ tylko z drugiego czlonu, kiedy stosowano minimalna liczbe
prob.

W pracy proponuje si¢ réwniez opis zaproponowany przez E.K.Aszkenazi, polegajacy
na podobienstwie tensora wytrzymalosci do tensora stalych sprezystych.

Dla uogdlnienia wynikéw badan zniszezenia przeprowadzono dodatkowe badania przy
dwuosiowym sciskaniu. Dla pierwszych dwédch czlonéw tego kryterium otrzymano w
plasz¢zyznach ortotropii trzy elipsy zniszczenia. Elipsy te sa przesunigte i obrécone w-
ukladzie osi ortotropii. .

Praca wplynela do Redakcji dnia 24 marca 1989 roku



