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1. Introduction

The dynamic short overloading are often the reason of fallure of va-
rious machine elements. This is due to residual large viscoplastic defor-
mations. The optimization of machine elements with respect to the minimi-
zation of these deformations is hardly exanilned in the literature. The
main reasons result from the difficulties in formulating the constitutive
equations and from the complicated form or, more often, even unknown im-
pulsive loading. .

The problenm oi‘ optimization of rigid-plastic elements under dynamic
impulsive loadings was considered by Lepik (1970) and by Lepik and Mroz
(1977). The viscoplastic properties of material : were appllied by
2yczkowskl and Cegielski (1981), (1983), (1986), (1988) and Cegielski (1981)
when dealing with the optimization problems of bars, beams and momentless
shells under various types of the loading impulses.

Despite of the fact that the twisted shafts are often subjected to dy-
namic lqadlngs there are no papers devoted to the optinizai':lon of such
elements.

In the present paper some results of the optimal parametrical design
of viscoplastic bar under the dynamlic twisting loading are given. The im-
pact of twisting moment is assumed as a certain function of time M=M(t)
for 0'<t'<t1' M=0 for t<0 and t>tl. As in many other similar problems the
minimal volume of the bar can be regarded as the design objective under
the constraint of a given residual deflection (twisting angle). However,
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it is more convenient to use the dual formulation and hence, to look for
the minimal residual deflection under the constraint of a given volume of
the bar. The shape of the bar is described by one or few parameters which
are the only design variables. Due to the inertia forces, a prismatic bar
is not optimal in the case under consideration.

The material of the bar is assumed to be rigid - viscoplastic and des-
cribed by a nonlinear (power) constitutive equation of viscoplasticity.
However, the effective solutions are given for the linear viscoplastic

material only.

2. Nonprismatic bar under twisting dynamic impact

Let us consider a nonprismatic circular bar clamped at one end, sub-
Ject to dynamic twisting loading (twisting moment M=M(t) ) at the other
end. Physical (dimensional) quantities are marked here by a bar over the
corresponding symbol. The elastic properties of the material are neglec-
ted and hence, the constitutive equation of the rigid - viscoplastic ma-

terial is written in the form
- T
g:(f[_—l]). (2.1)

where the dot denotes the derivative with respect to time E, f is an ar-
bitrary function of its argument, ¥ denotes shear strain, ;o denotes the
yield point for pure shear and the symbol <f> denotes either f if the ar-
gument ls positive ‘or 0, if it is negative. Due to the assumed physical
law the nonprismatic bar under applied load is divided into two zones at
least: the rigid one, wundeformed and the viscoplastié one, deformed
(fig.1). The effect of time delay is neglected and then at the rigid
-viscoplastic interface (x = ibl) it must be T = T(r) = ;0. Assuming that
after deformation a cross section remains plane and a radius remains

straight (which is strong simplyfying assumption usually met for circular
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cross - sections) it is required that the stress T and the velocity
v = d¢/dt are continuous at the interface (governing equations will be
given for v but not for é), where é = ¢(X) denotes the angle of twist.

The acceleration v may be dliscontinues.
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Flg. 1. Viscoplastic zone of twisted bar.
Taking into account the above assumptions one can describe the stress

T as a function of the radius r. At first let us consider an active (de-
formable) viscoplastic zone. The functlon f is assumed to be described by

the following power law of pure shear
EaiE e & n el
7=D[—-—-1]fortzt°. (2.2)

where the viscosity coefficient D and the exponent n are constants. Des-

cribing strain y by the unit angle @

(2.3)
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and substituting this to (2.2) we obtain



38 E. CeclELski
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Fig. 2. Stresses and strains in the cross-section.

where prime denotes differentiation with respect to the space variable x.
The equation (2.4) results in the fact that the case v Ot which cor-
responds to the initial viscoplastic flow at the time ty, glives T(r) ;0

It means that the stress at the moment tY is constant with respect to
the radius r (fig.2.). At this instant the torque takes the form

=-—c =y o o= =
M(x,t ) = M (x) = ®t R /2, ' (2.5)

where ﬁy denotes the yleld carrying capacity of the cross section and
R = R(x) is the radius of the bar. Similar assumptions on rectangular
stress distributions are often met in the papers devoted to rigid - vis-
coplastic flow of beams or plates e.g. Bodner and Symonds (1960), Wierz-
bicki (1980). Inverting (2.4) to find the stress T

O |
1-10[14- [T' l-l, (2.8)
D .

and integrating rt(r) over the cross section area we finally come to
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3n+1 =

- - - . = =81/
M(x,t) = M (%) [1+ 3n [R—!] '] (2.7)
D

In what follows, we introduce the dimensionless quantities

hid P (2.8)

[ ]
)

where 1 denotes the length of the bar, p Is the unit density of material,
ﬁypstands for the ylelding torque (2.5) of the prismatic bar, Rp= uﬁi is
cross sectlion area of the prismatic bar.

Substituting (2.7) into the equation of motion of a nonprismatic bar
under twlgtlng loading we ol?taln

vedw s R M,
R B2
L[ ferMEtL. (2.9)
b 1] su 4y 3n%1
v = f_{[ (M-1) an ]
v'=0 for M <1,

where the dot and the prime denotes differentiation with respect to the
dimensionless time and spatial variables, respectively. In what follows
we confine the effective calculations to the physically linear case:

n = 1. In such the case, after elimination of M,we can write (2.9) as the

one parabolic - type equation

§V'+%Bz-v=0 for Mz 1,
R (2.10}

for M < 1.

In the case of the prismatic bar (R’= 0) we obtaln the equation analogous
to that describing the heat conduction and, hence, the velocity of propa-
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gation is infinite and propagation starts when M(x) = va= 1. On the con-~
trary, in a nonprismatic bar velocity of propagation is finite and is the
same as the the speed of the rigid - viscoplastic interface coordinate
xb. Within the rigid zones ( plastically passive ) we obviously ha've:

v = v(t) = const(x), vi(x,t) = 0. (2.11)

The mixed boundary conditions are assumed as follows

v(0,t) = 0, v(x,0) =0, = M(1,t) = Ho(t). (2.12)

3. Numerical integration and optimization

One may face many serlous difficulties when integrating analytically
the parabolic equations of motion (2.8) or (2.10) for arbitrarily varying
radius of the «circular cross section. Having in mind that the
rigid - viscoplastic interfaces S(M as well as the loading torque Ho
change in time one finds that the analytical solution of these equations
is practically impossible. Hence, the numerical methods have to be ap-
plied. The finite differences method based on simple implicit difference
scheme, in conjunction with the Euler algorithm was chosen here.

The rigld-viscoplastic zone lnterfa.ces X0y were determined for each
time step using the conditions M(xm)=M-v. The number of nodes in x-
direction, within the dimensionless integration interval [0,1],was taken
between 30 and 50. Discretization in t-direction was introduced to divide
the duration of impulse 1'.1 to 15-30 intervals. As it has been mentioned
above, the minimization problem was confined to a parametrical one. Some
independent design parameters a, of the dimensionless function of cross-
section area A = A(x;ai) were sought for.The form of the function A was
chosen so as to meke its integral, the volume of the bar V, insensitive

to design parameters a,
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X - 1 1 1
Alx,a) =1 + Za‘_[ x - 57! ] . (3.1)

The additional, natural constraint imposed on the parameters a, implied
from the condition of nonnegative value of area A.

The computer time is a strongly increasing function of the number of
design parameters what results in high costs of the optimization. Hence,
the iterative and the more effective method, based on the variational
Euler-Lagrange approach was proposed by Zyczkowski and Cegielski (1988)
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Fig.3. Triangular loading impulse.

4. Discussion of the results

The pptimal shape of the bar depends, in the case under considera-_
tion, on the shape of the impulse function Mo=Mo(t). In many papers,
which deal with dynamic loadings, the rectangular impulse functions are
assumed although the real excitation impulses are closer to a triangular-
l'ike,;;ype,' with less rapid time derivative at the beginning and/or at the
.end of the impulse. For this reason in, the present paper only the trian-
gle impuls;e is .dlscussed (fig.3a). Two parameters describe the shape of
the impulse: the maximal value of the twisting moment Mo and the duration
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of the. impulse t:' It could be easily proved that in optimal bars the vi-

scoplastic flow starts always at a lower level of applied torque than in
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Fig.4. Optimal cross-section function

one-parametrical optimlzation.

the prismatic one (fig.3b).
In all cases under cohsidera—
tion the process was examined
until the full rigidification
was reached (t = tr) and re-~
sidual displacement ¢r= ¢r(1)
was calculated and minimized.
As a rule tr was longer than
t.1 whereas, time of visco-
plastic flow for optimal bar

was than for the prismatic
> trp {although
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To compare the presented results, the profit parameter z is defined
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Fig. 5. Optimal cross-section function -

three-parametrical optimization.

(4.1)

where ¢rp denotes the resi-
‘dual angular displacement of
prismatic ba.r at the free
end.

The optimal shape function
A(x;a ) for the case of

iopt

one parametrical optimization
is shown in the fig. 4. Para-
neter B opt "5 sought for
the three various impulse ti-
me t:‘ the maximal value of
ext ernal torque was assumed
M = ZMYp .

The optimal shapes for
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Fig. 7. Rigit-viscoplastic zone inter-

face function;

optimizat ion.
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one—- and three- parametrical
optimizations are compared in
the fig. 5. As it may be se-
en, there are small differen-
ce in both the compared sha-
pes and the respectively cal-~
culaped profits z. Fig.6
points out the differences in
residual unit angle ﬂr(x) =
¢;(x) for the prismatic and
the optimal bars in the case
of three parametrical op-
timization. One can see main-

ly qualitative differences.
This could be easily explai-
ned if we bear in mind that
the the viscoplastic flow in
the optimal bar always starts
at the clamped end (x=0)
where optimal cross - section
function Aopt(X) ta-kes the
minimal value. At the end of
the viscoplastic flow this
part of the bar is intensive-
ly deformed. The process of

.* arising and disappearing of

»rigid viscoplastic interfaces
is shown in the fig.6, where
the inter-face coordinate xb

is plotted versus time t.
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Summary

PARAMETRYCZNA OPTYMALIZACJA SKRECANYCH PRETOW
LEPKOPLASTYCZNYCH PRZY OBCIAZENIACH DYNAMICZNYH

W pracy przedstawlono problem parametrycznej optymalizacji ksztaltu
preta kolowego obclaZonego dynamicznym impulsem momentu skrecajacego. Po-
szukiwano minimalnego resztkowego kata skrecepia preta przy ograniczeniu
stale) obJjetosci preta. Rozwazono pret uykaﬁany z materialu sztywno -
lepkoplastycznego oraz dwulinlowy symetryczny (trojkatny) impuls momentu

skrecajacego.



