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FREE VIBRATION OF THE DISCRETE-CONTINUOUS SYSTEM WITH DAMPING
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1. Introduction

The mathematical models of complex constructions often consist of
elements with continuous mass distribution and discrete oscillators. The
analysis of such discrete-continuous systems leads to the necessity of
solving a set of conjugated ordinary and partial differential equations.
It arises new kinds of problems in comparison with the analysis of conti-
nuous or discrete systems. Because of that,in many works concerning dis-
crete-continuous systems the following method of analysis is proposed.
The continuous subsystem is discretized and the calculations are made for
given parameters of the system. Such a method was given by J.Kruszewskl
(1875). An exact solution of the initial-boundary problem concerning the
vibration of a conservative discretecontinuous system is given by
S.Kasprzyk and Dan-Tinh (1979). The exact equations for the frequencies
and modes of vibration of the system were obtained there, orthogonality
of modes of vibration was also proved and finally, the problem of free
vibration of the system with arbitrary initial conditions was solved. The
method given in the above mentioned work can be used to describe the vi-
bration of many discrete-continuous systems with negligible damping. But
in a great number of problems , especially those concerning vibroisola-
tion damping is of great importance. The aim of this paper is to give an
exact and general method for the description of free vibration of a one-
dimensiongl discrete- continuous system in which concentrated masses are
connected to the continuous subsystem by visco-elastic elements discribed

by the Voigt-Kelvin model.
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2. Formulation of the problem
The calculations were carried out for a beam hinge at the ends with
'n’ masses connected to‘ it by visco-elastic elements described'_by the
Voigt-Kelvin model. This particular system was chosen because of some
practical reasons related to the damping of the vibration of the beanm
with dynamic dampers. The following notation is used

- ¢ [m] length of the beam,

- u [kg/m) linear mass density .(the beam is prismatic),

- J [n'] cross-sectional moment of inertia,

- E [N/mzl Young's modulus for the material of the beam,

- tJ[m] the distance from the end of the beam to thepoint of mount-
ing of J-th oscillator,

- cJ[N/m] the stiffness of the visco-elastic element,

- nj[N_s/m] the damping coefficient of the visco-elastic element.

The coordinates in which the vibration of the system will be described
are shown in Figure 1.
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Fig.1. Model of the systen.

We consider small vibration of the system about the equilibrium. The fol-
lowing dimensionless parameters are introduced:
w=awt, ‘x=ast, 1=2/t, =g/,
473 2= 3yt

7/ 3 = = =
;= (ul) ; @y, ¢°J/n £ t =10, & TIJ/(ZMJ%J) '

J
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where - N
Q= (!/t)z\REJ/uj - fundamental frequency of free vibration of
the beam without oscillators,
¢°J= cj/mJ > the frequency of free vibration ofthe j-th
oscillator.

Taking the above introduced dimensionless parameters into account the
equations of motion for the system and the boundary conditions can be
written as follows. ' "

2

82w a‘w n 8%z ’ -
— + 1/m e L (-m i 8(x-1)) ,
8t ax* ya1 ) st )

% ; (2.1)
8z % dz ow .
—~2—1=-u0 [z -w(1t)] - 20, ¢ N .
at e P lar et =l
w(o,t) = 0, : w(l,t) =0,

(2.2)

2 2 * -

2_: =0, 8—: = 0.
ox x=0 ax »x=1
The initial conditions for t=0 have the form
aw :
w(x,0) = f(x), 3t | = o(x) ,
t=0
dz‘J (2.3)
zj(O) = z‘lo % at = v-|0
t=0

Where f(x) and ¢(x) are dimensionless functions defining the displace
ments and velocities of the points of the beam and z"o.v"0 define the
displacement and velocity of the mass of the J-th oscillator for t=0. The
dimensionless quantities in equations (2.3) are defined as follows

£(x)=p(x)7L , p(x)=p(x)/(@) , :
(2.4)

Z0= f;mﬂ ; o nm/(lﬂ) .

where #(x), p(x), %00 By Br® dimensional quantities.
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3. Complex freguencies and modes of vibration

Further analysis will be based on the use of complexfunctions of real
variable. In the set of these functions the separation of the spatial and

time variables is possible.let us assume

wix,t) = X(x) e’ ,
(3.1)
z (t) =2 e7t .
J J
The vector [ X(x), 21...2n ] which is the eigenvector of the boundary va-
lue problem under consideration ,will be assumed as a complex mode of vi-

bration.The complex frequency of vibration can be writtenas follows
¥y = a+ i, (3.2)

The real part of "y" is the damping of a given mode, and the imaginary
part is the frequency.

In the sequence of eigenvalues (1n) pairs of elements are conjugate. The

modes of vibration corresponding to each pair are conjugate functlions.

We rearrange the equations of complex modes and the boundary condition

equations changing the expressions on both sides of these equations into

conjugate expressions.As a result we get

Y-tttz 8101, o \
! | (3.3)

. ) . . S v
(¥ 2j+(w0j+ 2wojcjw)zj] [(“’0,*:2__""01%7))(“,,)]

o, x*mi*=o0," 3
o, (x**an®

(xo)1"
(x(11°

Applying the rules of complex algebra , we rearrange the equations (3.3)

in to the form

Y- kP x =1 mj(k')‘ z; 8C %1,
. J
e (3.5)

- 2 * L] 2 L -
Z =
(¥ j+ (w01+ 2 wojqj ¥ ) 2j (w03+ 2 wojgj 7 ) X (1,)
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The equations (3.4)and (3.5) are identical to the original equations af-
ter substituting the quantities y and (X (x), Z,...Z.] for the conjugate
quantities ¥ and ([X(x), Zl...Zn]. So it is evident that if ¥y and
[xfx), 21;..211 is the solution of the boudary problem then 1. and
[X (x), Zt...Zn] is also the solution of that problem. The sequence (1n)
contains conjugate terms. The modes of vibration corresponding to them
are also conjugate.

_Orthogonality is of great importance in the problem of free vibration.
Orthogonality relations can be derivated for the complex modes of vibra-
tion already introduced. The idea of introducing the orthogonal modes of
vibrations into dAmped discrete systems was given by F.Tse,l.Morse and
R.Hinkle (1978). The derivation presented below combines this idea and
the method of derivation of orthogonal modes in conservative discrete-
continuous systems.

Let [Ul(x), V“..‘-'.an] be the velocity mode during the vibration of the
system with the i~-th mode of vibration. The following relations are valid
ow

7.t ] 7.t
bT = Ule i » n = V”e H . (3.6)

It is evident that the following relation holds true linkiné the velocity

mode and the displacement mode

U‘ = 1‘!(‘ < V“- 1‘2-” £ (3.7)

The equations (2.1) after applying the equations (3.6) and (3.1) ‘for the
i-th mode have the form:

4 d‘xl Lodg 1 7
1‘U‘+1/u c_i—;; +7‘6 £x‘abdx-7|cbz‘+ .} {xlacdx-aez| =0,

i i (3.8)
T > e
7‘!4 V‘- 7|,(])' Xlébdx + 1lB Z‘ .(l; x‘écdx +C Zl 0,

where the following denotations are used:

. 17 . .17
zl -[Z“. veu ZM] R V‘ = [V“, cve VM] , (3.9)
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$ = [6( x-1), ..., &8( x-1 )] , (3.10)
3 1 n
3= [2mlw°1cla( x-ll). vee Zmnwol‘(na( x—ln)] . . (3.11)
; - 2 A '
Gc- .nlwma( x-ll). e mnwma( x-ln)] s | (3.12)
r : ) »
m . 0 R R S L
M= e 3 y : : (3.13)
' 0 m 4
L n
2m 0w & ¥ 0 . :
B= EMETRL : (3.14)
i 0 y Znnw(,n(n
n w2
101. 0 ; o -
e e eg] 3 R RN e S T
0 ".mow : e : :
a On

By putting together the equations (3.7) and (3.8) and after rearranging
them we arrive at the following matrix equation '

B s v,
7| " +
i a.r( )87 ax o 1/:‘ d—l + aJ‘( )a ax|| x|

o o0 vl b .. -
- 7’ G -‘" _ '_ :
: 0_ ab xl . T A

. (3.186)

o M||v -M © 0 U

7| '+ e

M B|f2 o ¢ J‘( )a dx x"
.. b - ° 2

0 o ly [ o

0o J.askx || x {o
g 0 . |

Multiplylng the first equation by the vectop [U xk] integrating in the
interval <0;1> and multiplying the sécond ,equauon by [v z ] and then
adding such rearranged equations we obtain »
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1 1 1 1 ) 1
U i X \ X ix fX T i X i T,
71[ kxl > kUl * ka lab ( kab ) zl+ka zl+

[ -0 0 0 0
d‘xl

+ZHV+ZBZ-Z J‘xsbdx] J‘Ude+ 1/xt .l‘xk——.dx+
[} d x

1 1 1 .
T X T,
+ JX8dx fXddx - ( fX3dx )Z -VMV +2C2Z +
k - i ¢ k ¢ i k 1 k i
o (+] o
2 A
T T
-Z JX8dx=0._ . (3.17)
kolc .

S_imilariy we can write:

1 * oot 1 N 1
; To. T T
7k[ SUKdx ¢ XU+ IX8 ax XSk - ([0 2V 70 ZH Y, ¢

o 0
. z ; -d‘x 1 1

+ z‘sz—z‘J‘xsbdx] J‘Ude+1/1t .I‘X——-dx+J‘X8dx J‘Xde+
0 0 dx 0 ; 0

: ' T T 'r.l T '
- (fX8dx )2 ~VMV +2C2 -2 [X8ddx=0".
g k 1 'k t Tk A
' (3.18)

Subtracting the equation (3.18) from (3.17) and after substituting the
boundary conditions we get

1 1. 1 1 1
’ T
(7‘- 71:) [ gukx‘dx +£ka‘dx +£xka dx,‘l,‘X‘dex ( i‘xksbdx) Z‘+

1
T T T T T
+ Vk .H Z‘-l- Zk M V!+ZkB Z‘ Zk Joxiabdx ] =0 . (3.19)

So if 1i#k then ¥ # y and as a result

1 1 1 1 1
T
J‘ka‘dx + J'ka‘dx + .rxka dxl‘)(‘abdx - ( kasbdx ) Z‘ +
.0 [} o 0 0
1
T - T T, T T
- a4

+ Vk M Z‘+ Zk M v:+sz Zl Zt k{xiabdx =0, (3.20)

or after rearranging
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1 n
i( UX, + XU )dx *JE:‘ Bl V2t 2,V ‘

+ - = ™ 2
2mu € (X (1) -2) (X(1) z”)] 0 (3.21)
It is the orthogonality relation we have been seeking .

The method described above was applied to calculate the frequencies and
damping of the modes of vibrations of a beam with two oscillators. It was

assumed that:

ml= m2= m = 0.2‘ s cls ng s
N w°1= w02= wo = 0.5, | ll=_ 0.4 , 12= 0.6 .
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Fig.2. Damblng a and frequency w of the first two symmetricalmodes.

Considering the symmetry of the system we get two classes of modes: sym
metric and ahtisymmetric. The results are shown in Figure 2. 3
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4. Free vibration

Making use of the relations given earlier which defined the mode of
displacement (3.1) and the mode of velocity (3.6) we get the solution in

the form

[ dw

-— U (x)

dt | =7 C| A e7lt' ) . (4.1)
{ W 1 X (x)
A

T Yativn

=) C, n et (4.2)

4 1 z .

[ 73 b1

For t=0 substituting the initial conditions (2.3) in the equations (4.1)
and (4.2) we get

[ p(x) . U, (x)
iy z C‘ » * (4-3)
| £(x) 1 X (x)
- v, v,
= LC ' (4.4)
1
L z, 1 21
where
. : 1
o1
= > 4.5
zo . ’ 5 ( )
on|
v
e S : (4.6)
R v
- onj
0 1
We multiply the equation (4.3) by[Uk Xk] 1 & integrate the
1 8J(.)8 dx

0
result in the interval <0;1>, multiply the equation (4.4) by
[V: Z:] [:B] and add the resulting formulae obtaining
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1 0 1 ® + 3 0 M vo'
f[Uk Xkl 1 & dx + leZkl =
[ 1 c.f(-)cbdx f M B 26-
0 1
1 0 1 U, o]0 M|y,
= Ztl{ J'[Uk Xk] 1 3 dx + [Vka] } . (4.7)
s 'lo 1 af(etax|lx | M B ||z
aiers 1 15
£ o o
Similarly we multiply the equation (4.3) by [v: z:] Lo and
' . 0 JSC.)8]ax

. o
also multiply the equation (4.4) by[UI" Xk][g gb], integrate the last re-

sult in the interval <0;1>and add the resulting f‘ormul'aé we obtaining

r T 0 0 ? 1 00 'vo
vz o + 5 IU_X] ax =
0 J(.)86 ax f o . 0 & Z
o b b~ 0
1 0 o ||v, g 0 v,
=LC{J‘[U X 1 ax + V2| 1 } . (4.8)
i Lo ¥ X |0 s]lz Kk o s(.)8%ax||x
v] ™1 . _ ° 3

Subtracting equations (4.8) from (4.7) after substituting the orthogona-
lity condition (3.20) and rearranging we get the formula for the cons-

tants C .
k
1 n o i . "
£(Uk¢+xkf‘)dx +,§1[m1(vl"z°~5+ Z,k"m) o
C = - ‘ '

x 1 n
2 {kakdx + ?J§1[m1v1k21k+-

+ ZmeoJCJ(Z"- Xk(lj)) -(Z_OJ- f(lj'))l

+ mj”OJCJ (Xk

(4.9)

2
(1) -2z)%]

Substituting the constants Ck in equations (4.1) we get the solution of
the initial-boundary value problem and the exact description of free vi-
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bration of the systenm. . Since the sequence of eigenvalues contains the
conjugate values

(4.10)

7kb. ba™ % luk ’

> _
7,7, a1 , _ (4.11)

and the corresponding modes of vibration [xk(x'). Zﬂ 45 2“1 and

[xk,(x), 2 an,] are also conjugate, it can be seen from the form of

p 1 L
‘equation (4.9) that Ck, is conjugate to Ck .. S0 we canwrite
e . _dkt .
: u(.x.t) = E:|ck|.|xk(x)| & cos(p + 6 (x) ¥ w t), (4.12)
oz (L) = E: |Ck|]2.’k‘ e coslp+ ¥ +ut), (4.13)
3 Q_k'.'ﬁ arg C_, 9 Bk ‘= arg Xk(x) . i"= arg 2". (4.14)

. From the form of equations (4.12) and (4.13) it 1s seen that:

= the damping of vibration at a particular modes of vibration depends
on 'a.k'- 3 : »

- the vibration of two different points of the beam 'xl' and 'xz’ with

. an arbitrarily chosen mode 'k’ 1is out of phase.

5. Conclusions

F‘roi the calculations carried out in this paper it is seen that the
problem of free vibration of a discrete-continuous system with arbitrary
injitial conditions can be solved uslng properly introduced complex modes
of vibration. Superposition of these modes enables one to obtain the so-
" lution of the stated problem. _Orthogonality of the complex modes of vi-
bration plays a crucial role in the calculations. The calculation of the
complex modes is connected with solving a complicated non-linearalgebraic
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equation in the complex domain from which a sequence of complex frequen-

cles of free vibrations is obtalined.
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. Summary
DRGANIA WLASNE UKLADU DYSKRETNO-CIAGLEGO Z TLUMIENIEM

W pracy przedstawiono metode ) rozwiazania problemu drgan wtasnych
ukladu dyskretno-cliaglego z tlumieniem. Metoda sprowadza sie do analizy
drgan w zbiorze funkcji zespolon;lch zmiennych rzeczWistych. Zespolone
formy drgan z wprowadzonym warunkiem ortogonalnogci sa podstawa opisu
drgan wtasnych przy dowolnych warunkach poczatkowych..




