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This paper presents the modelling of dynamics of a self-guided missile ste-
ered using a gyroscope. In such kinds of missiles, the main element is a
self-guiding head, which is operated by a steered gyroscope. The paper
presents the dynamics and the method of steering such a missile. Cor-
rectness of the developed mathematical model was confirmed by digital
simulation conducted for a Maverick missile equipped with a gyroscope
being an executive element of the system scanning the earth’s surface and
following the detected target. Both the dynamics of the gyroscope and the
missile during the process of scanning and following the detected target
were subject to digital analysis. The results were presented in a graphic
form.
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1. Introduction

In the case of automatic steering of self-guided missiles, kinematic equations
of spins were related to missile equations of dynamics, using the Boltzmann-
Hamel equations (Ładyżyńska-Kozdraś et al., 2008), which were developed in
a relative frame of reference Oxyz, rigidly connected with the missile (Żyluk,
2009).
At the moment of detecting the target, it was assumed that the missile

automatically passes from the flight on the programmed trajectory to trac-
king flight of the target according to the assumed algorithm, in this case –
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the method of proportional navigation. Controlling the motion of the missile
is carried out by the deflection of control surfaces, i.e. direction steer and he-
ight steer at the angles δV and δH respectively. The control laws constitute
kinematic relations of deviations of set and realised flight parameters, stabi-
lising the movement of the missile in channels of inclination and deflection.
The realisation of the desired flight path of the missile is carried out by the
autopilot, which generates control signals based on the compounds derived for
the executive system of steering.
In the final section of navigation, various types of disturbances may af-

fect the missile, such as wind or shock waves from shells exploding nearby.
Therefore, additional stabilisation is necessary, in this case performed by the
gyroscope. When searching for a ground target, the gyroscope axis, facing
down, strictly outlines defined lines on the earth’s surface with its extension.
The optic system positioned in the axis of the gyroscope, with a specific angle
of view, can thus find the light or infrared signal emitted by a moving object.
Therefore, kinematic parameters of reciprocal movement of the missile head
and gyroscope axis should be selected to detect the target at the highest pro-
bability possible. After locating the target (receiving the signal by the infrared
detector), the gyroscope goes into the tracking mode, i.e. from this point its
axis takes a specific position in space, being directed onto the target.

2. The general equations of missile dynamics

Dynamic equations of missile motion in flight were derived in quasi-coordinates
ϕ, θ, ψ and quasi-velocities U , V , W , P , Q, R (Fig. 1) using the Boltzmann-
Hamel equations true for mechanical systems in the system associated with
the object.
The following correlation expresses them in a general form

d

dt
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where: α, µ, r = 1, 2, . . . , k, k – number of degrees of freedom, ωµ – quasi-
-velocities, T ∗ – kinetic energy expressed in quasi-velocities, πµ – quasi-
-coordinates, Q∗µ – generalised forces, γ

r
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Fig. 1. Assumed reference system and parameters of the missile in the course of
guidance

Relations between quasi-velocities and generalised velocities are

ωδ =
k
∑

α=1

aδαq̇αq̇δ =
k
∑

µ−1

bδµωµ (2.3)

where: q̇δ – generalised velocities, qk – generalised coordinates, aδα =
= aδα(q1, q2, . . . , qk) and bδα = bδα(q1, q2, . . . , qk) – coordinates being func-
tions of generalised coordinates, while the following matrix correlation exists:
[aδµ] = [bδµ]−1.
The Boltzmann-Hamel equations, after calculating the values of Boltzmann

factors and indicating kinetic energy in quasi-velocities, a system of ordinary
differential equations of the second order was received which describes the
behaviour of the missile on the track during guidance.
In the frame of reference associated with the moving object Oxyz, they

have the following form

MV̇ +KMV = Q (2.4)

where: M is the inertia matrix, K – kinematic relations matrix, V – velocity
vector and
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The vector of forces and moments of external forces Q affecting the moving
missile is the sum of interactions of the centre, in which it is moving. This
vector consists of forces: aerodynamic Qa, gravitational Qg, steering Qδ and
thrust QT . The flying missile is steered automatically. The steering is done in
two channels: inclination by tilting the height steer by δH and deflection by
tilting the direction steer by δV

Q = Qg +Qa +Qδ +QT = col [X,Y,Z,L,M,N ] (2.5)

where

X = −mg sin θ + T −
1
2
ρSV 20 (Cxa cos β cosα+Cya sinβ cosα− Cza sinα)

+XQQ+XδHδH +XδV δV

Y = mg cos θ sinφ−
1
2
ρSV 20 (Cxa sin β − Cya sin β) + YPP + YRR+ YδV δV

Z = mg cos θ cosφ−
1
2
ρSV 20 (Cxa cosβ sinα+ Cya sin β sinα+ Cza cosα)

+ZQQ+ ZδHδH

L = −
1
2
ρSV 20 l(Cmxa cos β cosα+ Cmya sin β sinα− Cmza sinα) + LPP

+LRR+ LδV δV

M = −mgxc cos θ cosφ−
1
2
ρSV 20 l(Cmxa sin β + Cmza cos β) +MQQ

+MWW +MδHδH

N = mgxc cos θ sinφ−
1
2
ρSV 20 l(Cmxa cos β sinα+ Cmya sin β sinα

+Cmza cosα) +NPP +NRR+NδV δV
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while: m – missile mass, T – missile engine thrust vector (Fig. 2), ρ(H) – air
density at a given flight altitude, l – characteristic dimension (total length of
the missile body), S – area of reference surface (cross-section of rocket body),
V0 =

√

U2 + V 2 +W 2 – velocity of the missile flight, Cxa, Cya, Cza, Cmxa,
Cmya, Cmza – dimensionless coefficients of aerodynamic component forces,
respectively: resistance Pxa, lateral Pya and bearing Pza as well as the moment
of tilting Mxa, inclination Mya and deflection Mza (Fig. 2), XQ, YP , YR, ZQ,
LP , LR, MQ, NP , NR – derivatives of aerodynamic forces and moments with
respect to components of linear and angular velocities.

Fig. 2. Forces and moments of forces acting on the missile in flight

3. Layout of gyroscopic self-guidance of missiles

Figures 3 presents a simplified diagram of the layout of gyroscopic self-guidance
of missiles onto a ground target emitting infrared radiation (e.g. a tank or a
combat vehicle).
Figure 4 shows the general view of the missile used in the scanning and

tracking gyroscope, i.e. one which can perform programmed movements while
searching for the target and tracking movements after detecting the ground
target through an adequate steering mounted on its frames.
The equations expressing dynamics of this kind of gyroscope steered by

omitting the moments of inertia of its frames, have the following form

Jgk
dωyg2
dt
cos ϑg + Jgkωgx2(ωgz2 + ωgy2 sinϑg) +Mk sinϑg

−Jgo

(

ωgz2 +
dΦg

dt

)

ωgx2 cos ϑg + ηc
dψg

dt
=Mc
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Fig. 3. Diagram of the process of self-guiding a missile on a target

Jgk
dωgx2
dt
− Jgkωgy2ωgz2 + Jgo

(

ωgz2 +
dΦg

dt

)

ωgy2 + ηb
dϑg

dt
=Mb (3.1)

Jgo
d

dt

(

ωgz2 +
dΦg

dt

)

=Mk −Mrk

where
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Fig. 4. General view of the gyroscope and assumed systems of coordinates

ωgx2 = P cosψg −R sinψg +
dϑg

dt

ωgy2 = (P cosψg +R sinψg) sinϑg +
(dψg

dt
+Q
)

cos ϑg

ωgz2 = (P cosψg +R sinψg) cos ϑg −
(dψg

dt
+Q
)

sinϑg

and Jgo, Jgk – moments of inertia of the gyroscope rotor in terms of its lon-
gitudinal axis and precession axis, respectively, ϑg, ψg – angles of rotation of
internal and external frames of the gyroscope, respectively, Mk,Mrk – torques
driving the rotor of the gyroscope and friction forces in the rotor bearing in
the frame, respectively.
The steering moments Mb, Mc affecting the gyroscope expressed by Eqs.

(3.1), found on the PR board, we shall present as follows

Mb = Π(to, tw)M
p
b (t) + Π(ts, tk)M

s
b

Mc = Π(to, tw)Mp
c (t) + Π(ts, tk)M

s
c

(3.2)

where: Π(·) are functions of the rectangular impulse, to – time moment of
the beginning of spatial scanning, tw – moment of detecting the target, ts –
moment of the beginning of target tracking, tk – moment of completing the
process of penetration, tracking and laser lighting of the target.
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The program steering moments Mp
b (t) and Mp

c (t) put the axis of the
gyroscope in the required motion and are found by the method of solving the
inverse problem of dynamics (Osiecki and Stefański, 2008)

M
p
b (τ) = Π(τo, τw)

[d2ϑgz

dτ2
+ bb

dϑgz

dτ
−
1
2

(dψgz

dτ

)2

sin 2ϑgz −
dψgz

dτ
cos ϑgz

] 1
cb

Mp
c (τ) = Π(τo, τw)

(d2ψgz

dτ2
cos2 ϑpgz + bc

dψgz

dτ
+
dψgz

dτ

dϑgz

dτ
sin 2ϑgz (3.3)

+
dϑgz

dτ
cos ϑgz

) 1
cc

where

τ = tΩ Ω =
Jgong

Jgk
cb = cc =

1
JgkΩ2

bb = bc =
ηb

JgkΩ

and ϑgz, ψgz are the angles determining the position of the gyroscope axis in
space.
For the target tracking status, values of angles determining the given po-

sition of the gyroscope axis are equal to

ϑgz = ε ψgz = σ (3.4)

where: ε, σ are the angles determining a given position of the target observa-
tion line (TOL).
The angles ε, σ are defined by the following relationships constituting

kinematic equations TOL (Mishin, 1990)

dre

dt
= Vpxe − Vcxe −

dε

dt
re cos ε = Vpye − Vcye

dσ

dt
re = Vpze − Vcze

(3.5)

where

Vpxe = V0[cos(ε− χp) cos ε cos γp − sin ε sin γp]

Vpye = −V0 sin(ε− χp) cos γp
Vpze = V0[cos(ε− χp) sin ε cos γp − cos ε sin γp]

Vcxe = Vc[cos(ε− χc) cos ε cos γc − sin ε sin γc]

Vcye = −Vc sin(ε− χc) cos γc
Vcze = Vc[cos(ε− χc) sin ε cos γc − cos ε sin γc]
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and re – distance between the centre of gravity mass of PR and the ground
target, V0, Vc – velocities of PR and the ground target, γp = θ−α, χp = ψ−β
– position angles of the PR velocity vector, γc, χc – position angles of the
velocity vector of the ground target.
If angular deviations between the real angles ϑg and ψg and required

angles ϑgz and ψgz are denoted as follows

eψ = ψg − ψgz eψ = ψg − ψgz (3.6)

then the tracking steering moments of the gyroscope shall be expressed as
follows

M s
b (τ) = Π(τs, τk)

(

kbeϑ − kceψ + hg
deϑ

dτ

)

M s
c (τ) = Π(τs, τk)

(

kbeψ + kceϑ + hg
deψ

dτ

)

(3.7)

where

kb =
kb

JgkΩ2
kc =

kc

JgkΩ2
hg =

hg

JgkΩ

Thus, the steering law for the autopilot, taking into account the dynamics
of inclination of steers, shall be expressed as follows

d2δm

dt2
+ hmp

dδm

dt
+ kmpδm = km(γp − γ∗p) + hm

(dγp

dt
−

dγ∗p

dt

)

d2δn

dt2
+ hnp

dδn

dt
+ knpδn = kn(χp − χ∗p) + hm

(dχp

dt
−

dχ∗p

dt

)

(3.8)

where: bm, bn are the coefficients of stabilising steers, kmp, knp – coefficients
of amplifications of steer drives, hmp, hnp – coefficients of suppressions of steer
drives, km, kn – coefficients of amplifications of the autopilot regulator, hm, hn
– coefficients of suppressions of the autopilot regulator.
The required angles of position γ∗p , χ

∗

p of the PR velocity vector are deter-
mined by the method of proportional navigation (Koruba, 2001)

dγ∗p

dt
= aγ

dϑg

dt

dχ∗p

dt
= aχ

dψg

dt
(3.9)

where: aγ , aχ are the required coefficients of proportional navigation.
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4. Obtained results and final conclusions

The tested model of navigation and the steering of the self-guiding missile
describes the fully autonomous motion of the Maverick combat vessel, which
is to directly attack and destroy a ground target after being detected and
identified.
Figures 5-8 show selected results of digital simulation of the dynamics of

the missile during self-guidance on a detected ground target. It was assumed
that the missile was launched from an aircraft-carrier moving at a speed of
200m/s at a height of 400m. The target was moving along an arc of a circle at
the speed of 10m/s. The parameters of the steered gyroscope were as follows

Jgk = 2.5 · 10−4 kgm2 Jgo = 5.0 · 10−4 kgm2

ng = 600
rad
s

ηb = ηc = 0.01
Nms
rad

while the coefficients of its regulator had the values

kb = 31.480
Nm
rad

kc = 2.986
Nm
rad

hg = 31.525
Nms
rad

The coefficients of proportional navigation and parameters of the regulator of
PR autopilot were as follows

aγ = 3.5 aχ = 3.5 km = 2.703
Nm
rad

kn = 11.439
Nm
rad

hm = 9.887
Nms
rad

Fig. 5. Spatial trajectory of a self-guiding missile
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Fig. 6. Change of angles of attack and glide angles in function of time

Fig. 7. Angular position of the missile in function of time during guidance

Fig. 8. Angular position of the gyroscope axis in function of time
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With the parameters selected as in the above, the target was destroyed in
6 s of the flight.
It should be emphasised that the gyroscope scanning and tracking layout

proposed in this paper improves the stability of the system of missile self-
guidance and increases resistance to vibrations born from the board of the
missile itself.
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Model końcowego odcinka nawigacji samonaprowadzającego pocisku

rakietowego sterowanego giroskopem

Streszczenie

W pracy zaprezentowano modelowanie dynamiki samonaprowadzającego pocisku
rakietowego sterowanego przy użyciu giroskopu. W tego rodzaju pociskach rakieto-
wych atakujących samodzielnie wykryte cele głównym elementem jest samonapro-
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wadzająca głowica, której napęd stanowi giroskop sterowany. W pracy przedstawio-
na została dynamika i sposób sterowania takiego pocisku. Poprawność opracowanego
modelu matematycznego potwierdziła symulacja numeryczna przeprowadzona dla po-
cisku klasy „Maverick” wyposażonego w giroskop będący elementem wykonawczym
skanowania powierzchni ziemi i śledzenia wykrytego na niej celu. Analizie numerycznej
poddana została zarówno dynamika giroskopu, jak i pocisku podczas procesu skano-
wania i śledzenia wykrytego celu. Wyniki przedstawione zostały w postaci graficznej.
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