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This paper presents a non-linear mathematical model describing the hy-
steresis of dry contact of rough surfaces loaded in the normal direction. A
number of characteristic phenomena appear during the initial loading,
unloading and reloading of the contact interface. The contact is most
flexible during the first loading, and its plastic deflection is significant,
whereas the characteristic curve of unloading is stiffer and is mainly ela-
stic in nature. The reloading characteristic is similar to the unloading
characteristic, and thus a hysteresis loop is observed. The non-linear
model of contact presented in this paper, which has been validated by
experimental data, describes the aforementioned phenomena. The model
is dedicated to the finite element method (FEM), the discrete element
method (DEM), and simulations of multi-body systems (MBS), where
accurate and effective contact models are preferred. The presentation of
the model is supported by examples of applications to contact problems.
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1. Introduction

Contact interfaces often exist in machines (e.g., sideways). The contact in-
terfaces operate under dynamic loading and are thus repeatedly loaded and
unloaded. Contact deflections are particularly important in the case of preci-
sion machines, such as machine tools, measuring equipment and microscopes.

The specific physical phenomena that occur at the contact of two rough
surfaces are strongly non-linear. The maximum normal force influences the
residual deflection of the contact (Etsion et al., 2005; Kadin et al., 2006). The
plastic deflection of a virgin contact is significant (Goerke and Willner, 2008;
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Tworzydlo et al., 1998; Vu-Quoc and Zhang, 1999), whereas a stabilised con-
tact is stiffer, and its deflection is mostly elastic in nature (Skrodzewicz, 2003).
Moreover, the hysteresis loops of stabilised contact joints are not very sensiti-
ve to the frequency of external forces, within the frequency range 0.1-2400 Hz
(Gutowski and Skrodzewicz, 2001; Kostek, 2005). The specific phenomena
make it difficult to model the contact; thus, contact models are dedicated
to specific applications. In tribology, accurate and complex models are pre-
ferred. They are based on statistical modelling (Kadin et al., 2006), fractal
theory (Goerke and Willner, 2008; Pei et al., 2005), FEM (Tworzydlo et al.,
1998; Pei etal, 2005), and modelling dislocations within crystals (Nicola etal,
2007). Analysis of these models provides valuable information, but simulations
using such models are computationally expensive. In contrast, simple and fast
models based on linear (Kruggel-Emden etal, 2008; Munjiza, 2004) and non-
linear formulae (Grudziński and Kostek, 2007; Hess and Soom, 1991; Hunt and
Crossley, 1975; Kostek, 2005; Kruggel-Emden etal, 2008; Martins etal, 1990;
Michalczyk, 2008; Pombo and Ambrósio, 2008; Schiehlen etal, 2006) are prefer-
red in computational mechanics and dynamics. These models are usually used
to describe collisions between bodies, vibrations, pressure distributions and
restitution coefficients, which are coupled with the contact phenomena (see,
e.g., Lifshitz and Kolsky, 1963; Oden and Martins, 1985; Wriggers, 2006).

The contact interfaces of rough surfaces have been investigated by resear-
chers, and contact models describing loading and unloading seem to be the
most valuable. Tworzydlo et al. (1998) presented asperity-based constitutive
models of contact interfaces. Skrodzewicz (2003) presented non-linear mathe-
matical models describing hysteresis loops of stabilised contacts loaded by har-
monic forces. Kim et al. (2004) worked on ultrasonic experiments characterised
by the elasto-plastic planar contact. Jones (2004) presented a model of a ro-
ugh surface with columnar and spherical asperities. Pei et al. (2005) presented
an FEM study of the contact between a rigid plane and an elasto-plastic solid
with a self-affine fractal surface. Kadin et al. (2006) presented a statistical mo-
del of the unloading of the elasto-plastic contact of rough surfaces. Goerke and
Willner (2008) worked on a numerical model that describes the elasto-plastic
normal contact of isotropic fractal surfaces. Kostek and Konowalski (2008)
presented a non-linear model describing the loading and unloading contact of
two rough surfaces.

Several articles have addressed elasto-plastic Hertzian contact in the
Greenwood-Williamson model (Archard, 1957; Etsion et al., 2005; Greenwood
and Williamson, 1966; Jamari and Schipper, 2007; Li and Gu, 2009; Pullen
and Williamson, 1972; Schiehlen et al., 2006; Vu-Quoc and Zhang, 1999; Woo
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and Thomas, 1980), which can be relevant to the contact of asperities. Thus,
these articles have been mentioned in this paper.
As is evident from the literature search, there are many models of contact.

However, a model that has been validated by experimental data and that is
able to precisely describe the initial loading, unloading and reloading in the
normal direction of a planar contact of rough surfaces has not been found.
Thus, there is a need to present a suitable model for that case.

2. Formulation of the mathematical model

The interface of two bodies in a planar contact, which is shown in Fig. 1a, is
modelled in this Section. The interface can be modelled with a large number of
springs and plastic bodies (Saint-Venant elements) (Fig. 1b), which represent
interacting roughness asperities. It is assumed that the mechanical properties
of the contact interface are macroscopically identical over the entire contact
area. Thus, after homogenisation (Fig. 1c), the contact zone can be modelled as

Fig. 1. Schematic of the contact interface (a) and its physical models (b), (c)

a homogenous area that possesses specific elasto-plastic properties. Deflection
of the contact zone can be expressed as a function of loading, where the input
signal is the normal contact pressure p, and the output signal is the contact
deflection δ. The experimental and analytical investigations presented previo-
usly (Mikic, 1971, 1974; Tworzydlo et al., 1998) show that the interactions
within a dry contact exhibit elastic, plastic and elasto-plastic nature (Fig. 2d),
and thus the contact model consists of three elements (Fig. 2a). The elastic
normal deflection is described by equation (2.1)1 (Martins et al., 1990), and
the plastic normal deflection is expressed by similar equation (2,1)2 as follows

δe = eep
me δp = epp

mp
max (2.1)

where δe denotes the normal elastic deflection of the interface, δp represents
the normal plastic deflection of the interface, p is the normal contact pressure,
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pmax is the maximum normal contact pressure for a specified period of time
pmax = max(p0, p1, p2, . . . , pn), and ee, ep, me and mp are the parameters of
the interface. The non-linear elastic element models the reversible part of the
contact deflection, whereas the non-linear plastic element models the irrever-
sible part of the contact deflection. The most important feature of the elastic
element is that its deflection does not depend on the previous loading history,
only on the present contact pressure p, whereas the plastic element deflection
is determined by the maximum magnitude of the loading pressure pmax. The
plastic contact deflection increases only if the maximal contact pressure pmax
increases. The two elements are able to describe pure elastic and pure plastic
deflections (Kostek and Konowalski, 2008; Nardin et al., 2003).

Fig. 2. A load-deflection characteristic (d) of the contact model (a) obtained for the
presented input (c) and output signals (b) and validated against experimental

results (see Tworzydlo et al., 1998; Fig. 20a)

The application of the elasto-plastic element provides an opportunity to
model the hysteresis of a preloaded contact and the dissipation of energy within
this type of contact. This element can be modelled as a parallel connection of
the elastic and plastic bodies (Fig. 3 a), described by equations (2.2). The pla-
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Fig. 3. A load-deflection characteristic (d) of the elasto-plastic element (a) obtained
for the presented time histories (b), (c)

stic body models the dissipation of energy and damping, and thus its pressure
is related to the sign of its velocity of deflection. It should be mentioned here
that the damping pressure is insensitive to the magnitude of the speed, which
reflects the plastic nature of dissipation energy. In general, the elasto-plastic
element is described by the following equations

pep−e =
( δep
eep−e

)1/mep−e
pep−p = sgn

(dδep
dt

)( δep
eep−p

)1/mep−p
(2.2)

and

p(t) = pep−e + pep−p =
( δep
eep−e

)1/mep−e
+ sgn

(dδep
dt

)( δep
eep−p

)1/mep−p
(2.3)

where δep denotes the normal elasto-plastic deflection of the interface, pep−e is
the normal contact pressure in the elastic element, pep−p is the normal contact
pressure in the plastic element, t is time, and eep−e, eep−p, mep−e and mep−p
are interface parameters. In this case, the input signals are δep and dδep/dt,
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whereas the output signal is the normal contact pressure p. First, during the
initial loading from point A to point B, both pep−e and pep−p are positive
(dδep/dt > 0), and thus these two elements act against the normal contact
pressure p. In consequence, the elasto-plastic element follows the loading cu-
rve (Fig. 3d). Next, the unloading from point B to C does not change the
deflection of the elastic element (dδep/dt = 0) (Fig. 3b,d), but only changes
the normal contact pressure in the plastic element pep−p, which is because
the plastic element stops the changes of deflection, which is typical for sys-
tems with dry friction. The contact pressure during this period drops from
pB to pC , due to a drop of the external force. The contact pressure being in
the range from pC to pB is not able to change the deflection of the elastic
element. Then, the unloading from point C to point D reduces the elasto-
plastic deflection of the interface δep. At this period, the plastic element acts
against the elastic element (dδep/dt < 0), and the elasto-plastic element fol-
lows the unloading curve. Thus, some hysteresis loop is observed. Finally, the
reloading from point D to point F follows the loading curve (dδep/dt > 0).
This description clearly shows that the elasto-plastic element has three possi-
ble stages: dδep/dt > 0, dδep/dt = 0, and dδep/dt < 0. If mep−e and mep−p are
equal, which makes the formulae simpler, then formula (2.3) can be written
for the three stages as follows

if
dδep
dt
> 0 then δep = eep−lp

mep

if
( δep
eep−e

)

1

mep−e +
( δep
eep−p

)

1

mep−p > p >
( δep
eep−e

)

1

mep−e
−

( δep
eep−p

)

1

mep−p

then
dδep
dt
= 0

if
dδep
dt
< 0 then δep = eep−unlp

mep

(2.4)

where eep−l, eep−unl and mep denote the interface parameters. The contact
pressure can be treated as the input signal, and then it governs the switching
between the three stages. An example for the stage dδep/dt = 0 presents
equation (2.4)2. More information and pseudo-code are presented in the Ap-
pendix. The elasto-plastic module can be interpreted as a Hertz-Stajerman
model (Michalczyk, 2008).

The contact model presented in Fig. 2a consists of three modules: plastic,
elasto-plastic and elastic. Deflection of the model δ is the sum of three deflec-
tions given by

δ = δp + δep + δe (2.5)
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where δ denotes the normal deflection of the contact. It is worth noting that
the model have only seven parameters: ee, ep, me, mp, eep−l, eep−unl, mep, and
the contact behaviour described by the model is very similar to the experi-
mental results (Fig. 2d). The loading from point A to point B (Fig. 2c) causes
deflections of the three elements – plastic, elasto-plastic and elastic (Fig. 2b) –
which indicates that the contact model is flexible (Fig. 2d). The unloading to
point C changes the deflection in the elastic element only, whereas the unlo-
ading below point C reduces the deflection of the elasto-plastic element. The
elasto-plastic element follows the unloading curve, Eq. (2.4)3, at this time. Du-
ring the reloading from point D to point E, the elastic and elasto-plastic ele-
ments are deflected together, and the elasto-plastic element follows the loading
curve Eq. (2.4)1. Exceeding the highest pressure so far, pmax−B at point E,
makes the plastic deflection larger, and the contact becomes more flexible aga-
in. The three elements (modules) are then deflected together between points
E and F . A similar sequence will be repeated during the next unloading-
reloading cycle. The plastic nature of the dissipation is worth noting. It makes
the model insensitive to the speed of deflection, because the damping force is
insensitive to the magnitude of speed. This phenomenon is coupled with the
insensibility of the dry contact hysteresis loops to the frequency of excitation
(Gutowski and Skrodzewicz, 2001).

Table 1. The contact data used for the simulations

Parameters
Magnitudes of contact

Units
interface parameters

ep 0.534 µmMPa−mp

mp 0.653

ee 1.148 µmMPa−me

me 0.462

eep−l 0.302 µmMPa−mep

eep−unl 0.523 µmMPa−mep

mep 0.462

The parameters of the model, which are presented in Table 1, were estima-
ted from experimental results (Tworzydlo et al., 1998) using the Monte Carlo
method. This method can be used to find the global minimum in a specific
solution space. The contact pressure p was assumed to be an independent
variable, whereas the contact deflection δ was assumed to be a dependent
variable. The residual sum of squares was adopted as an objective function.
Finally, the difference between the computational results and the experimental
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results was minimised, which leads to a good agreement between the compu-
tational and experimental results (Fig. 2d).

Experimental investigations of the contact characteristics have been descri-
bed previously in literature, see, e.g., Cichowicz and Nowicki (1984), Goerke
and Willner (2008), Grudziński and Jaroszewicz (2002), Gutowski and Skro-
dzewicz (2001), Kostek (2005), Skrodzewicz (2003), Tworzydlo et al. (1998).
The main difficulty associated with these investigations is the small contact
deflection δ, which is a result of the small height of the roughness asperi-
ties. To overcome this difficulty, special displacement transducers are applied
and special experimental setups are designed, or common testing machines are
used. The experimental results used as a reference in this paper were obta-
ined in Tworzydlo et al. (1998) for several disk specimens made of 1020 steel
(Fig. 4). The thickness of the specimens was 3.175mm and the diameter was
25.4mm. The contacting surfaces of the specimens were glass-bead blasted,
which introduced roughness. The standard deviation of the profile heights was
σ = 4.91µm. A sandwich of the specimens was first loaded, then unloaded and
finally reloaded. Recording the time histories of the loading force and contact
deflection provides the opportunity to determine the contact characteristics.
A more detailed description of the experimental setup and procedure can be
found in Tworzydlo et al. (1998)

Fig. 4. Schematic of the experimental setup (Tworzydlo et al., 1998)

3. Application examples

The model of contact presented in this paper, which was validated experi-
mentally, has been applied to the modelling of interactions between rigid and
elastic bodies. The parameters of the model are shown in Table 1. The first
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example presents an interaction between rigid bodies that is typical for MBS
systems. The second example presents the interaction between an elastic beam
and a rigid flat. The last example presents the collision of elastics bodies that
was simulated with the combined finite-discrete element method.

3.1. Rolling contact

A Hertzian contact is a classic issue in contact mechanics and tribology
that is coupled with the coefficient of rolling friction and the deflection of
contact. The model used for this case consists of a rigid cylinder rolling on
a rigid flat (Fig. 5), and the elastic nature of the bodies is neglected (MBS).
This model presents the influence of deflections of roughness asperities on
the system. The contact zone has been modelled as a homogeneous layer, the
constitutive relation of which has been described by the model presented here
(Fig. 2). The contact pressure has been calculated for a number of points and
then interpolated. In this way, the interaction between the bodies has been
modelled.

Fig. 5. Schematic of the rolling contact between a rigid cylinder and a rigid flat

During rolling, the contact zone is first loaded and then unloaded; the two
stages of the process are presented in Fig. 6. The loading process and the unlo-
ading process follow different paths: the A-B characteristic during loading and
the B-C-D characteristic during unloading (Fig. 2d), which introduces dissi-
pation energy, rolling friction and residual deflection of contact δpl (Fig. 6a).
The dissipation energy is coupled with the contact hysteresis (different lo-
ading and unloading characteristics). The amount of energy absorbed during
loading is greater than the amount of energy released during unloading be-
cause of plastic deformation asperities. In other words, the area under the
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loading characteristic is greater than the area under the unloading characte-
ristic, which reflects the dissipation energy. The energy loss is proportional to
the area of the hysteresis loop A-B-C-D-A.

Fig. 6. Characteristics of the rolling contact (a) and contact pressure distribution (b)
obtained for the following data: D = 100mm, L = 100mm, F = 611.7N

The resulting distribution of contact pressure is asymmetrical (Fig. 6b),
which reflects contact hysteresis, dissipation energy and deformations of rough-
ness asperities (Stolarski, 2000, p. 249). The asymmetry is a result of different
loading and unloading characteristics. Thus, this model provides an opportu-
nity to calculate the coefficient of rolling friction, which equals f = 0.072mm.
“It is quite obvious that resistance to the rolling of a wheel is greater on a
rough surface than on a smooth one, but this aspect of the subject has received
little analytical attention” (Stolarski, 2000, p. 237).

The second issue is the contact deflection. For the contact interface descri-
bed here, the maximum contact deflection equals δmax = 6.07µm (Fig. 6a),
which is over ten times more than the contact deflection resulting from a clas-
sical Hertzian contact of smooth bodies made of steel. As is evident from the
results, the deflection of rough surfaces plays an important role in this system.

3.2. Prismatic beam on a rigid flat

The second example involves a cube-shaped elastic steel beam resting on a
rigid flat surface and loaded by a force F (Fig. 7a). The elastic beam has been
modelled with twenty beam elements (Young’s modulus E = 2 · 105MPa),
which is a simplification of the model (Fig. 7b). The contact zone between the
beam and the rigid flat has been modelled with the contact model presented in
this paper (Table 1). The contact pressure p has been calculated for 21 nodes
(Fig. 7b), and then the contact pressure distribution between the nodes has
been interpolated with a linear function. Consequently, the distributed load q
has been interpolated with a linear function as well (Fig. 7c). The loading
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for a non-uniform space mesh can be calculated with this approach. Finally,
the deflection of the beam due to contact pressure has been computed. The
non-linearity of the contact presents some difficulties associated with the cal-
culation of the contact pressure, which were solved with an iteration procedure
and a gradual increase of the loading force F .

Fig. 7. Schematic of the contact interface between an elastic beam (L = 200mm,
B = 10mm, H = 62.4mm) and a rigid flat (a), physical model of the interface (b),

and interpolation of the load distribution between nodes (c)

The contact interface has been loaded, unloaded and reloaded, and a hy-
steresis of the interface has been obtained (Fig. 8). During the initial loading,
the maximum pressure and contact deflection are observed in the middle of
the interface (Fig. 9). As the loading force F increases and the beam distorts,
the beam ends are gradually unloaded.

The unloading process is different from the loading process. The contact
pressure in the middle part of the beam drops rapidly, which is a result of
the plastic deflection of the contact. In turn, the beam ends are loaded during
the unloading process. For a loading force of F = 0.02 kN, the beam loses
contact with the rigid flat (Fig. 10) in the middle part, and thus only the ends
of the beam are loaded. Finally, for a loading force of F = 0.00 kN the contact
is completely unloaded, and the residual (plastic) deflection of the contact is
observed. The reloading process is very similar to unloading, but a higher force
should be applied to cause the same contact deflections (Figs. 8, 10, and 11).

This model describes, for example, the contact pressure distribution wi-
thin a screw joint. A similar model has been studied previously by researchers
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Fig. 8. A force-displacement characteristic of the contact interface and the
displacement y of the 11th node against the loading force F

Fig. 9. The contact pressure distribution (a) and deflection of the contact (b)
obtained for the initial loading

Fig. 10. The contact pressure distribution (a) and deflection of the contact (b)
obtained for the unloading
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Fig. 11. The contact pressure distribution (a) and deflection of the contact (b)
obtained for the reloading

(Buczkowski and Kleiber, 2006; Marshall et al., 2006), but the issues of unlo-
ading and reloading in the normal direction have not been considered.

3.3. Collision of two elastic bodies

A collision between bodies is a classic issue in dynamics and is a problem
that has been previously studied by many researchers. Interactions between
bodies are usually described with simple models that reflect the restitution co-
efficient, but a collision is a far more sophisticated process. The kinetic energy
of bodies can be dissipated by any of the following phenomena: plastic de-
flection of contact, plastic deformation of bodies, hysteresis of the material
(internal friction), propagation of cracks, and the friction force between the
bodies. Moreover, the impact can excite vibrations of the bodies, which reduce
the restitution coefficient (see e.g. Lifshitz and Kolsky, 1963; Oden and Mar-
tins, 1985; Schiehlen et al., 2006; Wriggers, 2006). These phenomena make the
modelling of a collision difficult.

In this Section, the collision of two elastic bodies made of steel is stu-
died (Young’s modulus E = 2.1 · 1011 Pa, Poisson’s ratio ν = 0.3, density
ρ = 7860 kg/m3). The first body hits the second body with an initial velocity
of Vx = 0.5m/s, and the second body is fixed on one end (Fig. 12). Both bodies
are modelled with FEM constant strain triangular elements (CSTE), the con-
stitutive relation of which is described by Hooke’s law for plane stress. All the
FEM elements are equilateral triangles, and their masses are lumped into the
nodes of the finite element mesh (node masses) (Munjiza, 2004) (Fig. 12). Thus,
all acting forces are applied to the nodes. This approach leads to a number
of second-order ordinary differential equations, which describe the dynamics
of a point mass. This mass modelling technique provides an opportunity to
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model the dynamics of two- and three-dimensional bodies (Stępniewski, 2007).
The second body contains non-linear contact elements that model the contact
zone and contact forces (Fig. 12). The normal forces are described with the
contact model presented here, whereas the friction forces are described with
the Coulomb model (coefficient of friction µ = 0.1).

Fig. 12. The system of two bodies (before being collided) modelled with FEM
constant strain triangular elements and contact elements; me – mass of FEM

element

Each contact element contains twenty contact nodes. The contact nodes
represent the contact of the roughness asperities, and so the contact forces
are applied to the contact nodes (Fig. 13c). Normal and friction forces are
calculated using a special procedure. The first stage of the procedure verifies
if the individual edges of the bodies are close to each other (Fig. 13a). During
this stage, the edges that are close to each other are selected, and the edges that
are far from one another are eliminated. If the nodes of an edge and the nodes
of the contact element are on the opposite sides of the line xmin, then they
are not in contact (Fig. 13a). The selection process is performed for four lines:
xmin, xmax, ymin, ymax, which eliminates most of the edges. The elimination
process is a type of the bounding box method (Munjiza, 2004) and is based
on conditional expressions, which makes the procedure fast to execute. The
edges are then translated and rotated (Munjiza, 2004). Then, the procedure
calculates the contact deflection (penetration) for each contact node (Fig. 13b).
After this, the contact forces are calculated for each contact node (Fig. 13c)
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from the velocities and positions of the contacting edges. Finally, the equivalent
forces are applied to the nodes of the finite element mesh (Figs. 11b,c). This
description is a brief summary of the main idea of the procedure. The modelling
of the contact by contact nodes can be used when a non-uniform mesh is
applied or when two bodies have a contact element.

Fig. 13. Stages of the procedure for calculating contact forces: selection of edges (a),
calculation of contact deflection (b), and calculation of contact and nodal forces (c)

The consecutive stages of the collision process are presented in Fig. 14. The
initial velocity of the first body is Vx(t=0s) = 0.5m/s and Vy(t=0s) = 0.00m/s.
A stage before the initial contact is shown in Fig. 14a. Next, the magnitu-
des of the Hubert-Mises-Hencky effective stress of the elements that are near
the contact zone gradually increases because of the increasing contact for-
ces (Figs. 14a,b,c). The contact forces change the velocities of the first and
second body at the same time (Figs. 14a,b,c). A part of the initial kinetic
energy of the first body is transferred to the second body, after which the
first body rotates (Fig. 14d). The contact zone has been loaded and unloaded
during this period. The collision excites vibrations of the first body and the
second body. The vibrations of the second body are presented in Figs. 14d,e,f,
and Fig. 14g. The kinetic energy of the second body is converted to poten-
tial energy, which causes the second body to deflect (Figs. 14d,e,f). Thus, the
velocity of the second body decreases, whereas the magnitude of the effec-
tive stress increases. The potential energy is then transformed into kinetic
energy (Figs. 14f,g), which reflects the nature of vibrations. The two bodies
are out of contact during this period. The average magnitudes of the velo-
city components of the first body are V x(t=9.4·10−5s) = −1.25 · 10

−3m/s and

V y(t=9.4·10−5s) = 4.75·10
−2m/s. It should be mentioned here that at this stage,



524 R. Kostek

Fig. 14. Consecutive stages of collision presented for the time t = 0 s (a) to
t = 3.850E-4 s (l)
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the y-component of the velocity is larger than the x-component. Finally, the
second body hits the first body (Figs. 12h and i), which changes the velocity of
the first body (Figs. 14h,i,j). The contact zone is reloaded and unloaded during
this second collision. A part of the kinetic energy of the second body is transfer-
red to the first body. After the second collision, the average magnitudes of the
velocity components of the first body are V x(t=3.85·10−4s) = −3.30 · 10

−1m/s

and V y(t=3.85·10−4s) = 5.15 · 10
−2m/s. The vibrations of the bodies after colli-

sions are presented in Figs. 12k,l. Only a part of the kinetic energy is returned
to the first body. The initial energy excited vibrations of the bodies and has
been dissipated in the contact zone. Moreover, the y-component of the velocity
appears as a result of friction phenomena.

The results presented in this Section show the sophisticated nature of the
collision process. Some simplifications used in the modelling of the collisions
between the bodies, such as neglecting the deformations of the bodies or the
application of simplified contact models, can lead to gross errors. The collision
has been simulated and depicted using the proprietary programs FDEM RK
and DEV KM (Kostek and Munjiza, 2009).

The visualization of the presented collision is available on the Internet
http://www.youtube.com/watch?v=ql28X42P5D0.

4. Conclusions

A non-linear model of contact, which is dedicated especially to FEM, MBS
and DEM, has been presented in this article. The model effectively demon-
strates the contact characteristics, and it has a logical structure and a physical
interpretation. The phenomena that occur in the contact are non-linear, which
makes the modelling of contact difficult. This model adequately describes the
following characteristic phenomena:

• the plastic deformation of a virgin contact,

• the hysteresis loop of a preloaded contact,

• the insensibility of the contact hysteresis to the frequency of loading.

The model is effective and accurate and has been validated experimentally.

Contact interfaces introduce plastic deflections, damping, hysteresis and
memory of loading into many mechanical systems, which changes their stiff-
ness, restitution coefficients and dynamical characteristics. Therefore, finding
the relationship between the loading history and the deflection history seems to
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be important. The model presented in this paper can be applied to the model-
ling of mechanical systems in which contact phenomena play a significant role,
and can lead to the improved control of precision machines. Nowadays, a few
microns of contact deflection are a significant factor for precision machining.

Appendix

This pseudo-code (Fig. 15) presents an algorithm which calculates the contact
deflection δ from the contact pressure p. In this case, the contact pressure is
the input signal, whereas the contact deflection is the output signal.

p, δ // input and output signals
pmax, δep // variables which describe the inner state of the contact interface

// for virgin contact they are zero
δe = eep

me ; // elastic deflection
if p > pmax then pmax = p else pmax = pmax
δp = epp

mp
max; // plastic deflection

if (δep/eep−e)
1/mep−e + (δep/eep−p)

1/mep−p > p >

> (δep/eep−e)
1/mep−e

− (δep/eep−p)
1/mep−p

then dδep/dt = 0; δep = δep; // elasto-plastic deflection,
stick period

if (δep/eep−e)
1/mep−e + (δep/eep−p)

1/mep−p < p
then dδep/dt > 0; δep = eep−lp

mep ; // elasto-plastic deformation,
loading curve

if p < (δep/eep−e)
1/mep−e

− (δep/eep−p)
1/mep−p

then dδep/dt < 0; δep = eep−unlp
mep ; // elasto-plastic deformation,

unloading curve
δ = δp + δep + δe // contact deflection – output

signal

Fig. 15. The pseudo-code of the algorithm which calculates the contact deflection
from the time history of contact pressure

If the contact deflection δ is the input signal, then the contact pressure p
is the output signal. An algorithm, which solves this issue, is more complica-
ted than that above presented. This problem can be solved with a iteration
procedure, e.g. false position method, or Newton-Raphson method. A special
procedure dedicated to this issue can be applied as well.

Acknowledgement

I would like to take the opportunity to thank W. Woytek Tworzydlo, Ph.D.,

Director, Research and Engineering, Altair Engineering, Inc. Austin, TX, for the

experimental results.



The modelling of loading, unloading and reloading... 527

References

1. Archard J.F., 1957, Elastic deformation and the laws of friction, Proceedings
of the Royal Society London, Ser. A, 243, 190-205

2. Buczkowski R., Kleiber M., 2006, Elasto-plastic statistical model of stron-
gly anisotropic rough surfaces for finite element 3D-contact analysis, Computer
Methods in Applied Mechanics and Engineering, 195, 37/40, 5141-5161

3. Cichowicz M., Nowicki B., 1984, Contact stiffness and experimental inve-
stigations, XIII Sympozjum Tribologiczne, Częstochowa – Poraj, 316-321

4. Etsion I., Kligerman Y., Kadin Y., 2005, Unloading of an elastic-plastic
loaded spherical contact, International Journal of Solids and Structures, 42,
13, 3716-3729

5. Goerke D., Willner K., 2008, Normal contact of fractal surfaces-
Experimental and numerical investigations, Wear, 264, 7/8, 589-598

6. Greenwood J.A., Williamson J.B.P., 1966, The contact of nominally flat
surfaces, Proceedings of the Royal Society London, Ser. A, 295, 300-319

7. Grudziński K., Jaroszewicz W., 2002, Posadowienie maszyn i urządzeń na
podkładkach fundamentowych odlewanych z tworzywa EPY, ZAPOL

8. Grudziński K., Kostek R., 2007, An analysis of nonlinear normal con-
tact microvibrations excited by a harmonic force, Nonlinear Dynamics, 50, 4,
809-815

9. Gutowski P., Skrodzewicz J., 2001, Experimental investigations of the pla-
nar contact joints under dynamic loads, 5th Conference on Experimental Me-
thods in Designing and Maintenance Machines, Wrocław University of Techno-
logy, Szklarska Poręba, 1, 341-352

10. Hess D.P., Soom A., 1991, Normal vibrations and friction under harmonic
loads: Part II – Rough planar contacts, Transactions of the ASME, Journal of
Tribology, 113, 1, 87-92

11. Hunt K.H., Crossley F.R.E., 1975, Coefficient of restitution interpreted
as damping in vibroimpact, Transactions of the ASME, Journal of Applied
Mechanics, 42, 2, 440-445

12. Jamari J., Schipper D.J., 2007, Plastic deformation and contact area of an
elastic-plastic contact of ellipsoid bodies after unloading, Tribology Internatio-
nal, 40, 8, 1311-1318

13. Jones R.E., 2004, Models for contact loading and unloading of a rough surface,
International Journal of Engineering Science, 42, 17/18, 1931-1947

14. Kadin Y., Kligerman Y., Etsion I., 2006, Unloading an elastic-plastic con-
tact of rough surfaces, Journal of Mechanics and Physics of Solids, 54, 12,
2652-2674



528 R. Kostek

15. Kim J.Y., Baltazar A., Rokhlin S.I., 2004, Ultrasonic assessment of rough
surface contact between solids from elastoplastic loading-unloading hysteresis
cycle, Journal of the Mechanics and Physics of Solids, 52, 8, 1911-1934

16. Kostek R., 2005, Investigation of the normal contact microvibrations and their
influence on the friction force reduction within the dynamical systems, Ph.D.
Thesis, Technical University of Szczecin

17. Kostek R., Konowalski K., 2008, A model of contact between rough surfa-
ces, Tribologia, 39, 5, 95-105

18. Kostek R., Munjiza A., 2009, Visualization of results received with the di-
screte element method, Computational Methods in Science and Technology, 15,
2, 151-160

19. Kruggel-Emden H., Wirtz S., Scherer V., 2008, A study on tangen-
tial force laws applicable to the discrete element method (DEM) for materials
with visco-elastic or plastic behaviour, Chemical Engineering Science, 63, 6,
1523-1541

20. Li L.-Y., Gu J.-Z., 2009, An analytical solution for the unloading in sphe-
rical indentation of elastic-plastic solids, International Journal of Engineering
Science, 47, 3, 452-462

21. Lifshitz J.M., Kolsky K., 1963, Some experiments on anelastic rebound,
Journal of the Mechanics and Physics of Solids, 12, 1, 35-43

22. Marshall M.B., Lewis R., Dwyer-Joyce R.S., 2006, Characterisation of
contact pressure distribution in bolted joints, Strain, 42, 1, 31-43

23. Martins J., Oden J., Simoes F., 1990, A study of static and kinetic friction,
International Journal of Engineering Science, 28, 1, 29-92

24. Michalczyk J., 2008, Phenomenon of force impulse restitution in collision
modelling, Journal of Theoretical and Applied Mechanics, 46, 4, 897-908

25. Mikic B.B., 1971, Analytical studies of contact of nominally flat surfaces effect
of previous loading, Trans. ASME, Journal of Lubrification Technology, 20,
451-456

26. Mikic B.B., 1974, Thermal contact conductance; Theoretical considerations,
International Journal of Heat and Mass Transfer, 17, 2, 205-214

27. Munjiza A., 2004, The Combined Finite-Discrete Element Method, JohnWiley
& Sons Ltd.

28. Nardin A., Zavarise G., Schrefler B.A., 2003, Modelling of cutting tools-
soil interactions – Part I: Contact behaviour, Computational Mechanics, 31,
3/4, 327-339

29. Nicola L., Bower A.F., Kim K.-S., Needleman A., Van der Giessen
E., 2007, Surface versus bulk nucleation of dislocations during contact, Journal
of the Mechanics and Physics of Solids, 55, 6, 1120-1144



The modelling of loading, unloading and reloading... 529

30. Oden J.T., Martins J.A.C., 1985, Models and computational methods for
dynamics friction phenomena, Computer Methods in Applied Mechanics and
Engineering, 52, 527-634

31. Pei L., Hyun S., Molinari J.F., Robbins M.O., 2005, Finite element model-
ling of elasto-plastic contact between rough surfaces, Journal of the Mechanics
and Physics of Solids, 53, 11, 2385-2409

32. Pombo J.C., Ambrósio J.A.C., 2008, Application of a wheel-rail contact
model to railway dynamics in small radius curved tracks, Multibody System
Dynamics, 19, 1/2, 91-114

33. Pullen J., Williamson J.B.P., 1972, On the plastic contact of rough surfa-
ces, Proceedings of the Royal Society London, Ser. A, 327, 159-173

34. Schiehlen W., Seifried R., Eberhard P., 2006, Elastoplastic phenomena
in multibody impact dynamics, Computer Methods in Applied Mechanics and
Engineering, 195, 50/51, 6874-6890

35. Skrodzewicz J., 2003, Influence of the lubricating agent on the properties of
contact joints, Journal of Theoretical and Applied Mechanics, 41, 1, 107-118

36. Stępniewski A., 2007, D’Alembert’s supplemented principle and Newton’s five
supplemented laws, International Journal of Pure and Applied Mathematics,
38, 3, 415-424

37. Stolarski T.A., 2000, Tribology in Machine Design, Elsevier

38. Tworzydlo W.W., Cecot W., Oden J.T., Yew C.H., 1998, Computatio-
nal micro- and macroscopic models of contact and friction: formulation, appro-
ach and applications, Wear, 220, 2, 113-140

39. Vu-Quoc L., Zhang X., 1999, An elastoplastic contact force-displacement
model in the normal direction: displacement-driven version, Proceedings –
Royal Society. Mathematical, Physical and Engineering Sciences, 455, 1991,
4013-4044

40. Woo K.L., Thomas T.R., 1980, Contact of rough surfaces: a review of expe-
rimental work, Wear, 58, 2, 331-340

41. Wriggers P., 2006, Computational Contact Mechanics, 2nd Ed., Springer

Modelowanie charakterystyki kontaktu uzyskanej podczas obciążania

odciążania oraz powtórnego obciążania

Streszczenie

W artykule przedstawiono nieliniowy matematyczny model opisujący histerezę
suchego kontaktu ciał chropowatych, który został obciążony w kierunku normalnym.
Kilka charakterystycznych zjawisk pojawia się podczas pierwszego obciążania, od-
ciążania i powtórnego obciążania. Kontakt ciał jest najbardziej podatny podczas
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pierwszego obciążania, a jego plastyczne odkształcenie jest znaczne. Natomiast cha-
rakterystyka uzyskana podczas odciążania jest sztywniejsza, a odkształcenia mają
głównie charakter sprężysty. Podobną charakterystykę uzyskuje się podczas ponow-
nego obciążania, tak więc obserwowana jest pewna pętla histerezy. Zweryfikowany
doświadczalnie model kontaktu, opisujący wyżej wymienione nieliniowe zjawiska, zo-
stał przedstawiony w artykule. Model ten został opracowany z myślą o: metodzie ele-
mentów skończonych, metodzie elementów dyskretnych i układach wieloczłonowych.
W praktyce obliczeniowej potrzebne są dokładne modele kontaktu, które nie wyma-
gają jednak kosztownych obliczeń. Prezentację tego modelu wzbogacono przykładami
obliczeniowymi.
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