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A method is proposed for determining dimensionless characteristics of an externally
pressurized circular thrust bearing. An essential novelty in the present model as com-
pared with many existing theoretical models consists in the deformability of the porous
pad being taken into consideration. The unknowns of the present model are: the pressure
distribution in the clearance and the thickness of the lubricating film (deflection of the
porous pad). These quantities are determined by solving by method of successive approxi-
mations the set of governing equations. For the zero approximation it is assumed that the
porous material is indeformable, which enables us to obtain a solution for the zero approxi-
mation to the pressure distribution. For the first and subsequent approximations the
porous pad is treated as a thin elastic plate loaded in an axially symmetric manner by
pressure which has been found in the preceding approximation. The equation of ben-
ding of the porous plate is integrated in an analytic manner in every approximation. The
equation governing the pressure distribution is integrated numerically by using the method
of orthogonal collocation. A detailed algorithm is given for the determination of the
dimensionless load capacity and the dimensionless mass flow rate.

1. Introduction

Aerostatic thrust bearings are commonly used in industry, since they have exceedingly
low frictional coefficients, even at slow speeds, and they are readily operated from the
factory air-line. Conventional capillary or orifice-compensated bearings have, however,
low load capacities for the high supply pressures and feed rates required, and their opera-
ting range is often limited by the pneumatic instability of the air film. These disadvan-
tages may be overcome by using a porous pad in place of the combination of a solid pad
and compensating elements. Thus, the aerostatic porous bearing, also has a stiffer film,
ensuring greater positionala accuracy, and a smaller tendency to fail throughblockage.

Porous thrust bearings have been investigated by many authors. A review of the li-
terature pertaining to the theory of such bearings was given in paper [1]. Almost all the
research workers made the assumption that in bearing clearance exists a uniform gas film,
as this drastically simplifies the solution of the Reynolds equation. This implies that the
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elastic strength of the porous material is such that deformation that does occur is negli-
gible. In aerostatic thrust bearings, film thicknesses are small of the order of 12 um and
hence any apparently negligible deflection of the porous media may be of the same order
of magnitude as the film thickness. The deflection of the porous pad depends upon its
flexural rigidity. For certain materials the elastic strength of the pad will be insufficient
to withstand the loading by pressure difference across it. Consequently, a diverging film
will be produced. This effect was observed by Taylor & Lewis [2] in experiments with
porous carbon as the media. The divergent film reduces the film pressure and hence the
load-carrying capacity of the bearing.

The deformation of porous material, as yet, was taken into account only in Taylor &
Lewis [2-3] and in the paper [4]. In papers [2 - 3] essential part of proposed model is
determination the two-dimensional flow in porous material. However, in most applica-
tions the wall thickness of the pad is small compared to its radius. Thus, the gas flow in
the bearing matrix is predominantly axial and it is immaterial whether the porous pad is -
sealed at the sides or open to the atmosphere. This assumption in essential way simplifies
the mathematical model of the bearing. In paper [4] the method for determining characte-
ristics of externally pressurized circular thrust bearings with deformable porous material
with the mentioned above assumption on axial flow for incompressible lubricant was
proposed.

The purpose of this paper is to present the mathematical model for the performance
characteristics of the aerostatic porous thrust bearing with deformable porous material
and compressible lubricant. We take into account also a slip flow at the boundary between
the bearing clearance and the porous material. Opposite from papers [2 - 3] in this paper
the radial flow in the porous material is neglected.

2. Assumptions

Figure I represents the flow model and coordinate system in the circular porous
thrust bearing. We assume that known values are: p, — supply pressure, p, ——amblent
pressure, H — thickness of porous material, 2¢ — diameter of porous pad.

The assumptions made for this analysis are as follows:

a) The lubricant is a compressible viscous fluid with equation of state for perfect gas:
p = 0T, M
where: p — pressure, o —density of gas, # — gas constant, T — temperature.
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Fig. 1. Configuration of porous thrust bearing
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b) The fluid flow through the bearing is isothermal and steady.
¢) The flow in porous material is viscous and Darcy’s law applies:

q= K gradp )
N 3

where: g — velocity in porous material, k& — permeability coefficient, u — viscosity of
fluid.

d) The porous material is deformable. The thickness A of the pad of bearing is small
as compared with the diameter 2a; the deformability of the material may be described
by the theory of thin plates, the deflection of which is discribed by the equation:

1(l.a’_ld dw _ 0
T {’ Wl?Tr(’W”} =N @)

where: w — deflection of porous pad, Q — transverse loading, N — flexure rigidity of
porous plate.

e) Since H < a, the radial flow in the porous material is neglected, The Darcy’s equation
(2) is in this way reduced to the form:

g = ——- - 4)

f) The tangential stresses in lubricating layer penetrates on a distance § in the bulk of
porous material [5-6]. Therefore the condition that there is no sliding was proposed
to apply but on surface inside porous material, not its nominal boundary.

g) The usual simplifications of the classical lubrication theory can be used for the
bearing clearance, it being assumed that there is only radial flow governed by reduced
equations of viscous compressible flow in the form:

LA d(ev,)

T hr (r er)‘i‘**a*; ~ =0, &)
dp v,
V= ©

where: v, — radial velocity in bearing clearance, v, — axial velocity in bearing clearance.

3. Governing equations and method of solution

Flow in the porous material is governed by the stedy-state mass continuity equation
(axisymmetric case):

d
e (egz) = 0. 7

Substitution of Darcy’s law (4) and equation of state (1) into equation (7), yields

d | kp dp)_ 8
E(Tm'dz =0. ®
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2
By noting that 2p%~ = d!/)z—, it can be shown, that
dp* e
-vzjzftz(‘—w—i-o B lj ’ (9)
Integrating equation (6) twice respect to z, applying the boudary conditions in the form:
2, = 0 for z=0, (10)
v, =0 for z=c—w+9d, (11
we have:
_ lemwadf dp 2 2 "
U= T T e (c—w+ 0)* c—w+9d | (12)

Substitution of equation (12) to (5) and integration in the film region, yields:

3
- (C_ v (S) : '{/ (Q’“Zf‘) = - (sz)lz=C—w+d . (13)

T e
Because gv, = pq, for z = c—w+4, from (4) and (9) we have governing equation for
pressure in bearing clearance:

4P 1 dPr AP AgP? 04
"dR* "R dR ~ (I—aW+A4P T (l—aWw+43
where:
F p Ds 12ka® -
.R=— = - ;. = g = ——— ]
a > P pa > P.s pa ] 40 H » ( 5)
a, = ~a—, 4 = i
c ¢

After introducing dimensjonless values (15) into (3) and puting Q = p,—p, we have
governing equation for deflection of porous plate:

1 d d|l 1 d dw
R IR {R‘df[ﬁ‘ iR (RTR‘ )” = S P), (19
where: .

2
Sp= ot a7

is dimensionless parameter of stiffness.
In solution of equation (14), should satisfy the following boundary conditions:

dp
P=1 for R=1, (19)

While, in solution of equation (16), W — should satisfy the following boundary condi-
tions:

W =0
aw _ i for R=1, (20)
dR
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which are conditions for clamped cdge of plate. It is also required that:

aw W

_ﬁ,-_—d}‘T_O for R =0, @2n

which results from the symmetry of the problem.

The unknowns of the present model are: the pressure distribution — 2 in the cle-
arance, and deflection — W of the porous pad (the thickness of the lubricating film).
These quantities are determined by solving by method of successive apprixomations the
set of equations (14) and (16) with the boundary conditions (18), (19), (20) and (21).
For the zero approximation it is assumed that the porous material is indeformable,
W© = 0, which enables to obtain the zero approximation to the pressure distribution
P®, by solution of equation (14) with # = 0. For the first and subsequent approxi-
mations the porous pad is treated as a thin elastic plate loaded in an axially symmetric
manner by pressure which has been found in the preceeding approximations. The equa-
tion governing the pressure distribution (14) is integrated numerically in every approxi-
mation by means of orthogonal collocation [7]. In this way solution for P is given in
polynomial form. The equation of bending of the plate (16) is integrated in analytic
manner in every approximation, because it is a linear equation with load described by
polynomials. :

Solutions to the foregoing system of equations are in the form of pressure-squared
distributions through the bearing clearance. The load capacity is simply found as the
sum of forces created by the fouilm boundary pressure acting normally to the bearing area
or

a

2n a
s= [ [(p-pdrdrd® =2z | (p—p)rdr. (22)
0 o 0
In dimensionless form this becomes:

— S —_—
- naz (ps'—pa) B

1
Psz_l f(P—l)Ra’R. (23)
0

The dimensionless load capacity is seen to be the ration of the actual load to the maximum
load possible. .

The mass flow rate required by the film may be calculated from the gas velocity cros-
sing the film boundary:

2% a

m = ~f f(@q,)|z=cra'rd@. (24)
o 0

Substitution of Darcy’s law (4) and the equation of state (1) yields

_ mk - 3p2)
m__“ym"a‘ (“52‘

rdr. (25)

Z=cC
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In dimensionless form the flow becomes:

_ 2mpuRTH -2 ar?
T wd(pi-pdk T Ae(PP=1) dR ey

(26)

4. Results

The convergence of the described above method of successive approximations is sa-
tisfactory. In almost all calculated cases with number of iterations less than 10, results
are stable for the pressure distribution £ and the deflection of porous plate W. This good
convergence is illustrated in Tables 1 and 2.

Table 1. Load capacity S and mass flow rate M for succesive approximation i;
Py =9, Ay =10, a, = 100, S, = 0.05, 4 = 0.01

i A M
1 0.6237747 ~ 68.12282
2 0.6431721 69.77471
3 0.6407426 69.54882
4 0.6410518 69.57369
5 0.6410124 69.57052
6 0.6410168 69.57092
7 0.6410169 69.57087
8 0.6410168 69.57088

Table 2. Load capacity S and mass flow rate M for succecesive approximation /;
Py =9, Ay =90, a. = 100, S, = 0.05, 4 = 0.1

i S M
1 0.8452509 140.534)
2 0.8427989 140.1449
3 0.8428321 140.1500
4 0.8428317 140.1499
5 0.8428317 140.1499
6 0.8428317 ©140.1499
7 0.8428317 140.1499

In the proposed mathematical model the dimensionless characteristics such as the load
capacity S and the mass flow rate M are functions of the following dimensionless para-
meters: Aq, Py, Sy, a. and A. The variation in the load capacity S and the mass flow
rate M with the bearing number A, for various ration of radius pad to bearing clea-
rance a. are shown in Figs. 2 and 4. It is seen from these figures that deformation of

'
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porous material can have significant influence on nondimensional load capacity and mass
flow rate. This influence increases with decrease of parameter /,, whereas this influence
increases with increase of parameter a.. While, Figs 3 and 5 show the variation in the
load capacity S and the mass flow rate A with the bearing number A, for various di-
mensionless depths of penetration of shear 4. It is seen from these figures that penetra-
tion of shear inside porous material (the slip flow on the boundary of porous region and
of fluid region) can have significant influence on load capacity and mass flow rate. The
Table 3 shows the variation in the load capacity and mass flow rate with dimensionless
parameter of stiffness of porous pad S.

Table 3. Variation in the load capacity .§ and mass flow rate M with the dimension-
less parameter of stiffness S ; 4o =10, P =9, 4 = 0.01, « = 100.

Ss S M
0.0 0.623774 68.123
0.002 0.624556 68.187
0.004 0.625329 68.251
0.006 0.626093 68.315
0.008 0.626849 68.378
0.01 0.627597 68.439
0.02 0.631218 68.742
0.03 0.634653 68.031
0.04 0.637915 69.307
0.05 0.641017 69.571
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Pesome

TEOPETHYECKASA MOJEJL IMJIMHOPUYECKOTO ITONIMITHUKA-TIOOIIATHHUKA
BHEIUHE IIHTAEMOIrO INIPM YUETE OEDOPMAIIMHM IIOPHMCTOIO MATEPHAJIA

B pabore mpepcraBnieH cnocof onpeseneHHa 0e3pasMePHBIX XaPAKTEPUCTHK IUIOCKOTO LMIHHADH-
YECKOTO MOAIVITHUKA, IXTAEMOr0 BHELLIHE. CyINecTBeHHON HOBOCTBIO B MOJENIH, X0 CPABHEHWIO C MHO-
THME YIKC CYIUECTBYIOLIMMK TEOPETHIECKIMI MOJENSIMU ABIIIETCA YUET fAechopMaLKy IOPUCTOl BKANKY.

B npenaraemoit MOReN I HEUBBECTHEIMU JIJIST OTPCAENIEHHS SIBIISIIOTCA | PASTIOMEHHME JABIEHUA B e~
JIE TTOFUIMIMHMKA ¥ (OYHKIMA TONIIMHAL CMA3LIBAKOLIETO CNIOsT (MPOrHd NOpHCTOR BIIAAKH). DTH Benn-
UMHBI ONMPENENAOTCA METOAOM OUEPENHBIX NPUOMDKeHuH. B HymeBom NPUOIMIKEHMH IpeIIaraercs,
YTO MAaTEPHANT MOPUCThIT HeRedopMUPYEMbIH, UTO MO3BONSST IOJNYUHTE PEUIEHHE PACTpPEENCHUsI JaB-
JIEBHUA AJIS 3TOro NPHONEOKEHUSA.

B nepBom B CHENYIOIUMX NPROMHKEHMAX IOPUCTAS BKJIAJKA TPAKTYETCS KAl TOHKAA 3JIACTHUHAA
[IIATKA ¢ OCEBOK CHMMETPHUECKON HATPY3KOM JMABNEHMA, ONPEAENIEHHOrO paHeée B HOCIEAHUM TIPHOIM-~
JKEHHH. YP2BHCHHE Nporufa IIMTKY HHTEIPHPYETCS AHANMTHUECKM B Ka)KIOoM NpuOInKeHuH. Ypap-
HeHVWE U1 pacupesesieHHs JaBJeHid B KOKJOM IPUOHIKEHMH HHTErPYETCSI YACIIEHHO METOJOM OpTo-
T'OHANHOH KOJIIOKAHM. )

TpepcraEnen OAPOGHLIA aNTOPUTM ONpeHecHus: Oe3pasMepHOR Hecylel cuibl M Ge3pasmepHoi
CKOPOCTH TYOTOKA.

Streszczenie

TEORETYCZNY MODEL POROWATEGO ZEWNETRZNIE ZASILANEGO

CYLINDRYCZNEGO GAZOWEGO LOZYSKA WZDELUZNEGO Z ODKSZTAECALNYM
MATERTALEM POROWATYM

W pracy przedstaw:a sig sposob wyznaczania bezwymiarowych charakterystyk cylindrycznego lo-
zyska wzdluznego zasilanego zewnetrznie. Istotng nowoscia modelu, w poréwnaniu z wieloma istnieja-
cymi modelami teoretycznymi jest uwzglednienie odksztalcalnoéci porowatej wkladki. W proponowanym
modelu niewiadomymi sa: rozklad ciénienia w szczelinie lozyska oraz grubo$é filmu smarujacego ugiecie
wkladki porowatej. Wielkodci te wyznacza sie poprzez rozwigzanie ukladu rownan rzadzacych metoda
kolejnych przyblizen. W przyblizeniu zerowym zaklada sig, ze material porowaty jest nieodksztalcalny,
co pozwala na uzyskanie zerowego przyblizenia dla rozkladu ciénienia, W pierwszym i nastepnych przy-
blizeniach wkladke porowata traktuje sie jako cienka sprezysta plyte obciazong osiowosymetrycznie cis-
nieniem wyznaczonym w poprzednim przyblizeniu, Réwnania zginania plyty catkuje sie analitycznie
w kazdym przyblizeniu. Podaje sie algorytm wyznaczania bezwymiarowej sity noénej oraz bezwymiarowej
predkoéci przeplywu gazi przez lozysko.

Praca wplyngla do Redakeji dnia 20 stycznia 1987 roku.



