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Similarity solutions are obtained for an adiabatic flow behind a cylindri-
cal shock wave propagating in a rotational axisymmetric flow of a perfect
gas, in which initial velocity and density are functions of the distance
from the axis of symmetry. The initial medium is considered to have a
variable azimuthal velocity component in addition to the variable axial
velocity. Initial velocities and density are assumed to obey power laws.
Distributions of the fluid velocities, density, pressure and vorticity com-
ponents are obtained in the flow-field behind the shock front. Effects of
variable initial velocities and density and the variation of the shock-Mach
number are investigated.
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1. Introduction

The formulation of self-similar problems and examples describing adiabatic
motion of non-rotating gas models of stars, are considered by Sedov (1959),
Zel’dovich and Raizer (1967), Lee and Chen (1968) and Summers (1975). Ro-
tation of stars significantly affects the process taking place in their outer layers.
Therefore, question connected with the explosions in rotating gas atmospheres
are of definite astrophysical interest. Chaturani (1970) studied the propagation
of cylindrical shock waves through a gas having solid body rotation, and obta-
ined the solutions by a similarity method adopted by Sakurai (1956). Nath et
al. (1991) obtained the similarity solutions for the flow behind spherical shock
waves propagating in a non-uniform rotating interplanetary atmosphere with
increasing energy. Recently, Vishwakarma and Vishwakarma (2007) and Vish-
wakarma et al. (2007) obtained the similarity solution for magnetogasdynamic
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cylindrical shock waves propagating in a rotating medium which is a perfect
gas with variable density or a non-ideal gas with constant density. In all of
the works mentioned above, the ambient medium is supposed to have only one
component of velocity, that is the azimuthal component.

In the present work, we obtained the self-similar solutions for the flow be-
hind a cylindrical shock wave propagating in a rotational axisymmetric perfect
gas flow which has a variable azimuthal fluid velocity together with a varia-
ble axial fluid velocity (Levin and Skopina, 2004). The shock-Mach number
is not infinite, but has a finite value. The fluid velocities and the density in
the ambient medium are assumed to obey power laws. It is expected that such
fluid velocity and density may occur in the atmosphere of rotating planets and
stars.

Distribution of the velocities, density, pressure and vorticity components
in the flow-field behind the shock are obtained. The effects of change in the
index of variation of initial velocity of the medium, the index of variation of the
initial density and the variation of the shock-Mack number are investigated.

2. Basic equations and boundary conditions

The fundamental equations governing an unsteady adiabatic axisymmetric
rotational flow of a perfect gas, in which heat conduction and viscous stress
are negligible, are (Levin and Skopina, 2004)
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where p, p are density and pressure; u, v and w are the radial, azimuthal and

axial components of the fluid velocity g in the cylindrical coordinates (r,6, z);
t is time and + is the ratio of the specific heats of the gas. Also

v=rK (2.2)

where K is the angular velocity of the medium at the radial distance r from
the axis of symmetry. In this case, the vorticity vector ¢ = 1/2 Curl g has
the components
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The above system of equations should be supplemented with an equation
of state. Perfect gas behaviour of the medium is assumed, so that

p
p=1pT Un =C,T =) (2.4)
where [ is the gas constant, T — temperature, U,, — internal energy per unit
mass of the gas and C, = I'/(y — 1) is the specific heat at constant volume.
We assume that a cylindrical shock wave is propagating outwards from
the axis of symmetry in a perfect gas with variable density, which has zero
radial velocity, variable azimuthal velocity and variable axial velocity. Jump
conductions across the moving shock are

ulz(l—ﬁ)R V1 = Vo w1 = Wy
. (2.5)
p1 = % p1 =po+ (1 — B)poR?

where R = dR/dt denotes the shock velocity, R is the shock radius and
subscripts 0 and 1 refer to the values just ahead and just behind the shock,
respectively. The quantity [ is given by the equation

_’y—l—i—2]\4_2

p= o (2.6)

where M, the shock-Mach number referred to the speed of sound in the perfect

gas \/vpo/po, is given by _
R
\/@
PO
Following Levin and Skopina (2004), we obtain the jump conditions for the
components of the vorticity vector across the shock as

M= (2.7)

1 1
BC@O Czl — B

Ahead of the shock, the velocity components and the density are assumed
to vary as

Co, = Czo (2.8)

UQZO ?)():BRb

2.9
wo = AR PO = DRd ( )

where a, b, d, A, B, D are constants.
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Therefore, from (2.1)

B*D 2b+d

= 2b+d 2.1
% 1 d +d>0 (2.10)

Po
Ahead of the shock, the components of the vorticity vector, therefore, vary
as

B aAR1
2

(b+1)BRV!

CT’O - 0 C@o - 2

Cop = (2.11)

From equations (2.2) and (2.9), we find that the initial angular velocity
varies as

Ko = BR"? (2.12)

It decreases as the distance from the axis increases, if b —1 < 0.

The total energy E of the flow-field behind the shock is not constant, but
assumed to be time dependent and varying as (Rogers, 1958; Freeman, 1968;
Director and Dabora, 1977)

E = Eyt* s>0 (2.13)

where Ey and s are constants. The positive values of s correspond to the class
in which the total energy increases with time. This increase can be achieved
by the pressure exerted on the fluid by an expanding surface (a contact surface
or a piston). This surface may be, physically, the surface of a stellar corona or
condensed explosives or a diaphragm containing a very high-pressure driver
gas. By sudden expansion of the stellar corona or the detonation products or
the driver gas into the ambient gas, a shock wave is produced in the ambient
gas. The shocked gas is separated from this expanding surface, which is a
contact discontinuity. This contact surface acts as a ’piston’ for the shock
wave. Thus the flow is headed by a shock front and has an expanding surface
as the inner boundary.

3. Self-similarity transformations

We introduce the following similarity transformations to reduce the equations
of motion into ordinary differential equations (Vishwakarma and Yadav, 2003)

u = RU(n) v=RV(n) w = RW () (3.1)
p = pog(n) p = pok?P(n) |
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where U, V, W, g and P are functions of the non-dimensional variable 7 only,
and

”
= — 3.2
=% (32)
The total energy of the perfect gas behind the shock is given by
Lo 2 2 p s
E =27 bp(u + 07 +w”) + _err:Eot (3.3)

Rp

where R, is the radius of the inner expanding surface. Applying similarity
transformations (3.1) to (3.2) in relation (3.3), we find that the motion of the
shock front is given by the equation

E(]ts 2 152
— =R°R 3.4
5] PO (3.4)

where

1
B I N
J_/bMU-+V4JV)+7_1Mdn (3.5)
Mp

np being the value of n at the inner expanding surface.
For similarity solutions, the shock-Mach number M (which occurs in shock
conditions (3.11)) must be a constant parameter. Therefore, from (2.7)

R=QR’ (3.6)
where @ is a constant. From equation (3.6), on integration
R =[(1-0)Q]T7tTe (3.7)

Also, from equation (3.4), we get

n_ (%)—(ﬁ)—t— (3.8)

Comparing equations (3.7) and (3.8), we get
2b+d=s(1—b)—2 (3.9)

From equations (2.9), (2.10), (3.6) and (2.7), we obtain

B 1 J2b+d
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Then, shock conditions (2.5) are transformed into

1 /2b+d A
N 1 ’ v MY Y Q (3.11)
9(1)23 P(l):y_z\lﬂ+1—ﬁ

where a = b.

The condition to be satisfied at the inner boundary surface is that the
velocity of the fluid is equal to the velocity of inner boundary itself. This
kinematic condition from (3.1) and (3.2) can be written as

Unp) =1p (3.12)

Using transformations (3.1), equations of motion (2.1) take the form
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where the prime denotes differentiation with respect to 7. From equations
(3.13), we have

1 vig(n —U) PyU
U = - — by — U)Ug — Pd — 2bP
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Also, applying the similarity transformations on equations (2.3), we obtain the
non-dimensional components of the vorticity vector

_ CT _ Co /. — Cz
= — 0 —_— z — =
R/R R/R

T

" R/R
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in the flow-field behind the shock as

1 oW V/1 b4+U/y
(, = (g = —=—" 0= —(=
0 o 2n-U 2(77+ 77—U)

(3.15)

Ordinary differential equations (3.14) with boundary conditions (3.11) can
now be numerically integrated to obtain the solution for the flow behind the
shock surface.

4. Results and discussion

Similarity considerations lead to the following relations among the constants
a, b, d and s

a=b 2% +d=s(1—b)—2 2d+d >0 (4.1)
Then the following three cases may exist.
(i) The increasing velocity shock (b > 0),
(ii) the constant velocity shock (b =0), and
(iii) the decreasing velocity shock (b < 0).

Therefore, for the purpose of numerical calculations, we choose the follo-
wing three sets of values of the constants

(i) b=0.5, d=—0.5, s =5;
(i) b=0, d=0.5, s=5/2;
(ili) b=—0.5, d=1.5, s="5/3.

The solutions to differential equations (3.14) with boundary conditions
(3.11) depend upon five constant parameters v, M, A/Q, b and d. Numeri-
cal integration of these differential equations is performed to obtain the non-
dimensional variables U, V, W, g, P, by using the Runge-Kutta method of
the order four, for v = 1.4; M? =5, 10; A/Q = 0.1; b = 0.5, 0, —0.5 and
d=-0.5, 0.5, 1.5.

The profiles of U, V, W, g and P are shown in Figs. 1 to 5. Also, the
non-zero and non-dimensional components £y and £, of the vorticity vector
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Fig. 1. Variation of the non-dimensional radial velocity U in the flow-field behind
the shock front
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Fig. 2. Variation of the non-dimensional azimuthal velocity V in the flow-field
behind the shock front

0.30
w
0.25

0.05F

0.85 0.90 0.95 n 1.00

Fig. 3. Variation of the non-dimensional axial velocity W in the flow-field behind
the shock front
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Fig. 4. Variation of the non-dimensional density ¢ in the flow-field behind the shock
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Fig. 5. Variation of the non-dimensional pressure P in the flow-field behind the

shock front

Fig. 6. Variation of the non-dimensional azimuthal component of vorticity ¢y in the
flow-field behind the shock front
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Fig. 7. Variation of the non-dimensional axial component of vorticity £, in the
flow-field behind the shock front

are plotted in Figs. 6 and 7, respectively. Values of 7, (the position of the inner
expanding surface) are shown in table 1 for different cases.

Figures 1 and 2 show that the non-dimensional radial velocity U incre-
ases from the shock front to the inner expanding surface, whereas the non-
dimensional azimuthal velocity V decreases. Figure 3 shows that the non-
dimensional axial velocity W increases, remains constant or decreases from
the shock front to the inner surface according as b < 0, b =0 or b > 0, i.e.
according as the shock velocity (or initial azimuthal fluid velocity) is decre-
asing remaining constant or increasing with the shock radius. Figures 4 and 5
show that the non-dimensional density ¢ and pressure P increase or decrease
from the shock front to the inner expanding surface according as b > 0 or
b < 0 (i.e. according as the shock velocity is increasing or decreasing with the
shock radius). Figure 6 shows that the non-dimensional azimuthal component
of vorticity ¢y increases behind the shock front and tends to infinity at the
inner surface, remains zero or decreases behind the shock front and tends to
negative infinity at the inner surface according as b < 0, b =0 or b > 0. Figu-
re 7 shows that the non-dimensional axial component of vorticity ¢, increases
behind the shock front and tends to infinity within a narrow region at the
inner surface.

From Table 1 and Figs. 1 to 7, it is found that the effects of the increase
in the value of M? are

e toincrease 7, i.e. to decrease the distance of the inner expanding surface
from the shock front. Physically, it means that the gas behind the shock
is compressed, i.e. the shock strength is increased (see Table 1);
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e to increase the radial velocity U and to decrease the azimuthal veloci-
ty V at any point in the flow-field behind the shock (see Figs. 1 and 2);

e to decrease (or increase) the axial velocity W when the index of variation
of the initial azimuthal velocity b has a positive (or negative) value (see
Fig. 3); and

e to increase density ¢ and pressure P when b is positive (see Figs.4
and 5).

Table 1. Position of the inner expanding surface 7, for v =14, A/Q = 0.1
and various values of M2, b and d

(e b [ d | nm |
05 | —0.5 | 0.8676
5 [0 | 05 |08538
~05 | 1.5 | 0.8419
05 | —0.5 | 0.9018
10 [0 | 05 | 08917
~05 | 1.5 | 0.8831

The effects of the increase in the value of the index of variation of the
initial azimuthal velocity b of the medium are
e to decrease the distance of the inner expanding surface from the shock
front, i.e. to increase the shock strength (see Table 1);

e to increase the radial velocity U and to decrease the azimuthal velo-
city V and axial velocity W at any point in the flow-field behind the
shock (see Figs. 1 to 3);

e to increase the density ¢ and the pressure P at any point in the flow-field
behind the shock (see Figs. 4 and 5);

e to decrease fy and to increase ¢, behind the shock (see Figs. 6 and 7);
and

e to increase the shock velocity (see equation (3.16)).

The effects of an increase in the value of the index of variation of the
density d are
e to increase the distance of the inner expanding surface from the shock
front (see Table 1);

e to decrease the radial velocity U and to increase the azimuthal velocity V'
and the axial velocity W at any point in the flow-field behind the shock
front (see Figs. 1 to 3);
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e to decrease the density ¢ and pressure P at any point in the flow-field

10.

11.

12.

13.

behind the shock (see Figs. 4 and 5); and

to increase the vorticity components ¢y and to decrease ¢, (see Figs.6
and 7).
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Rozwigzania automorficzne dla cylindrycznej fali uderzeniowej przy
rotacyjnym osiowo-symetrycznym przepltywie gazu

Streszczenie

W pracy przedstawiono rozwiazania automorficzne otrzymane dla adiabatycznego
przeplywu czynnika za cylindryczna fala uderzeniowsa rozchodzaca sie w rotacyjnym,
osiowo-symetrycznym oplywie gazu doskonaltego, ktérego predkosé poczatkowa oraz
gestosé sa funkcjami odleglodci od osi symetrii. W stanie poczatkowym, analizowa-
ny czynnik posiada oprocz zmiennej sktadowej osiowej predkosci dodatkowo zmienna
skladowa azymutalna. Zalozono, ze predkosci poczatkowe i gestos¢ opisuja funkcje po-
tegowe. Rozklady predkosci ptynu, gestosé, ci$nienie oraz sktadowe wirowosci otrzy-
mano w polu przeplywu za frontem fali uderzeniowej. Zbadano takze wplyw predkosci
poczatkowych oraz gestosci na zmiany wartosci liczby Macha.
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