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NONLINEAR EQUATIONS OF SHELLS OF SLOWLY VARYING CURVATURES
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1. Introduction

A major problem in the general nonlinear theory of thin elastic shells consists in reducing
the very complex general field equations to simpler, tractable forms. Extensive surveys,
of efforts along these lines can be found in the works of Koiter [1] and Pietraszkiewicz [2],
so we may concentrate here on those results having a direct bearing on the present work.

One early recognized possibility is to deal with only the equilibrium equations and
compatibility conditions in conjunction with the constitutive relations. In this way the
very involved stress-displacement relations are put aside and no restrictions as to the
magnitudes of displacements and their derivatives must be adopted. These so-called
“intrinsic shell equations” can be greatly simplified if the strains are small and the ratio
of maximum membrane to bending strains is not very large or very small compared with
unity. The resulting ‘““lowest-order interior equations® due to John [3] and Koiter [1]
permit further reduection for “quasi-shallow” shells (also called “shells of small Gaussian
curvature) introduced by Koiter [1] which are characterized by the requirement of smal-
Iness of the Gaussian curvature with respect to the reciprocal of the square of the characte-
ristic deformation wave length. Under such circumstances, the membrane forces can be
represented in terms of a stress function and the bending strains through a strain function,
leading to two appealingly simple differential equations in two unknowns [1].

This paper aims at extending the range of applicability of the now classic equations
of quasi-shallow shells. To this end, the condition of quasi-shallowness is replaced by
the weaker assumption of slow wvariation of curvatures over the middle surface — an
assumption first proposed by Duddeck [4] in the context of linear theory and then exploi-
ted by Lukasiewicz (see [5]) in a series of papers concerning both linear and nonlinear
shell problems. We borrow from Duddeck his refined expression for membrane forces
in terms of a strain function which, contrary to quasi-shallow shells, takes account of
the Gaussian curvature. The second of Duddeck’s variables, the normal deflection of the
midsurface, turns out to be unsuitable for the intended here displacement-free theory and
is not used. Instead, we express the bending strains through a strain function, finding the
appropriate formula from Duddeck’s stress function by noting a static-geometric analogy
between membrane forces and bending strains. Compared with Koiter’s (1} strain function
(“curvature function” in his terminology), our new formula is only slightly more compli-
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cated due to the occurence of a Gaussian curvature-related term. In the end, a relatively
simple set of two governing differential equations in two unknowns — the stress and
strain functions — is obtained which generalizes the equations of quasi-shallow shells
and reduces to the latter upon dropping terms multiplied by the Gaussian curvature. It
is a matter of course that the new equations generalize also all their predecessors involving
two unknowns one of which is the normal deflection, i.e. the equations of shallow shells
due to Donnell [6], Mushtari [7], and Vlasov [8], as well as equations for shells of slowly
varying curvatures due to Duddeck [4] and Eukasiewicz [S].

Our work closes with a formulation of appropriate displacement-free boundary condi-
tions to be used with the two differential equations. These include a set of static boundary
conditions derived by proper simplification from Danielson’s conditions [9], and a set
of deformational boundary conditions which are a reduced version of those provided by
Pietraszkiewicz [2].

The differential equations and boundary conditions found are truly displacement-free
only for surface and edge loads whose components are known in the basis attached to
the deformed shell. Consequently, dead loads are inappropriate and only pressure-like
loads can be admitted.

2. Reduction of basic field equations

This section is devoted to reducing the general nonlinear shell equations to the so-called
“lowest-order interior equations™ [1, 3]. Although the outcome of this reduction is identical
with [1, 3], our derivation throws new light on the subject as we: (a) make a distinction
between the wave lengths corresponding to membrane and bending strains (b) introduce
a wave length characterising the variation. of curvatures over the midsurface; consequently,
the validity criteria for the “lowest-order interior equations” become more precise than
in [1, 3]

To begin with we assume, as Koiter [1] does, that the strains are small everywhere in
the shell which is thin, homogeneous, and linearly elastic. The fundamental ficld equations
now are as follows ([1], p. 34). The constitutive equations between the symmetric membrane
forces N,z and extensional strains g,s, and between the moments M,; and bending strains
Gup read

1
8up = [ +¥) Nug—9aug N3, M
Myp = D[(1—~v)gup+7a4893], @

where a,p is the metric tensor of the undeformed middle surface, & denotes the constant
shell thickness, £ is Young’s modulus, » is Poisson’s ratio, and D = Eh3/12(1—»?) stands
for the flexural rigidity. The force equilibrium equations are:
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Here b,s is the curvature tensor of the undeformed midsurface, a vertical stroke indicates
surface covariant differentiation based on the undeformed metric .5, p* and p are surface
Joads tangential and normal to the deformed shell (this is indicated by the overbars).
The compatibility conditions assume the form:

1 1
exfein [(qﬁ),+ 3 bg&sﬁ‘ a5 bggaﬂ)z ‘bg (géf)l,u +g6y|ﬁ—gﬂll|5)J =0, (5)
o

1
eaﬁe/\# (ga.ulﬂl + bcxu g+ —2' Jorn Qﬁx) =0 ’ (6)

where €, is the permutation tensor based on a*.

In order to compare the various terms in the above equations, we assume that the
surface coordinates have the dimension of length. This makes it possible to introduce the
relations:

8 =008, Gup=0(q), by =0(1/R),

to define the parameters g, ¢ and R which are the absolute maximum stretching and ben-
ding strains, and the smallest principal radius of curvature of the midsurface. The rates
of change of the strains and curvatures will be characterized by means of wave lengths
L,, L, and L, as follows:

gotml = O(g/Lg)1 qotﬂM = O(q/Lq) s
baﬂ[l = O(I/RLr)a I(]a = O(K/Lr):

where K is the Gaussian curvature of the undeformed midsurface; the same wave lengths
will be used in evaluating higher-order derivatives, e.g2. g.p, = 0(g/L7), etc.
These definitions and relations (1) and (2) imply that:

Naﬂ = O(Ehg); Naﬂm = O(Ehg/La),
Maﬁ = 0(E/13q), Maﬁ]l = O(Ehaq/Lq)>

where use lias been made of the fact that @,z = 0(1). Now the magnitudes of the individual
terms in the equilibrium and compatibility equations (3) - (6) are:

(3):  Ehg/L,, ER*q/RL,, Eh®q/RL,, ER®¢*|L,,
(4): Eh°q[L}, Eh’q*|R, Eh*q®, Ehg[R, Ehgq,
():  4/Ly, 8/RL,, g/RL,,

©): g/l q/R, ¢,

where in evaluating (5) and (6) one should remember that e = O(1).

In order to simplify equations (3)- (6), we first take notice of the well-known fact
that uncoupled constitutive equations (1) and (2) are approximate ones because of omis-
sion of terms conforming to relations [1, 9]:

hIR < hglg < (R[h, 1]hg). ™
NOW the underlined terms in (4) are seen to be negligible and can be dropped.
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To proceed further, we assume that the shell curvatures vary slowly compared with
the strains variation, in the sense that |
L,<L., L,<L,. ®)
Keeping this in mind, we find that the underscored terms in (3) and (5) may be neglected |
in comparison with the remaining contributions provided that:
h/R < (hqlg) (Ly/Ly) < (R[h, 1]hq). ©)

Deleting all the underlined terms in (3) - (5) and transforming the first terms in (4) and
{6) as in [1], we finally get reduced equilibrium and compatibility equations of the form:

Nlﬁf}’L = —p°% e“ﬂel"qp;,“; =0, (10, 11)
Dgglf~Bup+aup) N =, - (12)

1 _
N&lﬁ"EhC“ﬁeM(ba#—i— —Z—qaﬂ) Qo = — (1 +v)tha' (13)

These are exactly the “lowest-order interior equations™ of [l, 3]. Their validity depends
on the requirements (7) - (9) of which only (7) can be found in Koiter’s work [1]. Practi-
cally, the curvatures vary smoothly in most shell applications so that relations (8) are
true. As for (9), these conditions reduce to Koiter’s assumptions (7) only for deformations
characterized by equal wave lengths of the membrane and bending strains; this is very
often assumed for analytical convenience, but surely un]ustlfled in general, physically
(see [10]).

3. Governing equations in terms of stress and strain functions

The system of equations (10) - (13) lends itself to further simplifications resulting in
two coupled equations for two unknowns — a stress and a strain function. For quasi-
shallow shells such equations have been found by Koiter [1]. Here we propose two more
general and more complex equations valid for shells of slowly varying curvatures,

An appropriate approximate solution to the equilibrium equatlons (10) has been
found by Duddeck [4] in the form:

Nﬁa = eﬂ"e““(FW+ aMKF)+_P“ﬁ, (14)

where P* is a particular solution to (10); this formula is of interest thanks to the KF
term absent in works on shallow and quasi-shallow shells. Introducing (14) into (10) and
making use of the well-known geometric relations:

" Fup == KeygFP,  ee,p = —ag,

the residual error in (10) is found to be equal to K|, F. This quantity is O(KF/L,), while
the principal term in (10), NI,,, is, by (14), O(F/L}), so that the relative error in (10) is
negligible when:

(L,/Ls) (KL) % 1. (15)

A welcome feature of the compatibility equations (11) is their similarity, in the sense
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of static-geometric analogy, to the equilibrium equations (10). Remembering this, we
immediately find from (14) the solution to (11) in terms of a strain function W:

Goup = Wap+aoap KW. (16)

This expression was apparently first used by the present writer [11] in the linear theory
of shells of slowly varying curvatures; neglecting the KW terms, (I6) assumes the form
familiar from Koiter’s quasi-shallow shells [1].

Introduction of (16) into (11) produces in the latter equations a residual error that
is negligible when:

(LJL)(KL2) < 1. ' 17
Substitution of (14) and (16) into (12) and (13) finally yields
D(W|§+2KW)|§-—C°“eﬂ"(baﬂ+ Wiap+ aug KW) (Flup+a,y KF) =
= (bop+ Wiap+aup KW)P* 1+ p, (18)

1 1
(F|§+2KF)|‘,’}—Ehe°‘f’e“‘(ba,,+ 5 Wt Taa,,KW) (Wipt+apKW) =

= (1 +’V)17ﬁfﬂ—pg|g. (19)

The two just derived governing differential equations in two unknowns, F and W, are the
major novel finding of this account. Recall that they are valid for small strains and under
the assumptions (7) - (9), (15) and (17). For shells of slowly varying curvatures in the
sense of (8), the requirements (15) and (17) are clearly less restrictive than the assumption
KL?> €1 (here L = L, = L;) adopted in the theory of quasi-shallow shells [1]. Conse-
quently, our equations (18) and (19) generalize those of quasi-shallow shells; the former
reduce to the latter when the K terms are dropped. As an example consider a spherical
shell: it has constant curvatures (1/L, = 0) and thus represents a shell of slowly varying
curvatures for all deformations with finite wave lengths .L,, L;, whereas it belongs to the
class of quasi-shallow shells only for sufficiently small products KL? and KL of Gaussian
curvature and the wave lengths squared.

4, Boundary conditions

Boundary conditions suitable for our differential equations (18) and (19) must not
involve displacements if they are to be of any value. This quality possess the static condi-
tions provided that the edge load components are known in the natural basis of the defor-
med shell. -An appropriate set of such conditions may be easily obtained from Danielson’s
conditions ([9], Eqgs. (4.10) - (4.12)) upon neglecting small terms satisfying relations (7).
The result is:

N*pg = N, (1—v)Dg**n ng +vDq% = M,, (20, 21)
Dqglana+D(1 —~9) (qaﬂnatﬁ).s = Ht.s_é, (22)

where N* are the components of the membrane force, Q is the shear force, M, is the ben-
ding moment and M, represents the torque, all prescribed per unit length of the undefor-
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med edge but resolved with respect to the deformed basis (its vectors have approximately
the same magnitudes as the undeformed base vectors, because of small strains, but may
have quite different directions, since displacements and rofations are not restricted); n,
is the unit normal to the undeformed edge surface, 7, is the unit tangent to the undeformed
edge curve, (), , indicates differentiation with respect to the undeformed arc length.

Deformational boundary conditions represent another type of displacement-free
conditions. A set suitable for our purposes is readily derived from Pietraszkiewicz ([2],
Eqs. (4.4.40) and (6.3.8)), after simplifications based on (7), in the form:

@ty =k,  q*tung = ki, (23, 24)
taemq/lalﬂ'i"(tanﬂga[}),.\ = kn, tatﬂgaﬁ = g‘ A (25’ 26)

Here k,, k,, and k, denote the changes of the normal curvature, the geodesic torsion and
the geodesic curvature of the boundary curve, and g, is its elongation. When the edge is
clamped, for instance, all these quantities are zero.

With (14) and (16) the above static and deformational boundary conditions may be
easily represented in terms of the stress and strain functions.

5. Conclusions

The two differential equations and the static and deformational boundary conditions
obtained in this paper for shells of slowly varying curvatures, undergoing small strains
with unrestricted displacements and rotations are fairly simple, but must be used with
discretion. First, a word of caution should be said in regard to the simplifications made
in deriving the equations, which were based on a qualitative rather than quantitative
argument. Therefore it is imperative that each solution of our simplified equations be
checked for consistency with the original, unsimplified equations. These latter equations,
as Koiter [1] points out, are unsuitable for shell stability problems and so are, of course,
the reduced equations presented here. Finally, there is apparently no variational formula-
tion equivalent to our differential equations and boundary conditions; this is a serious
drawback from a computational viewpoint.

In theoretical perspective, our result seems worth while, as it considerably expands
the limits of validity of the various similar equations known previously.
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Peaome

HEJIMHEWMHLIE YPABHEHHS OBOJJOUEK C MEIJIEHHO U3MEHSIIOIMUCS
KPHUBHU3HAMHA

OfIpe HelMHEHNbIe YPaBHEHHA PABHOBECHSI ¥ YCJIOBHH COBMECTHOCTH AedOopManuH TOHKHX, Y-
pyrax ofonoueK CBENEHBI K ABYM YPAaBHEHMAM A QyHKUMH HAnpsHReHmH M Qyauuun pedopmarimii.
TIpuBeeHsb! COOTBETCTRYIOUIHE CTATHUECKIE U Ie(hOPMALIHOHHLIE I'PaHyYHble YCIoBHA. IlpenmonorxeHo,
uro medopMalii Manbl 4 KPHBH3HBI H3MEHAIOTCS MEJICHHO, HO IlepemellieHHa U 060pOoThI HEe OTpaHH-
yenpl. ITonyyeHHrle peayisTaThl 000OLUAIOT M3BECTHBIE YPAaBHEHUA IIOJIOrHx ofonouex, oGoyouerc ma-~
n0it TayccoBoit KPUBHA3HEI H 060/I0UEK € MEANEHHO M3MEHAIOIMMNCT KPHBHIHAMH.

Streszczenie

NIELINIOWE ROWNANIA POWLOK O WOLNO ZMIENIAJACYCH SIE KRZYWIZNACH

Ogélne nieliniowe réwnania réwnowagi i warunki nierozdzielnoci cienkich powlok sprezystych
zredukowano do dwoch réwnan z funkcja naprezen i funkcja odksztalced. Przedstawiono odpowiednie
statyczne i deformacyjne warupnki brzegowe. Zalozono male odksztalcenia i lagodna zmienno$¢ krzywizn
powloki, natomiast przemieszczenia i obroty nie sa ograniczope. Otrzymane wyniki sa og6lniejsze od
znanych réwnan powlok o malej wyniostosci, powlok o malej krzywiZnie Gaussa oraz powlok o lagodnie
zmiennych krzywiznach.

Praca wplyngla do Redakcji dnia 19 stycznia 1987 roku.



