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The problem of the homogenization of first strain-gradient body is studied by means
of the I'-convergence method. Assuming the form of internal energy for real e-periodic
structure the homogenized internal energy of the homogeneous (effective) body is deter-
mined. The coefficients in the homogenized energy functional are effective material
constants and they depend on the solutions of a so-called cell-problem. ‘

1. Introduction

Homogenization method is applied to describe the global elastic response of the non-
simple material body with periodic microstructure. As a result one obtain the closed
form of effective (homogenized) internal energy function in which any quantities can be
calculated explicitly for a given real structure as far as so-called ,,problem on a cell” is
solved. Microstructure is understood here as a real heteregeneous non-simple elastic
body (first strain-gradient model) whose properties vary rapidly and periodically with
space. The real dimension of a single cell of periodicity is big enough to apply the concept
of continuum but the number of cells is too large to apply any numerical procedure for
solving the proper system of partial differential equation. For this purpose one seek the
behaviour of limiting process when the numbers of cells goes to infinity and at the same
time their characteristic dimension becomes infinitely small. In the problem of the first
strain-gradient theory we deal with the system of partial differential equations of the 4"
order with rapidly varying coefficient and to get any limiting result we decide to use the
concept of [-convergence rather than homogenization theorem based on G-convergence
i.e. convergence of a sequence of the partial differential operators ([1] [2]). In mathema-
tical description is the problem going to the limit (I~convergence) of a sequence whose
terms are the energy functionals involving the small parameter ¢. The limit is a functional
with constant coefficients which we call effective material parameters. We follow the
homogenization theorem [4] and we apply it to the case of the first straln—gradlent model
of elasticity with perxodlc microstructure.
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2. Equations of the first strain-gradient model of elasticity

The statical equations of equilibrium are [5]:
T — My, utX; =0 imLcRijk=1,273, (2.1)
here v;; = 7, tu; denotes the stress tensor and the couple stress tensor, respectively.

X, is the body force vector per unit volume.
We suppose that the internal energy per unit volume has the form:

1 1
L (&), Higp) = 5 Ky &1y €+ 5 M jimn %1 %0mn+ N €1y %xam s 2.2)
where: .
Eij = Ud, s Higk = &g, i 2.3)
Kijkl = Kk!lj = Kjikh Mijklmn = Mimnijk 5 (2-4)

Nijktm = Njiklm s

and K, M;jximns Nijum are bounded and measurable functions in 2 (Qis a region in R?
occupied by the body).
Then the constitutive equations become:
Ty = 3'91/3511 = Kijpg €pat Nijpar %pars @2.5)
Pige = 05 [0%15 = Npgii &g+ M jipar %pgr - .
Moreover, we assume that the form (-, -) is positive definite i.e. there exists such
a number ¢ > O that for all X € 22 holds:

3
d(elj, ”ijk) =c¢ Z ('Ejzj‘*"%,‘zjk). (2.6)

1, k=1

Now, we define the microperiodic structure of the real medium.
Let:

Y=10,Y,]x [0, ¥,]x [0, Y;] =« R, @7
after [2] we shall call it a basic cell,
Moreover we assume that functions:
Kija()s Mipmn(3)s Nyjam() € LW(Y), yev, (2.8)

i.e. they are bounded and measurable functions and can be extended to the whole R?
as Y-periodic functions. Now we define ¥ periodic coefficients by the following assump-
tions:

Ko (%) = Kia(0),

| Mipimn(3) = Mipama(3), % =2, 29)

Nigim (%) = Nyjpa(y).
For a fixed ¢ the internal energy function per unit volume has the form:

: 1 . 1
(8175 %ipe) = ) Kipma(x) &gy &+ ) M ikimn(X) %4352t + Ngiam () €15 %k 1 (2.10)
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3. The Concept of I" — convergence and homogenization theorem
Let (X, v) be a topological space and (Fy), he N, Fi: X — Ra sequence of functions

(R denotes closure of R).
Following [4] we define:

Ir- (r)hmsupF,.(y)—suphmsupmfF,,(y) 3.D
Uer(x) h—»>ow yeU
y—»x
I'~(1)liminfF,(y) = supllmmfmfF,,(y) 3.2)
Si—0 ox) kb yeU
y—x

where 7(x) is the family of open sets, for the topology ¥, containing x.
When:

I'- (DHlimsup Fo(y) = '~ (D) liminf F(y). (3.3)
h—o© li—>0
y—rx yrx

We shall denote their common value by:

I (9) lim Fy(y), (3.4)
A0
y—>x
or briefly by:
S (2) lim F(x). (3.5
h—>a

We shall say that F = I'-(7) lim F,, iff
L]
VxeX F(x)=I(7)lim Fy(x). (3.6)
h—o0

In other words {F,}iex converges in the sense of I-convergence to the limit F(x). The
homogenization theorem given in [4] is used to formulate appropriate theorem in the
case of the first strain-gradient model of elasticity. In [4] the theorem is given for the case
of scalar field (see below) o« € R, but the proof of the theorem can be repeated in 3 di-
mensional case without any important changes. The proof is long and we decided to
omit it. Now, we shall formulate theorem:

let:

[P RBxR*x R¥*x R* —» R*,
(x, 0, 8,8 flx,a,8,8),
be an integrand satisfying: ‘

@) X = f(x, a, 8, &) is Y — periodic,
(Y is a basic cell in R3),
() &> f(x, «, B, £) is convex, " (3.7

(i) A€ < f(x, a, B, &) < AL+ a4+ |B12+1EP),
(4, 4 — constant),

() 1P, a, B, O =P (x, o, B E)I s(la—o'|+18-B"D,

(s — constant).

2 Mech. Teoret, i Stos. 3/88
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Let: x
F @ = [ 5%, Duo), D2uto)) i, 69
then,
| VR < 6,,
Vu € [WE2(R?)]? (O,-family of open bounded sets in R3),
I=(s~ W) lim F(u, Q) = Fo(u, Q), (3.9)
with
Fo(u, 2) = [ fo(u(x), Du(x), D*u(x))dx, (3.10)
2
and
.1 ,
fole, .8 = min - [ 05, 2, 8, DuCx)+)dy, 1)
ueWy v

where: Wy = {ue [WE2(R?), u is Y-periodic},
s — topology in W1:2(2).
The spaces W22(R3), W'2(£2) are the proper Sobolev spaces. Using (2,10) we define:

I, =G, = L KO)B++ MOEENOIBE (1)

. x

with y = -

Now, we verify the assumptions (i}—(iv).

The (i) follows from (2.8) and (2.9) i.e. from the assumption about periodic structure
of the body.

The (ii) follows from the square form of f as a function of &.

The (iii) is fulfilled becouse of (2.6) and the fact that all quantities Kj,(»), Mijma(¥),
Niyum(y) are bounded. '

The (iv) is proved by using the average value theorem. The energy density of the homo-
genized body writes:

OcWy

fo(B, &) = min 1_;! f [-;— KBB+ %M(D2@+E)(D2@+§)+Nﬁ(D2@+§)]dy, (3.13)
Y

(we use abbreviate notation).

To find @ which minimizes the functional we shall calculate the variations of integrand
with respect to @:

de l% KpB+ % M(D*@+ £)(D*0 + &)+ NB(D*O + 5)]. (3.14)
Assuming: '

66( ') = 09 (3'15)
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we take:
O = (M EE)+7() B(x) (3.16)

and as a final result we get the set of equations which should be fullfiled on the basic
cell Y

VV(MVVy) = —VVM, a1
VV(MVVY) = — VVN. (.17

The above system of equations determines the ,,cell-problem’. One can see that the coe-
fficients K (y) are not taken into account. The solution (y, %) exists and is unique (with
accuracy up to polinomial of the 1*' order) iff:

(x, %) is Y periodic and (x, ) € W*2(Y).
Substituting (3.16) into (3.13) we get:

1 1
Jolf, ) = (T%J%Kdy)ﬂﬂJr[m}f“j M(D2x+I)(D2x+I)] EE+
,1 1 2. N27, 1 2—
+[ 7] Yf~2—MD D ,{dy] ﬂﬂ+[—|Y| YfND xdy] BB+ (3.18)

1 2 2 1
+[-|—YTYf M(D?y+1)D*3dy ﬂf‘*‘[mny(DzX‘*'I)dy]ﬂf,
or:
fo(ﬂ H= K"fﬂﬂ+ MEEE+ N BE, (3.19)

where:

1 _
Kr=-L de T fMD2 Ddy+ - [ aND*gdy,
7] 7] RO T ) SR
Mef=% f M(D*y+1)(D*3+ D) dy, (3.20)
Y

ook f M(D*4+1)D7F dy+—|—y—' [ M2 g+nay.

The effective functional Fy(u, £2) has the simple form:
‘ 1 1 e
Fo(u: 'Q) = f(z' Kl?]'l‘d Ei5Er + _2‘ Miefl.clmnxijkxlmn +Ni.)jl.¢l'm Eij %ktm) dx' (321) )
2

It is clear that fields y and ¥ are not need to be known.
We use only the second derivatives of them.

2%
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4, Onpe-dimensional example

Assuming that all quantities depend on one variable only we deal with reduced problem
of (2.1):

dr  d? . ;
_3;__ dxz_‘u—*-X: 0 n Q < -Rl) (4'1)
where;
ey AU . d*u
v =K &
i 4.2)
8 & u
p=M (x) e LN T
If, independently, we formally reduced the cell problem to a one-dimensional we get:
d? d2 d?
WM(J’)WX(J’) d ——5 M(9),
yeY 4.3)
_d_z_M(y)i_( ) = __fl_._N( )
dyz dyz X Yy = dy2 J)-
The solutions (second derivatives of y, ¥) have the form:
2
d xgy) — 14 o ’
dy M(y) 44)
d*7() _ _C» _ N '
ay* MQ@) MO’
where:
I \—
Ci={(-—=,
' <M(y)/ .
NG 1
C, = { Cy, D= — f ddy.
Using formulae (3.20) we get:
[ 1\t _JN?
= <K+ > ) =G
Mef_<l -, @.5)

L \-1/ N\
ef — (. Mk
N ! N/
If one assumed the stronger conditions of continuity for the functions K (x), ]l[,-“j,,,,,,,;(x),
Nijkim(x) one can use the G — convergence method (compare [3], [6], [7]) to obtain the
effective properties of the medium under consideration. But in the case -this method
provides to a long calculations (4'® order differential operator) and the proof of the proper
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homogenization theorem is not trivial one. In contrast, the I-convergence concept applied
in this paper gives the results (i.e. effective material parameters) almost immediately and
in a very elegant manner.
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Pesome

TOMOI'EHM3AIIUA T'PATVEHTHOUI CPENBI ITEPBOTO IIOPSIIIKA

TIposesiena romoreHu3alyst TPagHedTHON Cpeanl nepBoro nopaaxa meromom I'-cxopmmoctr, Ilpen-
Jjaras BUJ BHYTPEBHON OSHEPIHH [N JCHCTBHTENHHON &-TIePHOOMYECKOH CTPYKTYDHI NOJYYEHO TLo-
MOTCHASHPOBAHHYIO BHYTPEHHYXO 9SHEPTHIO A opHopoasoH addexruBroi cpenni. Koaddununenrny
B TOMOICHH3HPOBAaHHOM (DYHKITMORANE IHEPrHH ABNAIOTCA 2(DPEKTHBHBIMA MATEPKANTLHLIMH IIOCTO~
AureiME. OHU 32BHCAT OT peLISHHA T. Ha3. 3a3jjauu Ha sueiixe,

Streszczenie
HOMOGENIZACJA OSRODKA GRADIENTOWEGO PIERWSZEGO RZEDU
Przeprowadzono homogenizacje os§rodka gradientowego 1-go rzedu metoda I'zbieznoéci. Zakladajac
postaé energii wewnetrznej dla rzeczywistej e-periodycznej struktury wyznaczono zhomogenizowana

energig wewnetrzna dla jednorodnego ciala efektywnego. Wspélczynniki w zhomogenizowanym funkcjo-
nale energii sa efektywnymi stalymi materialowymi. Zaleza one od rozwiazania tzw. problemu na komorce.

Praca wplynela do Redakeji dnia 28 wrzesnia 1987 roku.



