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1. Introduction

The basis for the development of three-dimensional elements are the two-dimensional
plane stress elements. By introduction of the third dimension for instance the triangular
elements become tetrahedron elements, the rectangular become hexahedron etc.

The development of the three-dimensional elements is similar to the development
of the two-dimensional elements and doesn’t represent any particular problem. However,
the number of degrees of freedom (d.o.f.) of the three-dimensional elements, and con-
sequently the number of equations which have to be solved for a particular three-dimen-
sional problem, is large. The solutions of such problems sometimes become impossible
even by computers of large capacity. Therefore the development of three-dimensional
elements reducing the total number of equations for a solution of any three-dimensional
problem, is very important.

The most of the developed three-dimensional elements are of stiffness type. The primary
nodal unknowns are the deformations. The elements are developed by application of the
minimum potential energy variational principle. The problem in the development of the
elements represents the so called “parasitic stresses”. In such a case the parasitic stresses
are the shear stresses — the functions of the nodal axial deformations. Usually the problem
is solved by application of the “reduced selective integration”. However, such an ap-
. proach to solution of the problem is not appropriate and reliable. As a result of the ap-
proach for instance some three-dimensional elements are good for analysis of thin systems
like plate bending analysis (20 nodes, 60 d.o.f. element), the others for analysis of thick
systems, like plane stress analysis (8 nodes, 24 d.o.f. element) [1].

In the early development of the mixed elements it was assumed independence of stresses
and deformations. The correctness of such assumption was not verified for a long time.
Therefore the mixed finite element method (FEM) was doubtful and was not widely applied.
Here we develope mixed elements by application of a direct method [6]. The deformation
shape function (DShF) is complete, depends on the nodal stresses and deformations. The
boundary forces and deformations are derived directly from DShF, without application
of any variational principle. From the distribution of these values at the nodes we derive
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equivalent nodal forces and nodal deformations, which represent the element matrix.
This concept of development of the elements was applied in the problems of plane stress
and plate bending elements [2, 3].

The three-dimensional element which we consider in this paper, is based on the plane
stress element (Fig. 1a). This plane stress element gives very good results. For instance

Fig. 1. Mixed plane stress element (a), cantilever represented by one element (b)

in the analysis of a cantilever (Fig. 1b) even one element, with totaly 5 equations, gives
exactly the beam solution! Such results were obtained primarily due to particular distribu-
tion of the unknowns (degrees of freedom). Note that the stresses and the displacements,
were taken at the midside nodes. In such cases the degrees of freedom, the displacements
and the stresses, are not independent of each other. For instance by variation of the stresses
we can develope the equations of the compatibility of displacements, which are already
satisfied due to the presence of the displacements as the degrees of freedom at the same
nodes. .

The element was developed by application of the direct method of development of
finite elements [6]. In this way the parasitic shear stresses S, = f(N., Ny), functions
of the axial stresses, were automatically excluded. The exclusion of the stresses was another
reason for the very good behaviour of the element. The element developed in this way is
the same as the element developed by the assumption of independent stresses and deforma-
tions. It means that, in the case of energetic approach, the stresses and the displacements
have to be independently assumed! . The correctness of such assumption for the first time
was proved in Ref. [4]. »

The element which we discuss is a simple prismatic three-dimensional element. The
elément is our first step in the development of mixed three-dimensional elements. The
development of the element has to show the way of development of the mixed elements
and the accuracy which could be expected. The element presented here gives very good-
accuracy and is very promising for further development of the mixed FEM.

2. Prismatic element with 36 d.o.f.

~ The element is presented on Fig. 2. At the corner nodes the unknowns are the stress
components (8 x 3), and at the edge nodes are the displacements in the direction of the edges
(12x 1), it makes 36 d.o.f. in total.
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Fig. 2. Prismatic mixed element with 36 d.o.f.

2.1, The deformation shape fumction. The number of parameters defining the DShF is
equal to the number of the degrees of freedom — 36. It means that the deformation shape
function should be defined by 3 polynomials with 12 parameters each, for the 3 deformation
components #, v and w separately. However, an assumption of 12 terms polynomial,
as the standard procedure in the FEM, can be misleading. We shall discuss this below.
Here somewhat different procedure will be considered.

If an edge of the element, for instance the edge 1 - 4, Fig. 2, is considered as an axially
loaded rod, the deformations in the rod will be defined by the following expression:

Uss = Uyt [~ + conab (1)), (6= /a). 0

These deformations are translated in the xy plane, in such a way that the deformations
at the edge 2 - 3 vanishe, and next translated along z axis so that the side 5+ 8 the deforma-
tions vanish. The contribution of the nodal parameters Uy, &, and g4, to the deformation
U in the eclement is defined as follows:

1 .
U=~ [2Us+e12ab(1—§[2) + earaf(1+£/2] (1 =7) (1-0). @
In this way the complete DShF can be defined and represented as follows:
o]
U o, 9,0 0 0 0 U
V]|=|0 0 &, & 0 0 f;‘, 3)
w 0 0 0 0 9,9, 8'
zi
_ W
where we have:
a
D= ¢ (1+£0/2)E(1+70) (1 +20),
b
D, = 3 (L +&) (L+n0/2)n(1+8o), =18 _ @

Doy = 5 (1+E) (Lm0 (L+Lo/DE,
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Dy = (I+m0) (1 +8o), i= 9,12

D,y = (I+&) (1+8), i=13,16

IS N

®)
Pp= 5 (1 +) (4L, =17,20
Eo =E&&, mno=mm, §=/(C

It is interesting to note that the polynomial by which for instance deformations U are
defined is of the following type:
U=a,+a,x+asy+dyz+asx*+agxy+a, xz+agyz+as X2y +a,0x%z +

+axyz+ax*yz. )
The polynomial is not a “complete” one, as usually is required. It is evident that such
a polynomial is very difficult to assume in advance. The polynomial corresponds to a lline-
ar variation of strains (stresses), similarly to the stresses at the element in Fig. 2,

2.2. The element matrix. The element matrix can be represented as follows:

: Fn Fuuw
=1 L (M

The vector of nodal parameters is the following:
d' = [le are NSJ; ...N_]_y ...Ngy ...le "'NBZ e U9 sen UIZVLS ‘es VIGW_I e Wzo]. (8)

The first row submatrices in the element matrix represents the flexibility submatrices.
The submatrix F, gives nodal displacements in direction of the axial stresses due to the same
-stresses. Submatrix F,,,, affords the displacements due to the midedge node displacements.
The second row represents the stiffness submatrices. Submatrix Fj,,, gives the nodal forces
in the direction of the edge nodes due to the axial stresses, and submatrix K-nodal forces
in the same direction due to the edge node displacements.

2.2.1. Flexibility submatrices F, and F..,. From the DShF (3-5) for £ = —1 the deforma-
tions on the surface 1,2, 6,5 are derived. These deformations, for instance due to &, are
as follows:

—-Ja

U= 0@ = eull=1) A=0). o)

The volume of these deformations is:

ff Udydz=_T3abcex1.

The volume is equal to the nodal deformations 1, 2, 6, 5 due to the same strain. The distribu-
tion due to the particular node is as follows:

Foy= [ [ UsU(e)dydz,
where U is as Exp. (9) and dU(e;) is the variation of the displacement on the particular
strains. In this way the derived nodal displacements due to &, take the following form:
—abc

[U,0, U Usk = ——[4 2 1 2.
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From &, we obtain deformations also on the surface 3, 4, 8, 7. The nodal deformations
derived in the same way for these nodes are as follows:

[U3U4U8U]‘=——3a6bi[2 42 1].

These two submatrices define the first column of submatrix F,. In this way the complete
submatrix F, can be derived. The submatrix can be derived by an energetic way as follows:

Fyy= [ [ e;0e,dxdydsz.

The values of the same nodal displacements due to e, derived in this way are as follows:

—ab
[U, U, UsUsUs U Us Uy = —= [8 4 2 4 2 4 2 1],
The coefficients derived in both ways are not the same, but their sum in one row or column
is the same, equal to 1. Therefore submatrix F, defined in both ways finaly would give
the same results. Here it is convenient to-use F, derived by the energetic way. Submatrix
F, derived in this way is the following:

, (10)

ny = Fnz' (11)

R NN AN~
o0 b N AN~

1
|

If instead of strains & we introduce stresses N, for instance for strains &,:

x = 3 Ne=r (N, + V)],

submatrix F, becomes:

FO —»F? —9F?
- - (12)
—yF0 —pF0 Fo ’ '

1

F, = —
"TE

In the same way submatrix F,,, is derived. This submatrix can be defined as follows:

F, 0 0
Fuuw= 0 Fu 0 (13)
0 0 F,
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The values of the submatrices take the form:

(4 2 —2 —4 21 -1 =2]
bel2 4 —4 -2 12 =2 —1
t—-_
F"_9 21 —1'=2 42 =2 -4} (14)
(12 =2 -1 24 —4 —2]
(4 —4 —2 22 =2 —1 1]
,_ac|2 =2 —4 41 -1 =22
=512 2 -1 14 -4 —2 2} (15)
|1 -1 =222 —2 —4 4]
(4 212 -4 =2 —2 —1]
,_abl2421 -2 -4 -1 -2 16
'F‘”“91242—1—2—2—4' (16)
2 124 -2 -1 —4 —2]

2.2.2. Stiffness submatrix K. The stiffness submatrix K gives the nodal shear forces in the
direction of the edge node displacements, due to the displacements of the nodes. For
instance the forces due to Uy = 1 are as follows:

-G
Noy =5~ U=0),

-G
N, = “Ae 1-m
N,,=0
The shear force due to the shear stresses acting on the surface 1, 4, 8, 5 takes the form:

2a2¢ ac
Sy = —5 N,, = GT'
Since the distribution of the shear stresses from node 9 to 11 is triangular, 2/3 of this shear
force is applied to node 9 and 1/3 to node 11. In this way the defined nodal forces give
the coefficients of the stiffness submatrix K. The submatrix can be represented as follows:

G Ky Ko Ky
K= Kl Ky Kast. ' )]
Sym. Ks

The values of submatrices in this expression are the following:

2(ac+ fb) —2ac+fb owc—28b —oac—pfb

_ 2(ac+pb) —ac—pb ac—2pb
K= 2(ac+pb) —2ac+pb |’ (18

Sym. 2(xc+ Bb) .
o =alb, f=alc, ‘
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2 -2 1 —1
2 -1 -2
K.I.Z = 2 ___2 c,
Sym. 2
21 -2 -1
2 -1 =2
Kia = 2 1 b.
Sym. -2
Submatrix K, is obtained if instead of « in K; we substitute o=2.
2 -2 1 -1
1 -1 2 =2
Kaa=1_3 21 1|®
-1 1 =2 2

2@~ 40) a7 =20 —ot—a =204
2t +a) —207t4q —al—a
2@+ o) o t—-2a

Sym. : 2(a" 4+ o)

K;=c¢

2.3. Numerical examples,

581

(19)

(20)

@n

(22)

2.3.1. Simply supported square plate. The plate is subdivided in 4 elements (Fig. 3a). Since
there is the symmetry, only a quarter of the plate is analyzed, (Fig. 3b). There are only 3

unknowns: Ns, U;p and Wig. The analysis gives the following results:

Fig. 3. Analysis of simply supported square plate (2), the quarter of the plate represented

by one element (b)

'N5 = f,(l +1}):

T 32¢2

__ 3aP o~
Uto = 1egez 1 =5

16¢2

- 2 2
W, = —3PL [1 16¢

rL2 |
155D +L2(l‘v)]——0,01562 = [1+

L*(1—»)
' . (Thin Plate Th.0,0116PL2/D).
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The results for the case of constant distributed load g can be derived by the substitution
of ga® instead of P/4. The results are as follows:

—9qL7

Ne = Toge

1+,

_ 3@ 2
Upp = 74—E’52_(1 —%),

_ —3qL* 16¢* _ qL# 16¢?
Wis = —755D [” L2(1—y)] = 000391 "5 |1+ =5 |
(Thin plate theory: 0,00406 qL*/D).

The following bending moment corresponds to stress Ng:

(2c)>  3qL?

Ms = Ne—¢ 64

(1 +%) = 0,0609¢L%, (v =0,3),
(Thin plate theory: 0,0479 qL2)

The results for the displacement W,y contain two components: the thin plate theory
component and the contribution of the shear forces component. The fist component
is the same as is the result obtained by our very first rectangular mixed bending element
[7], with the assumption that the moments and displacements are independent. The second
component will be analyzed in the next chapter.

2.3.2. Cantilever. The analysis of the cantilever in Fig. 4 loaded by concentrated edge
force gives the following results:

3aP
2bc?’

P a? a
Wao = SEc [4,0 F+27 (1+v)].

N6=

Up=-Usg
Ne Cay 1“49=W20 20
w l "
N . 20
>Up |
~ 20

Fig. 4. Analysis of a cantilever as one finite element

These results are exactly the beam solution, with cross section shape coefficient k = 1.
As could be exepected, the three-dimensional element gives exactly the same results as the
plane stress element from Fig. 1 [2]. In the case of a cantilever loaded by a moment, the
element also gives also the beam solution.
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3. Reduced three-dimensional element for plate bending analysis

3.1. Element matrix. The reduced three-dimensional element is presented in Fig. 5. The
primary unknowns for the element are the following:

d'= [Myeo. Myy ... Myy ... May ... Og ... Oy, Wy ... W.]. (23)

It means that the element is reduced to 16 d.o.f.

M Mg
My ooy M/ M
1 12 x,U
e
" May May 2b
W % f
h

Fig. 5. Reduced plate bending element

The strains for the three-dimensional element can be substituted by the bending moments
as follows:

Ex =

c
"D(“—l:;f)' (M.—vM,),

‘¢
D(1—»?)

€y —

(-vM.+M)).

The displacements u and v can be substituted by the rotations, for instance according
to to the following relation:

Oy = (Uy~Uyy)/2c.
The upper stresses and displacements, and the lower stresses and displacements, in the case
of plate bending are of the same intensity, but with different signes, for instance:
Ny = —N;
Us = —Uy;

The element matrix can be represented as follows:

'F, —»F, Fyp, O 0

F, 0 F, O
Fk = Kﬂx Kﬁxy Kexw . (24)
’ KBy KByw
_Sym. K.

Submatrix F, derived in this way is the same as for the element with the assumption that
the moments and displacements are independent. The derivation of the other submatrices
is very simple and will not be given.
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3.2. Analysis of thick plates. As an illustration of the accuracy of the reduced three-
dimensional element, and consequently of the original element, the simply supported square
plate in Fig. 3a will be analyzed. The results of the analysis are presented in the table below

and in Figs. 6, 7. .

The results presented in the table are the ratio of the computed deflection W at the
center of the plate versus the theoretical thin plate deflection, and the similar ratio of the
computed M and theoretical M2, moments. In the case of very thin plates (/L = 0.0125)
the element gives the same results as the plate bending element with the assumption that
the moments and deflections are independent. The moments do not depend on the thickness
of the plate. The results are derived by subdivision of the quarter of the plate on 2x2
elements.

Fig. 6. Central displacement of simply supported square thick plate subjected to constant distributed load

With the increase of the thickmess of the plate the relative deflections of the plate
increase (Figs. 6 and 7). Besides the results obtained by our element Mw, we present
in the figures the results obtained by Prior et al. [8] (Pr) with stiffness element, Chang-Chun
Wu [10] (UH) — with a hybrid element, and Rao et al. [9] (Ra) — with a triangular
stiffness element. The number n besides the particular results denotes the number of

A. Pocreski, G. KOKALANOV

Table 1. Results of the analysis of thick simply supported square plate

Thickness

Constant distributed load Concent. Force

Span wIWe, MIM? WIWS,
(hlL)

0.0125 1.0059 1.054 1.1055
0.075 1.031 1.054 1.160
0.125 1.077 1.054 1.256
0.200 1.187 1.054 1.492
0.250 1.290 1.054 1.709

We

1,2

11

1,0

hL

0,0S 0,1
— «— theor.
——~= UH[10] 6x6 n=147

015

0,2

0,25

——— PR[8] 6%6 n=204

—Mw

equations by means of which the results were obtained.

‘From Fig. 6 one can see that our mixed element (Mw) gives excellent results with
values somewhat higher than the theoretical ones, while the stiffnes elément (Pr) gives

2x2 n=87

1
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similar accuracy, with values below the exact. The results in the case of concentrated force
(Fig. 7) take the values between those obtained by the other. In region of thin plates the
results are not so good, since the rough mesh was used (2x 2). If the refined mesh (4 x 4)
is used then the results fall down close to the exact ones (doted line in the figure).

Wwe |
Wcz

Mw 2x2
n=87

1,5

[n=147 -
0,2 _ 0,25 B

Fig. 7. Central displacement of simply supported square thick plate subjected to concentrated force

A disadvantage of the stiffness elements for analysis of thick plates is that they give
bad results for thin plates. In the case of thin plates there is the so called “locking” pheno-
menon. Contrary to that, our mixed element gives good results for thick and thin plates,
regardless of their thickness.

. Further development and conclusions

The three-dimensional element presented here represents our first step in the develop-
ment of mixed three-dimensional elements. Due to its shape, the practical application
of the element is limited. The purpose of the development of the element was to show the
way of development and expected accuracy of the mixed elements.

The accuracy of the element is very good. In the case of plane stress problem the element
gives the same results as the corresponding plane stress element [2]. The plane stress element
is one of the best elements available at present. In the analysis of plate bending the three-
dimensional element gives the same results as the plate bending element with assumption
that the moments and dlsplacements are independent [7]. The plate bending element gives
also very good results.

Such results obtained by means of the presented element are encouraging for further
research of the three-dimensional mixed elements. As the next step in the development
of mixed elements should be the development of a general hexahedron element (Fig. 8a)
with 36 d.o.f. It would be convenient if such an element to be taken with displacéments
along the edges as the degrees of freedom. The same element could be developed with
curved boundaries. The development of the element could be based on the assumption
that the stresses and displacements are independent. It was shown that such an assumption
is correct and has advantage in the exclusion of the parasitic stresses. The f inal aim would
be to develope such elements explicitly.

The best mixed element that can be developed is the in Fig. 8b, with curved boundarxes
and 60 d.o.f. Such an element corresponds to our, plane stress isoparametric element

2 Mech. Teoret. i Stos. 4/88
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158(Ng Ny ,N,)
9+20(u,v,w)

Fig. 8. Possible three-dimensional elements: (a) with 36 d.o.f. (b) with 60 d.o.f.

with 16 d.o.f. [2]. This plane stress element seems to be the best plane stress element avail-
able at present. Thus, the corresponding three-dimensional element should be expected
to give excellent results also. The development of such an element is in progress.

The reduced three-dimensional element with 16 d.o.f. succesfully can be applied for
analysis of plate bending. The element gives results of very good accuracy, unconditionally
stable, regardless the stiffness of the plate. Now we will try to eliminate the rotations as
d.o.f., although they are internal d.o.f., and in such a way develope a 12 d.o.f. plate bending
element for analysis of thick plates.
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PeswmMme

TPEXMEPHBIE CMEIIAHHELIE KOHEUHLIE DIEMEHBRTEI

CrieyIoiye napamMeTps! ABJLIIOTCA HEUSBECTHRIMY B JJIEMEHTE ! KOMIIOHEHTHI HANPSHKEHUH B yIIIO-
BoIX yanax (8 X 3) u mepememenusa rpauul (12X 1). DreMenT PasBHTBIE IpH nomoum HEHOCPEeICTREH -
HOrO MEeToHa, Ge3 IPUMEHEHMS BapHAIlHOMHOIO NpHWHIMOA. M3BecTHble ,,IapasuTuble HAUPSHKEHUA’’
WCKIIOYAIOTC aBTOMaTHyecKu. CBeINeHHBIR TpEXMEpDHBLIH 3JIEMEHT NACT OYeHb XOPOUINE DE3YABTaThI
B aHAJH3E TOJICTBIX X TOHKUX TUIMT. B paboTe mokasay IyTh PasBHIHA CMELIAHHBLIX IJIEMEHTOB W OM(H-
maeMasi TouHocTh. Jlayee paccMOTPeHbI M30IapaMeTpHUECKHe 2JieMeHThl JIOObIX dopM (puc. 8, a - 6).
Haitnydmmm oxuIaeMLIM SJIEMEHTOM ABJIZETCA MOKA3aHbEA Ha pHC. 86 anemenT ¢ 60 crerensimu cBoGOIbLI,
KOTOpBI Tenepk paspaboTeIBAeTCA.

Streszczenie

TROJWYMIAROWE MIESZANE ELEMENTY SKONCZONE

Nieznanymi parametrami elementu sa skladowe naprezenia w wezlach naroznych (8 x 3) i przemiesz-
czenia krawedzi (12 x1). Elementy zostaly rozwinigte z pomoca metody bezpofredniej bez zastosowania
zasady wariacyjoej. ,,Naprezenia parametryczne’ zostaly wyeliminowane automatycznie, Zredukowane
trojwymiarowe elementy daja znakomite wyniki w analizie piyt grubych i cienkich.

Celem pracy jest pokazanie sposobu rozwoju mieszanych elementéw i spodziewanej doktadnosei
ich stosowania, Oprocz tego rozpatrujemy izoparametryczne elementy o dowolnych ksztaltach (rys. 8a - b).
Najlepszym jest element pokazany na rys. 8b z 60 stopniami swobody. Jest on obecnie rozwijany.

Praca wplynegla do Redakcji dnia 29 czerwca 1987 roku.



