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1. Introduction

The Wright Brothers’ aircraft was the biplane Canard, In the next years that confi-
guration has been supplanted by conventional one. However, starting from the early part
of the third decade new designs in the Canard configuration have arised. Advantages and
disadvantages of that configuration have been compared and described in bibliography
in respect of the performance [1, 2] but have not been published in respect of static and
dynamic stability. One of few works in this field has been the analysis of an influence of
the lateral flow to the dynamic stability, which has been performed by R. Panasiuk [3].
From this analysis it has followed that the lateral flow improves the stability of the
phugoid and spiral modes.

In this paper dynamic equations of the small, lateral vibrations for the Canard confi-
guration have been derived and rewritten in the dimensionless form. An influence of the
some design parameters to the lateral stability has been studied. Dynamic effects resulting
from a change of the low-wing configuration by a high-wing one as well as from an in-
crease of the dibedral angle and of the fin and rudder aera and from a change of the mass
balance have been analysed in detail.

A=1/L5CA

Fig. 1. System of coordinates
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2. Notations

A — point denoting one-fourth of a mean aerodynamic chord (MA‘C)

Axyz — stability axis system: x axis is directed towards the nose of fuse-
lage, parallel to the undisturbed flow, z axis is directed down-
wards perpendicularly to the x axis and lies in the plane of sym-
metry, y axis is directed on the- rlght wing, perpendlcularly to
the Axz plane (referred also as Ax,y,z,)

Ax3y323 — body axis system, obtained from Axyz by the rotation « about
the axis Ay

AXs5ys2zs — flow axis system, obtained from Axyz by rotation Sy about the
axis Az ’

b — wing span

B,a(B.s) — stiffness matrix of the anti-symmetrical model (in dimensionless
form)

Bus.» — dimensionless, modified, stiffness matrix of the antisymmetrical
model

Bg — stiffness matrix of the integral model

L —lift coefficient

g — acceleration due to, gravity

Jer Iy, Iz — moments of inertia about either stability axis system Axyz or
body axis system Ax;y;z;

Jays Jxzs Jyz — products of inertia about either stability axis system Axyz or
body axis systen Ax;yp;zs :

JxsJzs Jxz — dimensionless moments and product of inertia, respectively

' Jxs Juy I

L,L, L, — aerodynamic derivatives of the rollmg moment with respect to

velocity of sideslip, rolling and yawing, respectively (either in
stability axis system or body axis system) .

L1y, 1, — dimensionless aerodynamic derlvatlves respectively L,, L,, L,

m — mass of the aircraft

M, — mass matrix of the anti-symmetrical model

Maq,z — dimensionless, modified mass matrix of the antisymmetrical
model

Mg — mass matrix of the integral model

N,, N, N, — aerodynamic derivatives of yawing moment with respect to

velocity of sideslip, rolling and yawing, respectively (either in
stability axis system Axyz, or in body axis system Ax;ys23)

Ryy Ny, Ny — dimensionless aerodynamic derivatives, respectively N,, N,,N;

Pqgsr — components of a disturbance of the angular velocity either in
stability axis system Axyz or in body axis system Ax; 373

P,Q,R — components of the angular velocity either in stability axis system

Axyz or in body axis system 4x; y;z;
S — wing aera
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1ty t — real, aerodynamic and dimensionless time, respectively

T — period of an oscillation

T,z (T2) — time to half (to double) amplitude of an oscillation

u, v, W — components of a disturbance of the velocity either in stability

axis system Axyz or in body axis system Ax;y;z,

U, V, W(U,, Vo, Wo) — coordinates of the velocity V, (and its undisturbed components)
either in stability axis system Axyz or in body axis system Ax; y; 2z,

o» Vos Wo — dimensionless, undisturbed components of velocity V, either
in stability axis system Axyz or in body axis system 4x;y;z4

7 — total velocity of the point A4

X, ¥, Z — coordinates of the mass centre in so-called design axis system.
These coordinates are connected either with stability axis system
(i = 4) or with body axis system (i = 3) by relations x = —x;,
Y=Y 2= —Z

X5, Xad» (Xas) — small disturbance vector for integral and anti-symmetrical model

~ (in dimensionless form), respectively

A — dimensionless coordinates of the mass centre, respectively x and z

Yy, X, — aerodynamic derivatives of lateral force with respect to velocity
of sideslip, rolling and yawing, respectively (either in stability
“axis system or in body axis system)

G

X4
¥,

Yos Yoo Vr — dimensionless aerodynamic derivatives, respectively Y,, Y,, Y,
o ' — angle of attack

Br, Bw, Bs —angle of lateral flow, wind and sideslip, respectively
i — angular frequency

6, —flight-path angle

) — small disturbance of the pich or flight-path angle

Ha — dimensionless mass of the aircraft

& — damping coefficient

0 — air density

D, — bank angle

@ — small disturbance of the bank angle

3. Mathematical Model for Lateral Stability

The mathematical model, which has been used in computations, has included the
mass, aerodynamic and stiffness couplings [4, 5] and will be referred as ,,the integral
model”. The linearized equations of motion have been written in matrix form [5] as fol-
lows: '

Mgxy = BgXxs, (1)
where
{x8}= {u’v>w7pv q, r:'ﬂ’ (P}T (2)

is a small disturbance vector.

4 Mech. Teoret, i Stos. 1—2/87
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Coefficients of the mass matrix My and of the stiffness matrix Bg are placed in Appendix,
Physical model employed in analysis of the lateral stability has been derived from the
integral model under the following assumptions:

1) steady-state trajectory can be the gliding as well as the climbing one, i.e.: 6, # 0,
There can exist a sideslip: fs # 0, a cross-wind: Sy #* 0 and a lateral flow: 8y 0
(where fBs = fir+f8w)

2) there exist only anti-symmetrical disturbances from steady-state flight parameters. The
small disturbance vector x,, [4] has the following coordinates: o, p, r, ¢. The symme-
trical coordinates of the xg vector are equal to zero.

The anti-symmetrical model can be written as follows:

Mq4jca4 = Ba4xa4’ (3)

where matrices M, and B, can be directly derived from matrices Mg and By respectively,
neglecting the uneven columns and rows. Matrices M,, and B,, have the form:

m mz —mx 0
mz J, —=J,; 0
Ma=| e -1, T of @
0 0 0 1
Y, Y,+mW, Y,—mU, mgcos@ycos D,
L, L,+m(zWy—yV,) L,—mzU, mgzcos@qcos D,
B, = —mgycosOysin®@, |. (5)
N, N,—mxW, N, +m(xUy—yVy) —mgxcos@ycos P,
0 1 tan®,cos D, 0

Moments and products of inertia, aerodynamic derivatives and coordinates of the mass
centre occuring in matrices M4, B,, can be related either to the body axis system or to
the stability axis system. Vectorial equation (3) expanded in the body axis system are not
convenient to use in computations because in this case aerodynamic derivatives, usually
known in the stability axis system 4xyz (or in the flow axis system Axsyszs (Fig. 2) —if
the flow angle is not equal to zero) must be converted to the body axis system {5]. The
same equation expanded in the stability axis system (or in the flow axis system) is more
conventional because in such case we must transform only three components of the inertia
pseudo-tensor and two coraponents of the mass centre instead of the nine components of
aerodynamic derivatives and two velocities (if we use the body axis system).

Numerical calculations have been performed on the basis of equations of motion in
dimensionless form:

— d}atl -
ma47 = Bn4xa4) (6)
where
1= t/t, is dimensionless time, while
m
ly = 0.50V,5 Q)

is aerodynamic time,.
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b

/)

Fig. 2. Plan view of the aircraft showing the most important design parameters

One derived the following parameters:
— dimensionless mass

m

= _ 8
M = 05055 ®
— dimensionless coordinates of the mass centre
X, = x/b, Z,=z/b, ®
— dimensionless moments and products of inertia
. Jx . z . sz
Je= gy Ji= pr Je = (10
— dimensionless velocities
_ U, _ Vo — W,
= -2 =_9 = ] 11
Yo v, Vo V.’ Wo v, (1n

One should emphasize that in the stability axis system #, = 1, 7o = Wo = 0, while in the
flow axis system we have

'70 = COSﬂW, 50 = Sinﬂw, WO = 0. . (12)

Equation (6) has been transformed to modified form dividing its scalar components by
a such coefficients in order to get the units at the main diagonal of the mass matrix. So,
putting the small disturbance vector in the form

3 olv b b 13
-xa4“'{VA7 VA’ VA’w} ( )

and assuming that

4%
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1) steady-state flight is horizontal, i.e.: &y =0,

2) steady-state bank angle is equal to zero, i.e. Py =0,

3) the angles of sideslip, flow and wind are equal to zero, we can rewrite the equation
of motion in the form

v

’71114.1}114 = bu4.zgn4a (14)
where
1 i, =X, 0
— _ En/jx 1 _sz/jx 0
Mas,z = —Ea/jz _sz/jz 1 0 ’ (15)
0 0 0 1
Yo Vo Ve luﬂ_ . CL_
b_ = Iv/jx Ip/jx (1,.—-—/1.,, Z_ﬂ)/.]x CLia/jx (16)
- ad. nu/jz np/jz (nr+lu’nxn)/jz —Can/jz
0 w O 0

and symbol v indicates differentiating with respect to the dimensionless time.
A particular solution of the equation (14) has the form

Yo qi Pob g reb i ‘5} 4 |

{VAC’ VAe, V,,e pocts. (7)

Substitution of (17) into (14) gives the following characteristic equation
det{#ye, ; A—baa,} = 0, - (18)

which can be rewritten as

A+a b d+c, dyA+el fi
h1£+y bzz:_i'cz dz_%'i'ez /)2 0 (19)
hyd—x bydrcs dadtes fo|
0 ~ I 0o 2

det

where
x=nfj. y=-Ljj, a=-y, b=z, &= -y,
di= —X4, €= —Ytps, Si=—cL, h=Z,
hy = —Xa[jz, b, =1, ¢z = —bljs, dz = —Jezlix»
(bt pazdlivs  fo= —CLZallsy b3 = —Jezlias
= —Mljsy dy=1, ey=—(—pX)jz» Jf3=cLXalj.

I

€

Dex)elopment of (19) gives characteristic equation of order 4:
AX*+BA*+C12+DA+E = 0. )
Tllle coefficients of this equation can be represented as functions of x and y by the follo-
wing means:
A=4,, B=By,—-yB —xB,, C=Cy—yC—xC,,

D = Do"‘yDl—xDz, E = EO_—yEJ.—XEZ) (21)
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where
Ao = ri—hirathyre, By =ari+ry—hirs+hyrg, By =r,, By =r4,
Co = dafz.—dzfs+h1(d1f3“dafx)_hz(dlfz—dzfl)+a’2+r3—h1"6+hzr9, C, =rs,
C, =rs, Do=eyfs—erfs—aldfs—dsfi)+hefs—esfi)—hilefr~erf1),

D, = re~(difs— d3 /1) phas D, =ro—(difa—dof ) s Eo = —a(ezfa‘"esfz),um
E = (esfi—efa)par E;= (exfi—erf2) fa
and

ry = bydy—byd,, ry = cadi—cidyt+bres—bie,, r3=cre3—cie,,
r4=b1d3——b3dl, I's =C1d3_C3d1+b183—‘b391, "6=C183—C3.€l,
r7=b1d2—b2dl, r8=C1d2-"C2d1+blez—bzel, rg = C1€;—C8,,

while x = n,/j, and y = —/,/j..

Characteristic equation in the form (20) has 4 roots, which correspond to the so-called

,,stiff natural modes”. These modes are as follows: :

— Duch Roll — an oscillatory mode possessing two predominant coordinates: the
sideslip with a velocity v and the rolling with an angular velocity p.
The phase-angle between these coordinates is approximately equal
to 180°, '

— Spiral — an unoscillatory mode possessing two predominant coordinates: the
sideslip with a velocity v and the yawing with an angular velocity r,
which is in phase with the sideslip,

— Rolling — an unoscillatory mode which has the one predominant coordinate, i.e.:
the rolling with an angular velocity p.

4. Short Characteristic of ‘an Aircraft Employed for Computing

The most important data are:

main wing span b=70m
front wing span by =3.6m
body length lg=45m
main wing aera S = 5.6 m?
front wing aera Sy = 1.28 m?
mass m =470 kg
lift-curve stope for main wing Cly = 4.41 1/rad
lift-curve slope for front wing Cly =5.29 1/rad

The essential differences between Canard and conventional configuration, important for

aircraft dynamics, are the following:

— location of a tail ahead of the wing and as a consequence decreasing of the effective
angle of attack on the main wing caused by the mean downwash angle,

— location of a mass centre far ahead of the main wing, usually about 100 or more percent
MAC ahead of the one fourth of MAC, For conventional configuration the mass
centre is usually situated at nerby neighbourhood of the one fouth of MAC. Location
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of the mass centre far ahead of the wing for Canard configuration is caused by necessity
to ensure the static longitudinal tability.
As a result of the numerical computations one could get the following characteristics:
angular frequency 7 and damping coefficient &, either time to half Ty, or time to double
T,, period T and boundaries of the stability, all for the natural modes defined before.
The following parameters were changing:
1) fin and rudder aera S, from 0.3 m? to 0.7 m* with the steep 0.1 m?,
2) main wing dihedral angle G from —5° to 5° with the steep 2.5°,
3) location of the mass centre along the x axis in the body axis system, with respect to
the one fourth of MAC:

X, = ’; = {~.121, —.127, —.133}.

A variation of the mass centre location was achieved by shifting forwards of a mass equal

to 20 kg with the steep 1 m (it can be a baggage, accumulator, radio station etc.)

4) location of the mass centre along the z axis in the body axis system, with respect to the
one fourth of MAC. There has been realized 28 values of Z, with the steep 4z = 2.5 cm
(or 4z, = 0.0036). 1n reality this translocation can be achieved assuming that the mass
distribution of the body is invariable but that wing-body arrangement is changeable,
i.e.: that low-wing configuration can be replaced by the other one, for example by the
high-wing configuration.

5. Numerical Results
At Fig. 3,4 is shown time to double amplitude of the spiral mode T, versus the dihedral

angle G and the fin and rudder aera S, for two different values z,. A decrease of S, as
well as an increase of G increases T,. Comparing Fig. 3 with Fig. 4 we can notice a slight

R T T T T
50F Pt .
© 25 /L0s ]
/
/
/
_ /
= g ! L 7 1
© /4
/30s
-25 s n
%
T,=10s
..50 —
L 17 L L L
03 04 05 06 07 08
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Fig. 3. Times to double amplitude T of the Spiral mode as functions of S, and G for low-wing configuration
(Z. = 0.0159)
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Fig. 4. Times to double amplitude 7> of the Spiral mode as functions of S, and G for low-wing configura-
tion (z, = 0.0279)

increase of T, as z, decreases. This dependence is shown more detail at Fig. 5,6, from which
we can read the necessary changes of S, and G caused by variation of z, to keep the same
T, (T, is equal to 30 s and 15 s at Fig. 5 and Fig. 6, respectively). Computations show that
the influence of the x, (in the neighbourhood of X, = —.127) on the lateral dynamic
stability is negligible.

2,5-0,0351 —~——
—0.0141 ==r+emsrem
000857 — —— ]
0.01590 ————
0.02790

GI°l

| I i
03 04 05 0.6 07

S.{m?)

Fig. 5. Time to double amplitude T, of the Spiral mode (equal to 30 s).as the function of S,, G and z,

Fig. 7-9 show the times to half amplitude T,, of the Duch Roll mode as functions
of G and S, for three different values of z,. An increase of S, as well as a decrease either
of G or of Z, decreases T;,. An influence of S, and G to the value T;;, decreases with
decreasing of Z,. In the case when Zz, is negative T, increases as the G decreases.

Regulations FAR-23 [6] and work [4] give the definition of a boundary quotient
—&/n for the Duch Roll mode. This quotient must be greater or equal to 0.05. Fig. 10-12
show the value —¢&/n as a function of G and S, for three different values of z,. When S,
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Fig. 7. Time to half amplitude T}, of the Duch Roll mode as the function of S, for different values
of G in case of the low-wing (z, = 0.0459)

increases or G decreases then the quotient — &/ either increases if z, is positive or decreases
if z, is negative. An influence of S, and G on the quotient — &/ is very strong diminished
in the case of negative values of Z,.

Fig. 13 shows an influence of X, to the value T;,, for the Duch Roll mode. Shifting
to the mass centre forwards increases Ty;.. An influence of X, to the quotient —&/y is
shown at Fig. 14.



T T T T T T
S u
— 4 1
°n
E
3 -
Glel
2 50 N
25
35
] | | | ] _P‘o |
03 04 05 06 07 08

‘ Sv[mzl.

Fig. 8. Time to half amplitude 7,,, of the Duch Roll mode as the function of S, for different
values of G in case of the low-wing (z, = 0.0279)
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Fig. 9. Time to half amplitude &‘1,2 of Ithe Duch Roll mode as the function of S, for different values
of G in case of the mid-wing (7, = 0.00857)

I

-&/y

Fig. 10. Quotient —&/n as the function of S, and G in case of the low-wing. (z = 0.0459).and admi-
ssible, boundary quotient (—&/n),,
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Fig. 12. Quotient — /7 as the function of Sy and G in case of the mid-wing (Z, = 0.00857) and admis-
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Fig. 13. Time to half amplitude 7),, of the Duch Roll mode as function of .S, and %, for G = 0° and
Za = 0.028
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Fig. 14. Quotient —&/n as the function of Sy and X, (and admissible, boundary quotient (—&/n)e)
for G = 7° and Z, = 0.028

6. Concluding Remarks

Numerical results have shown that the most important parameters for the lateral,
dynamic stability of Canard configuration are: (1) vertical position of the main wing with
respect to the body, (2) dihedral angle and (3) fin and rudder aera. An increase of the
dihedral angle, a decrease of the fin and rudder aera as well asa shifting of the wing upwards
prolong the times to double of the Spiral mode what is advantageous with point of view
of the stability. Either a decrease of the dihedral angle when the fin and rudder aera is
constant or an increase of the fin and rudder aera when the dihedral angle is constant
can be compenseted by shifting of the main wing towards high-wing configuration.

The Duch Roll mode damping increases with an increase of the fin and rudder aera
as well as with a decrease of the dihedral angle. A shifting of the mass centre forwards,
improving the longitudinal static stability, deteriorates slightly the stability of the Duch
Roll mode increasing the time to half amplitude of an oscillation.

7. Appendix

" m o X, 0 —mz —my O 0]
0 m =Y, mz 0 —-—mx 00
0 0 m—Z, my mx 0 00
M. < 0 mz —L;+my J, =J,, —J. 00
87 -mz 0 —Mytmx —J, J, -J,. 00
—my —mx —N, ~Jy =J, J. 00
0 0 0 0 0 0 10

- 0 0 0 0 0 0 01
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where X, Xy, ..., Ny, N, denote dimensional derivatives in accordance with the following
definition (cited by way of example for the N, derivative):
7 2 .
- %]l _ 3(0.5@V4Sc,,b)_ _ ¢y — 0.50V ,Sb%,
» o[ PP\ Vs ol 22
Vil b V.
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Peswome

BOKOBAS YCTOWUUBOCTb CAMOJIETA TUIIA ,,.YTKW”

B pafore npencTaBiieHO MaTEMaTHUECKYIO MOMAENh MalbiX, OOKOBBIX KoJebanuil camoJieTa THNE
YTKH. Ypapuenns IBWOKEHHs 3a[HCAHO B CKOPOCTHOH CHCTeME KOODAMHAT CBS3aHO¥ ¢ 1/4 cepenueif
aepOoMHAMMYECKOH Xoplbl ¥ JoBeneHo K Oe3pasmepHomy Buiy. ITpoananusmpoBaHo coGCTBeHHBIC 3Ha-
YyeHHs H (hOPMBI HKECTKUX Konebanuii camonéra. IlpencrasueHo ajropuT™ BEIYHCACHNS NpENeNoB yCTok-
YHMBOCTH HBOX OCHOBHBLIX Gopm xoneBamuit: coupansy ¥ TofnaHACkoro luara. OGCy»eHO OCHOBHbIE
PA3HOCTH NPH HCCIIENOBAHMAX YCTOWUMBOCTH KIIACCHUECKOTO Camonéra ¥ camonéra tuma ,,Y'TKH”.
Hccnenosano BansiHue pasiduubIX TEOMETPHUECKHX 1KOH(HIypaumid camoéTa HA yCTORYMBOCTD.

Streszczenie

STATECZNOSC BOCZNA SAMOLOTU W UKLADZIE KACZKA

Przedstawiono model matematyczny matych drgan bocznych samolotu w ukiadzie kaczka. Réwnania
ruchu zapisano w oplywowym ukladzie wspoirzednych zwiazanym z 1/4 $redniej cieciwy aerodynamicznej
i doprowadzono do postaci bezwymiarowej. Przeanalizowano wartosci wlasne i postacie drgan sztywnych
samolotu. Przedstawiono algorytm na obliczanie granic statecznosci spiralnej i statecznoéci holendro-
wania. Omoéwiono zasadnicze réznice przy badaniu statecznofci ukladu klasycznego i ukiadu kaczka.
Zbadano wplyw réznych konfiguracji geometrycznych samolotu na stateczno$é.

Praca wplynela do Redakcji dnia 18 marca 1986 rokn.



