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The indentation of a transversely isotropic layer by a rigid indenter is investigated.
The lower plane of the layer is elastically supported. On the upper surface of the layer
certain normal displacement is prescribed inside a circular region with an unknown radius,
outside of which certain arbitrary normal stresses are given in an annular region and the
normal displacement is zero on a remaining boundary, while the shear stresses vanish
all over the boundary.

The author formulates the problem as the solution of a set of triple integral equations.
To this end, the differential, integral and series representation of the unknown function
is devised, which satisfies two of the three equations exactly, while the third one leads
to three infinite sets of elgebraic equations with respect to the coefficients introduced in
the representation. The physical quantities which characterize the contact and the stress
intensity factors are obtained by means of these coefficients.

Some punch, inclusion and crack problems in a transversely isotropic layer are con-
sidered.

1. Introduction

A number of hexagonal crystals are characterized as being transversely isotropic.
Many fiber-reinforced composite materials and platelet systems were also characterized
as transversely isotropic media, which have five elastic constants {1]. According to effec-
tive modulus theory [2] the gross elastic behaviour of the laminated medium is transver-
sely isotropic and homogeneous elastic material with the normal to the layers as the axis
of symmetry; the effective elastic constants of such a medium are given by Achenbach
(121, p. 33),

The present work studies the indentation of a transversely isotropic layer by a smooth
indenter. Only the circular part of one surface is subjected to the indentation of the inden-
ter, while the outer annular region is subjected to normal, symmetrical in r, pressure and
the normal displacement is zero on a remaining boundary. These displacements cause
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in the layer by a rigid punch, inclusion which exists in a penny-shaped crack, obstacle
which lies between two the same materials, which are pressed together by a pressure,
The method of Hankel transforms is used to satisfy the equilibium equations and the
boundary conditions, which have three different parts. The solutions are obtained using
the technique of triple integral equations, which are reduced to three infinite systems
of simultaneous linear algebraic equations.
Recently Mastrojanis, Mura and Keer [3] studied the mixed boundary-value problem
. for an isotropic half-space with the following boundary conditions: the constant normal
displacement is prescribed inside a circle, outside of which the normal stress vanish in
an annular region and the normal displacement is zero on the remaining surface, while
the shear stresses vanish all over the boundary. The more general problem, pointed out
in the summary is considered in this paper.

2. Formulation

Consider a transversely isotropic elastic layer 0 < z < A, with the planes of isotropy
parallel to the boundaries. The stress-strain relationships of such a medium can be written
in cylindrical coordinates (r, ®, z) as follows:

Or = C116,+C1260+C13€;,
0o = Cr26,+C1 €0+ C13€;,
0, = Cyae,+Ci3tetCaze,, 2.1)
Oz = C44€r,
Ooz = C44 €6,
1

09 = 7 (cy1—ci2)ere.

Here c;;’s are the elastic constants,

The foregoing strain e;; can be first written in terms of the displacements and then
substituted into the preceding equations to obtain the stress-displacement relationships.
The relationships are finally used in the equilibrium equations to form a system of partial
differential equations for the displacements. In the problem with axial symmetry the
displacements (., 0, w,) satisfied the equations

a1 0%u,
Ciy ar[ (ru,)]+(cl3+c44) o 0z =+ Caa E)Z =0,
1 0 [ ow, 1 9 Pw, @2
Caa o ( ar )+(C13+C44) [r a—r("ur)]'i‘css 2z —— = 0.

The solution of the equilibrium equations is given by two displacement potentials
®1(r, z) and @,(r, z), and the components of the displacement and stress can be expressed
in terms of those potentials as follows:

7} 0
U, = ~3—I'— (I“Px + 972); W, = —52— (?’1 +k<p2), (23)
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o2
o, = _044(k+1)a—22 (L +w2)—(c11 — 1) Yu,,

o? u,
g = —644(k+1)a—22(‘P1+‘P2)—(C11-C12)“al; ,

(2.9)

32
0'z = C44(k+1) W (S;2¢1+S52(p2)3

52
0r; = Caa(k+1) = (91 +@2),
oroz

provided that the potentials ¢, (r, z) and @, (r, z) are the solution of the differential equ-
ations

02 1 0 1 &2 )
W+TW+T?—327)¢[(”’ z) =0, (=12, - (2.5)
and if the parameters s? and s3 are the roots of the following quadratic equation for s2
C33Csa5* —[C11033— 132 Caa+C13)ls* +eiscaq = O, (2.6)

and the material parameter & is a function of the elastic constants and the characteristic
root §2

k = (c3351—caa)/(c13+Cas). 2.7
The roots s? are either both real or a pair of complex conjugates, depending on the values

of the material constants. Both types of root give physically meaningful results.
The conditions specified on z = 0 inside and outside the annulus 1 < ¢ < 1 are

d—ub*0?;, 0<p< 4,
w.(e, 0) ={ 0 1 <o, (2.8)
0.(0,0) = —pofle); A<pe<1, ' (2.9)
0:4(0,00=0; 020 (2.10)

and the displacements and stresses vanish at infinity. The layer at z = A is elastically
supported such that

o, mM=0; >0, 2.11)
o.(0; ) = —cowzlo,7); @ = 0. (2.12)

In above equations, nondimensional variables and parameters are as follows: ¢ = r/b,
¢=1z/b and A =alb, n = h/b, where a and b are the inner and outer radii of the
annulus, respectively. Inside the annulus normal stress pof(g) is arbitrary, but assumed
to be symmetrical about the z-axis. The parameter ¢, is the spring of stiffness of the
foundation.

In the boundary conditions (2.8), which have three different parts, only constant or
quadratic with respect to r normal displacement were prescribed within the circle. The
conditions (2.8) corresponds to the displacement distribution produced by the indentation
of a surface of the layer by an indenter, when its shape is specified. If the contact surface
of the rigid indenter is spherical in shape with radius R, the shape of the indentation can
be written as g(r) = 6—r?/2R. The condition required to this equation is that the radius
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a of the contact area is small compared to the radius of the contact surface of the indenter,
The condition is indeed satisfied in usual stress ranges. This equation also applies for an
oblate spheroid with semiaxes d, and 4,. In this case, the radius of curvature of the sphe-
roid at the center of the contact area is R = d?/d;, d, being the minor semiaxis along
the z-axis. The displacement-shape function w,(p, 0) in equation (2.8) is identical to the
shape of the rigid indenter inside the contact area with unknown radius equal to 4 = a/b,
but is unknown outside the contact area A < ¢ < 1. These displacements cause in the
layer by a rigid punch, inclusion which exists in a penny-shaped crack, obstacle which lies
between two the same materials, which are pressed together by a pressure. In the last
case there is the compatibility condition {dw,(r,0)/dr},_, = 0. For infinitesimal elasti-
city. theory, there is no loss of generality if the profiles of the inclusion and obstacle or
of the base of the punch assume that g(r) = d—r?/2R, where 1/R = 2x is the curvature
at the center of the contact area and dJ is semiaxis or the (prescribed) vertical penetration
depth of the punch. From a physical consideration, the contact stress should be finite
for a smooth indenter whose contact surface does not have any abrupt change in slope.
The unknown contact radius a is to be determined later using this condition.

Using the method of Hankel transforms, the condition of vanishing shear stress in
equation (2:10) and (2.11) and the boundedness conditions at infinity the displacement
functions ¢;(r, z) are found to be

Ple O = (=11 g S f (2 s

Gy(ke+1)(s,
1
W (C—"'lx"COShS, xc _gl (x'r’) COShSlx(lr’ - C))} + (2.13)
f .
aw(x) L
m [coshs; XL —ga(xm)coshs x(n—)] ¢ Jo(x0)dx;  i=1,2,

where Gy = c44 is the shear modulus in the z-direction and Jy(xp) is the Bessel function
of the first kind and zero order. The unknown functions p(x) and w(x) and the unknown
contact radius A are to be determined using the remaining boundary conditions (2.8),
(2.9) and (2.12) and the finiteness of the contact stresses between the indenter and the layer
surface. The functions g;(x7) and g,(xn) are known and defined as follows:

1 cosh fx+ af~sinh fx—~e~**; i=1,
sinhox+oaB~1sinhfx
{ot, /3} = 81 +85.
The material parameter « is allways real and £ is either real or imaginer.
We can easily obtain the displacements and stresses by substitution of the displacement

potentials (2.13) into the expressions (2.3) and (2.4). In particular, the displacement w,
and the stresses o, and o,, on the surfaces of the layer { = 0 and { = 7 are given as

&(x) = 2.14)

2B71(s, sinhs, x—s,8inhs, x); =2,

CG dw,(e, 0) = of (P — g, (xm)] — (%) g2.(em) }o(xe) dx, (2.15)
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[ve)
CGibw,(0,m) = — f w(x)Jo(x@)dx,
)

b2,(0,0) = — | xp(0)To(x0)dx, © (215
[cont.]
b20.(0, ) = — [ x{p(x)g2(xm) +w(x)[1— g5 (xm)] } Jo (xo)dx,
0

Uzr(@’ 0) = Gzr(g’ 77) = 0,

where
_ [l —g&()][1+g(x)] _ , coshax—1—a?f~2(coshfx—1)
() =1~ [—g,(x) =1 sinh ax+ af~!sinh fx » (2.16)
and
C=(k+1)k—1"(ss =571, (2.17)

is a real-valued function of the elastic constants and the characteristics roots.
Substituting the stress o,(¢, ) and the displacement w,(p, %) into the condition (2.12),

we get
oo

f P g0+ 0L —gs(xm+e, o)y x To(x)dx = 05 @20,  (2.18)
0

where the constant

Coh :
= —— 2'
“=G.Cco . 2:19)
describes the relative rigidity of foundation to layer, it being zero when the lower surface

is stress free and infinitely large for a perfectly smooth rigid base.

Thus .
p()g2(xn)+ w(x)[1 ~ga(xn) + ¢y (xn)~'] = 0. (2.20)
Get a new unknown function #(x) and set as follows _ ' '
PO —g1(xm] —w(x)g2(xn) = 1(x). 2.21)
Then
p(x) = 1)1 =h(xn)], ox) = —t(x)h(xn), (2.22)
where

_ &) —ci8(x)
M) = e —en( ~

cosh ax— 1 —«?8~2(cosh fx—1) + ¢y x~*(sinh ox + af~* sinh fx)

= 1— ,
sinh ax+ af~1sinh fx+ ¢y x~1(cosh ox —cosh fx)
) (2.23)
ga2(x
h = e2\
1) 14c;—c g1(x)
— 28~ sy sinhs, x —s, sinhs, x

sinhox + o~ Usinh fx + ¢y x~ 1 (cosh ex —cosh fx)



300 B. RoGowsKI

With the help of the known functions A(x») and hi(xn) and the only one unknown #(x),
the boundary values of the normal displacement and stress can be rewritten as follows:

[ee]

CGybwae,0) = [ 1()Jo(xe)dx,
0

o]

CGbw.(o,m) = f 1(x)hy (xn)Jo(xg)dx, (2.24)
0

b20,(0,0) = — | xt()[1—h(xn)lJo(x)dx,
) 0

o(e, m) = —cow.(e, 7).
Hence, 1(x) is the only unknown which from Egs. (2.8) and (2.9) can be found from the
triple integral equations

e CG b(6—nb%0?); 0< o< 2,

[ 1) Jo(x0)dx ={ ! (0. #b*e”) 1 <9 (2.25)
0 ] % 0,
[ xt()l~hGem)Jo(xe)dx = pob*f(@); A <o <1, (2.26)

0

with A(xn) being defined by Eq. (2.23). Since it is difficult to solve Eqs. (2.25) and (2.26)
directly, these equations are solved in an approximate method to yield the parameters
which characterize the contact.

3. The series solution

We assume the function #(x) in the form

ox | x ox

1(x) = 2CG, xbsi[l 9 Jo(lx)]+ f FOP)T, (xR) AP, G.1)
0

where F(¥) is an arbitrary continuous function in the interval 0 < ¥ < mand
2R2=14+2—(1-2Hcos¥; A< R<1, 0gs¥<ga 3.2y
Using (3.2), the variable R in A € R < | can be exchanged for a new one ¥, which is

0< ¥ <@, when R = Acorrespondsto ¥ =0and R=1to ¥ = .
Substituting Eq. (3.1) into w,(e, 0) of Eq. (2.24),, we obtain

F 1 (2—¢?); 0<o< A,
Wile, 0) = (CGy )" | — F(P) H(R—g)dW/+b? (33)
4 R 0; A<op
where H(R—p) is the Heaviside’s function.
We see that:
(i) The displacement w,(g, 0) equals 6—xb?9* ine the interval 0 < p < A provided that
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the compatibility equation

;o
b 42 + (CG, by~ f = EOa? = 6 (3.4)
0

is satisfied.
(ii) The displacement is a function of pin the interval 1 < o € 1 i.e.

w,(e,0) = (G, Ch)~! f—F(‘P)d‘If 3.5)
o
where
202 = 1+A*—(1—2*cos?; A1<po<l, 0< D Ln. (3.6)
(iii) The displacement equals zero in the remaining interval ¢ > 1 independent on the

function F(¥).
We now assume a series expansion with unknown parameters aq, a,, a,, ... for the
function F(¥) as

FY¥) = -;il—b'zR Za,,cosn‘f’; 0< Y <. 3.7

Equations (3.7) and (3.4) lead to

ap = CG b~ 1(8—xb%22). ' (3.8)
This equation yields either an unknown radius of the contact region A for a curved base
of the indenter or for a flat indenter yields the parameter 2y, because in this case the
extent of the contact is known beforehand. For a curved base the parameter a, may have

to be found so that the contact stress is finite at the boundary of the contact region.
Thus the displacement w,(p, 0) is given by

[ - xb?p?; 0<p< A,

w,(0,0) =1 (6— %b212){1___[q)+_2_ Slnn@]} A<pogl, 0P,

0; L<oeo.
N 3.9)

The unknown portion of the displacement-shape function in the interval 0 < @ < =
is in the form of the Fourier series and is determined by substitution Egs. (3.7), (3.8)
into Eq. (3.5) and integration,

Two of the three equations, namely Eqs. (2.25), are satisfied exactly.

In our problem contact is maintained only by compressive stresses; in these unbonded
frictionless contact problems the extent of the contact is the primary unknown quantity,
and the contact stress is finite at the ends of the contact regions.

The last condition may be replaced by

anite.0)|

= —2ub?2, ‘ (3.10)
d@ loe=2A
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which leads to the condition F(0) = 0 or

D a4 =0, G.11)
n=0

and then the surface of the layer contacts smoothly at the edge of the contact region with
the indenter.
By substitution of Eq. (3.7) into Eq. (3.1), we obtain

0
g |1 .0 0
t(x) = 2CG1 ’fbs 3—x |;¥ 'g]o(lx):l—bz 2 Qa, Z"(x) B (3.12)

ox
n=0

where
Z,(x) = J, [% (- z)] 7, [% a+ 1)] . (.13)

The stresses in Eq. (2.24); which correspond to (3.12) are as follows

0.0 = e f 1 —hGen)] 22 gy~

n=0

0
-2CG, xbof [1 —h(xn)] M [_)178—6x Jo(lx)] xJ o(x0)dx, 3.19

and are bounded at o = A under the condition (3.11); it is clarified bellow (see Eq.

(4.10)).
The preceding equatlon and Eq. (2.9) lead to

D [ 1-hopy P2 gy gy =
n=0 0

(3.15)

~—-2CGlxbf [L—hA(xn)] — " [1 g Jo(lx)]x.fo(xg)dx —pofle); A <p < 1.

Multiplying both sides of Eq. (3.15) by p, using the formula xoJ,(xp) = d[eJ;(xe)]l/%
integrating with respect to ¢ and using the formula 3[J,(x0)]/dx = —pJ,(xp), we obtain

Z f 0 -heen) 229 2y gy =

(3.16)

~ 206, xb f [1=hGen)] [ ’ Jowc)] o Vololdx—c+pof*@;  A<e <1,

where
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e
%) = [ f(sas, (3.17)
0
and ¢ is an unknown integral constant.

Equation (3.16) is solved under the assumption that the moment 1 *(p) of the function
f(p) may be expanded in Fourier series, namely

i

JE+2 Zf,’,‘,‘cosm@;

me=1

f *(e)

A<e<l, 0<Pga. (3.18)

I

1 T
* .
s - E)ff(ﬁi") cosm@dd;

By substitution of these equations and the Neumann’s formula into Eqgs. (3.16) and equa-
tion the coefficients of cosm® in both sides and assumption of the parameters a, as follows

a, = 2CG»ba,’ —ca, +pyay, (3.19)

we arrive at the three infinite systems of simultaneous equations for the determination
of the parameters a,, g, and a’

n

o0

D, Gl = 1,

n=90

Za:l’Amn = (SOm, (3.20)

<

n=

D@ Ay = Ba;  (m=0,1,2,..)
n=0 '

with the Kronecker delta d,,,, the coefficients /¥ defined by Eq. (3.18) and the matrices

- 3
Apn = f [1—A(xn)] i‘%’"x(—x) Za—"g) dx,
0

B, = f [l—h(xn)]—%[%%Jo(lx)]—aZme(de= (3.21)
0
3D [ A=A ] Tm+(1/2)]
= —g W+ N+—— [(1+¢)2] Tm+ DT T—m+ G2

3 1 1-2\? 24 \?
Flm—— . . —H™(A, ),
x4[m 2,m+2,m+l,m+l,(l l)’(l Z)]H( 7))

where F,(- +; - -; - +) is hypergeometric series of two variables [4] and I'(-) denotes
the Gamma function, I7'(2) and I¥'(A) are presented analytically in the authors paper [51
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and the improper integrals

~ T '
(3, 5) = ng heen) aza,,,x(x) ) z(xx) de; (m=0,1,2,.)), (3.22)
[}

can be evaluated numerically in finite interval, because those integrand decrease expo-
nentially to zero with the increase of x, are continuous for any x € (0, c0) and are boun-
ded for x —» 0.

The coefficients f/* assume the form

[+ A2 1—22
f;: = 4 60171— ] 6‘lnn fO['f(@) =

(3.23)

fot = ——gocosm®qy, for flo) = d(e—go) = H(P~Dy),

1
E
for a constant normal pressure p, and concentrated forces P acting at the circumference

= go € (4, 1), respectively. For @, = =2, i.e. go = [(1+A?)/2]'/? the values of the
coefficients f;¥ are: pof/m for m=0,4,8,...; 0 for m=1,3,5,... and —gyfn for m =
= 2,6, 10, .... In the case of the load on the circumference p = g, the stress p, in Eq.
(3.19) and subsequent equations would be replaced by P/b.

Notice that the matrix A, is symmetric and can be evaluated by the similar method
as in the autor’s paper [5]. The first two systems in Egs (3.20) correspond to constant
displacement in a circular region (2 = 0 — cylindrical punch or inclusion). In the last
case is a, = —ca, +poa,. To evaluate the unknown constant ¢ we make use of the con-
ditions (3.19) and (3.11) which lead to

2C6, b 2 "'—CZ a, +p02_, d,=0. (3.24)

For the constant displacement § in the circular region 0 < ¢ < 4 we have from Eq. (3.8)
ay, = CG, 667" and the constant ¢ is determined by equation

—cag +poap = CG b4, (3.25)

Consequently, the presented three-part mixed boundary value problem is reduced
to the solution of the simultaneous algebraic equations (3.20). If we determine @, from
Egs. (3.20), (3.19) and (3.24) the function #(x) will be presented by the equation (3.12).
The infinite systems of simultaneous algebraic equations can be solved by truncation
[5, 6]. As a result of the above analysis all components of displacements and stresses and
the parameters which characterize the contact can be found.

4. Displacement and stress fields

The normal displacement on the upper surface of the layer is given by Eq. (3.9) and
on the Jlower one is
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wios ) = 20272 | Iy G e A Ty () s —
0

a
- (Gl CY)-.‘l b a,
n=0 1]

Jo(xg)dx @1

and can be rewritten to the form

we,n) =90 m%+2%b212f A T (x D) [To (xo) by () —
1 0
— el ()Gl + ——”ﬁ Z @ f 2OV i (1)~ (ko) o

@2

where Aj(xn) is the x-derivative of the function 4,(xn). The normal stress on the surface
{ = n is proportional to these displacement.
Making use of the identity

(<]

[ o) 2D i = —(1+0-2 ), (43)
0

where the improper integrals
1y = [ To(x)Za(x)dx (4.4)
0

are presented analytically in the author’s paper [5], the stresses o.(o,0) in Eq. (3.14)
can be rewritten as follows

0

d
0.(0,0) = — va"[ o+o——Ig+h" ;ﬂ', ]+
(e, 0) £ b+ o (e; 4, m)
— 3 1 0? o
-\ = -~ -5 S <}"
o) oce
1
+2CG, xbA| Ak(o; A, 1)+ —; A =o, 4.5
1172 (3 3 A2
ekl i -~ . PR, I s
| 8 (9) F(Z’ 2, 3’ 02)’ }' Q

The symbols F(-, +; +; -) denote the common Gaussian hypergeometric series
and 7*(¢; A, ), h(o; A, m) are the improper integrals defined as follows

5 Mech. Teoret. i Stos. 3/86
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e d ) = [ sheniote) 2 gy,

1]
- ) (4.6)
hos A,m) = [ hGen) T, (x2)Jo(xe)dx,

0

which can be numerically evaluated at the finite interval, because the function A(xz)

tends exponentially to zero as x tends to infinity. The maximum value of the contact stress

at the center p = 0 is
\

[o2(0, O)Jmax = 0,(0,0) =

0

1= 2\" I'fn+(1/2)]
2”"(1+A) T+

n=0

él[to

@
(1 1 1=\ .
XF(T: ”+7, n+1, (1_’_—1) )_;’anh ©; 4,7+
+2CGyxbA[AR(0; A, n)—1], : 4.7

where I'(-) denotes the Gamma function.
On the other hand, making use of the asymptotic expansion of J,(xe) with large value
of x, we obtain
10Z,(x) . 2
X *
ox 2 '/ 1=

—1)cosx]+0(x") @9)
and

o0

oz, (x) { 0z (x) 2 . . }
Jo(x0)dx = ——— [AsinxA— (—1)"cosx]¢Jo(x0)dx—
6[ 0 f w2 sinxA—( 0sx]tJo(x0)dx

2 [ MO~ _ s, H(e—l)] @)

Cw1=R Vg Ver~1
where the values of the Weber-Schafheitlin integrals were employed.
Then, the normal stress in Eq. (3.14) can be represented as

o0, 0) = Za,, f [ 3Z,,£x) '/2_ (AsinxAd— (- 1)"cosx)]Jo(xg)dx—

2 AH(A— o) H(g 1) )
T Y1-A% [V/12~92 = - 2(—1) ]

n=0

_Z ~a,(g; A, m)+2G, CxbA[Ah(o; A, )+ (4.10)

n=0
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3 1 0? h
—F(»g—,—7.;1;7); 0 90< 4, [4.10]
[cont.]
1. = A
-+ J'E, g =
12\ (3 3 ,12) '

where H(-) is the Heaviside’s function.

The first series in equation (4.10) is finite, the second must be zero because the contact
stress is finite at ¢ — A~ for aidenter with a smooth curved base (this condition corresponds
to Eags. (3.10), (3.11)) or has a sinularity when ¢ — A~ for a identer with a flat base or
corners, the third series has a singularity when o — 17 in both cases and the others terms
are nonsingular. '

The physical quantity of interest is the stress intensity factor L, which is defined as.

L, = Y26 1imVe~T (0:(¢, 0}o>s- @11
o—>1*
Using Eq. (4.10) the stress intensity factor can be expressed in terms of a, as
2YF N
L, = E —D"a,. 4.12
b . 'l/l _ 22 < ( ) lll ( )

The stresses decrease from the maximum value to zero in the interval ¢ e (0, 1),
where are always compressive (for a indenter with a smooth curved base), are given by — -
Pof() in the interval p € (4, 1) and decrease from infinity to zero in the remaining inter-
val ¢ > 1, where are tensile, Notice that the stress is finite inside the contact region and
has the desired square-root singularity at ¢ = 1%,

Use is made of families of above solutions, as described in the following sectlons

5. Punch problem
A punch problem is a particular case of the more general case considered in the previous
sections and the formulae obtained there can give its immediate solution.
If xb?p? denotes the shape of the punch, § is measure of the penetration of the punch,
the boundary radius of the contact region A is given by Eq. (3.8) and the total load on the
punch is given by

P = 3 a O~ B+ I, }+ 36,05 1= L i, )], 6D

n=10

where the improper integrals

aZu(x)

HY(2, ) = 247 f hem) 1) 22 gy

. (5.2)
HQ,n) = [ x~h(n)Jy(x2) T (xA)dx,
0

are convergent and equal to zero for a half-space problem.

5%
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The relevant solutions of the special cases are summarxzed (i) Indentation of a layer
or a half-space by a cylindrical punch.

The curvature x is zero for a punch with a flat base, Apart from the displacement
and stress there are four parameters which characterize the contact; these relate to tota}
load P, the central displacement w_(0, #) on the lower surface of the layer and the stress
singularities at the outer and inner boundaries of the annulus. It may be shown that

these are:
P = ﬂCGlda{%-Ti-z—[F(iz,—;; 1;1—;2—)]2+
+(,1_§7)3F(%_% 1;%)1?(%,%;3 lzjl)mma -+
+4 Zm: a..[lé'()»)—li'(ﬂ)+H (2, M, (53)
S - e Z a f WENZMd, (68
2y [ 3 3]
| 6.9
N NS |
where
a, = CG, %‘;—Z—poag (—2%~Z—2) (5.6)

and the parameters ay, a, are the roots of the first and second systems of algebraic equa-
tions (3.20).

The contact stress is given by series
6 0 a 0 (4]
o.(e,0) = _CGJ.?Z' Io+9%10+h (o5 A,m)—

—2 a, {13+93i913+h"(@; A, n)} )

n=1

and has the minimum value

) 2
7:(0,0) = —2CG, —2— [ﬁﬂl F(%—;- 1 (%_1—1‘) )+/1h°(0; l,'r})]—
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" In+(1/2)] 1 1-1\?
—;“ 1+12 (JH) T{n+1) F(? rtgintl; (Tﬁ))“

= a4, 0; 2, ). (5.8)
n=1

Taking 4 > b(np —» o), we have H"(4,%) = h"(o; A, %) = 0 and the above solution
leads to the one of a half-space problem. In order taking p, = 0, we obtain the solution
of the problem in which the annular region 4 < ¢ < 1 is stress free. Similarly, if po = 0
and b > a (41— 0), we can also obtain, by evaluation of the limit under A — 0 the solu-
tion corresponding to stress free surface outside the contact region. Notice that if f(g) = 1,
which corresponds to the constant pressure in the annular region and b » a(i — 0),
but b is bounded in the half-space problem the roots of the system (3.20), have the form
of the set as [6]

, 4

== (4 —1)(1+ 640) ° (r=012"). ¢

which satisfies

) (=D'ay, =1, a, =0, (5.10)
2 2
n=0

and the parameters @, are

2
a, = ———

[ @=srsm e
Po | 2 Z1)(1+ 6,0)

In this limiting case the stress intensity factors are

2 s 2 12 )
La_ —;]/a (CG1 T—;po) (1+a6, a, |

6 17
+CG; o Z (5.11)
0

n=1

2 52 1,
L, = ;l/b [Po+(CG17—; Po) (1+0_32(_1) an)])
n=1

where the parameters o, are the roots of the equations

Z f [JZ(%)]j [JZ( )]dx—éo,,,, m=0,1,2,..). (513)

n=0

(5.12)

It is interesting to note that the presence of compressive outside stresses makes indentation
easier while tensile stresses make indentation harder. For example, if 2 po/ = CGy 6/
the preceding stress intensity factors tend to zero and to the value in the classical penny-
shaped crack problem, respectively.

Only in the limiting case of the half-space problem with stress free surface outside
the contact region we can obtained from the above mentioned results the closed-form
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solution. It 1s

2 0 1
P =4CGda, 00,0 = ~— CG, 777

= H(l1—y9),

w,(0,0) = 6 [H(l —Q)+% arcsin (—ZT) H(p - 1)]; o = t/a, (5.14)

2 éd =
Laz—';CG]_?l/a, Lb—*o.

(i) Two punches, stress free lower surface.

The ratio ¢; = coh/CG describes the relative rigidity of foundation to layer; it being
zero when the lower surface is stress free and infinitely large for a perfectly rigid base.
Using the functions k(xn) and k. (xn), in Eq. (2.23), which for these limiting cases are
reducible, we obtain the solution of the contact problem for a thick plate of height 2k
by a pair of the same punches, which are pressed onto both surfaces of the plate and the
solution corresponding to the stress free lower surface of the layer respectively.

(iii) Concave punch.
If the method is applied to concave punch, then using Eqgs. (3.8) and (3.19) the para-
meters @, are found to be

1! 11 ret

n aﬂ
4, = CG,b laﬁ——poao("" a”)+2€G b~uA~2a} (“ ___) (5.15)
do a a a

0 ao 0 0

where © = —xa® and ¢ are the measures of the concavity of the base of the punch and the
penetration of the punch at ¢ = 4, respectively. The stress concentration factors at ¢ = 4
and o = 1 are given by equations (5.5) and (5.15).

Only in the limiting case of the half-space problem with stress free surface outside
the contact region we obtain from the above mentioned results the closed-form solution’
It may be shown that these are

P = 4CG1a(5—%—u), (> PO:EGlCau)

3
2 §— 2 .
Gz(@: 0) = _; CGla—l“—’V:?lu—Jrf’:lL’ é = 311, o= ’7, (516)

w.(e, 0) = [0—u(l—p 2)]11’(1—‘9)+—{[(3 —u(l—p 2)]arcsm%—u]/@ - }H(g—l)

The condition that the entire punch surface makes contant with the half-spaceis o,(p, 0) < 0
in 0 € p < 1. Then we obtain the condition & > 3u. The critical load P, means the
minimum indented load for the entire face to contact. If P < Py or 8 < 3u, the contact
region becomes annular. The above equations are valid for circular contact region. Addi-
tionally, if u < 0 and 6 > —u, the punch face is convex and the stress o,(p, 0) is always
compressive on the contact region. If ¥ < 0 and 6 < —u the stress a.(e, 0) is compres-
sive without the neighbourhood of ¢ = 1. The physical aspects of the corresponding

isotropic problem are discussed by Barber [7], Shibuya [8] and for transversely isotropic
material by author [9].
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(iV) Parabolic punch

The general case of parabolic punch was presented above. Notice only, that these
results for the half-space problem with stress free surface outside the contact region by
purely limiting manipulations lead to exact solution

0 =2xa*, P= -linCGla

o, _
o,(e,O)=—;6G171/1—92; 0<e<1, (5.17)

wi(e,0) = i [(2 ez)arcsm(g)ﬂ/e 1, e>1; ¢=-—

6. Crack problem

The stress distribution produced by the indentation of a penny-shaped crack by an
inclusion and tractions in a transversely isotropic layer can be investigated using the above
mentioned results.

If we consider a layer of height 2k weakened by a penny-shaped crack of radius b
located in the middle plane of the layer and opened by a thin symmetric rigid inclusion
of profile z = + (6—xb?0?) and by tractions acting outside, then in such a crack problem
formulae obtained in the previous sections can give its solution. By virtue of linear super-
position, the stress field is equivalent to the field generated in the crack faces that are equal
in magnitude but opposite in sign to the corresponding tractions in the uncracked layer.
The last displacement and stress fields are obtained as the particular solution of the
equilibrium equations. In particular: u,, = poreiafc, Wio = —poz(cy +cy2)f€, 0.0 =
= —py, if on the clamped-free faces of the layer the pressure p, is prescribed. Here ¢ is
a combination of the elastic constants, equal to ¢ = ¢33(c;3+¢y2)—2¢%5.

Apart from the displacement and stress there are the stress intensity factors which
characterize the crack problem. These are given by Eq. (4.12) for smooth inclusion and
by Eq. (5.5) for cylindrical inclusion. In the special cases the stress intensity factors at the
inner and outer boundaries of the annulus @ < r < b are given by

_2686,¢ ./ a | 12“’,,
Laf—; b ‘l/l—}.z ll+;16—l a,,],

n=l

2 8G,C .
L, ~ 2% ]/1_12[ Z( 1)an], 6D

when the crack is opened only by cylindrical inclusion (po = 0) and

: 2 (e, & &
L= - ]/1:112 e PRIt 62
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for cylindrical inclusion and pressure

L 2(-1)" %

Po Z Poor = CG, —bZZ_('; © 2l

Z(—l)"("" —‘i),

n=1

(6.3)

where the critical load po., means the minimum pressure for the tip p = 4 of the crack
to contact. When the pressure at the layer surface is above the critical load we have an
annular contact region between the crack faces, the outer circumference of which coincides
with the crack tip and the inner radius of which will shrink with increasing load.

The crack problem for high loads can therefore be treated by contact problem of the
layer and rigid base with protrusion, which is discussed in the other author’s paper [6].

The stress in ensity factor L, is allways negative, decreases with the, increase of the
external pressure to value (6.2) and for the pressure above the value (6.3) depends on the
load as in the contact problem [6]. In contrast L, is positive and decreases to zero.

On the other hand, in the case of the tension of the layer with cylindrical inclusion in
the crack, there may be cases that the inclusion surface makes partially contact or does
not make contact with the elastic medium. Let p;., be the tension giving the state in which
the layer contacts the surfaces of the inclusion without neighbourhood of the point e= 0
Then for thick layer Eq. (5.6) and (5.8) give

1 v
BO+—r Z’ @ I0) -
Pocr = : (6.4

1+a021(0)( )

When the tensile load p, is above the critical value (6.4), the contact area will be an annu-
lus, the inner circumference of which increases with the increase of the load, and when
the load is above some value pg,, the elastic body does not make contact with the surface
of the inclusion. These critical loads can be found from the condition w.(4, 0) = &, where
w.(4, 0) denotes the displacement of the penny-shaped crack in the point o = 2.

For a thick layer these critical loads are given by formula

o1
b y1=a"

Very interesting case in which the tension is in the interval pj, < po < Po. and the
contact region on thg cylindrical inclusion is annular is not included in our solutions.
By substitution of Eq. (6.5) for 1 = 0 into -Eq. (5.12) .we obtain L, - 0 and L, =
= 2po l/b/ﬂ
The physical aspects of the corresponding isotropic problem are discussed by Tweed
[10] and Gladwell [11].

1 2
Poer = _'2— Gl C (65)
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7. A rigid inclusion pressed between two layers

The solution presented here may be applied to the following problem: two identical
transversely isotropic layers are pressed together by a pressure; a rigid obstacle lies bet-
ween the layers. The solution for each layer may be obtained as the superposition of two
fields. The first corresponds to a stress field in the z-direction namely o.(r, z) = —pof(r).
The second may be expressed by means of the above mentioned results provided that the
compatibility equation {dw.(r, 0)/dr},_, = O is satisfied. This is the equation gividg b,
the extent of the contact region. Thus, on using Egs. (3.5) and (3.7) we find F(x) = 0 or

Z (—I)"(l,, =0, (71)

n=0

which with the aid of the notation (3.19) may be written

2CG,%b D, (= 1ya)" —¢ D) (=1)d] +py D, (= 1y'a), = 0. (7.2)
n=0 n=0 n=0 .

Assuming the ratio of the inner to the outer radius of the uncontact region 4 = a/b
and the ratio n = A/b an solving for given external pressure distribution the equations
(3.20) we can obtain the parameters a;, a, and a;’. Then, Egs. (7.2) and (3.24) yield the
value of the pressure p, and Egs (3.8) and (3.19) the value of 4 in terms of known quan-
tities; the values which give this contact state.

Full details of the other corresponding problems may be found in the articles by
Alblas [12], Gladwell [13, 14] and author [6].

8. Isotropic case

All the results obtained in this paper can also be applied for completely isotropic
bodies.

Setting « = 5, +5, = 2 and evaluating the limit under g = s; —s, — 0 in Eq. (2.23),
we get

h(x)—1 o
{ hi(x) } T Sinh2x+2x+¢; x~1(cosh2x—1) %
—~[cosh2x —2x% ~1+ ¢, x~ 1 [sinh 2x +2x)]
x { 2(sinh x +xcosh x) ‘

8.1)

For an isdtropic material the parameter C reduces to (1-»)~! and the relative rigidity
of the foundation to- the layer is ¢; = ¢oh(1 —~»)/G. Here G is the shear modulus and »
is Poisson’s ratio.

9. Conclusions

It has been demonstrated that a large',class of unbonded contact prbblems may be
reduced to the solution of the infinite systems of simultaneous algebraic equations.
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On the basis of the presented results the effect of arbitrary loading outside of an inden-
ter, of the boundary conditions and transverse anisotropy on the contact behaviour and
the load-contact length relation can be clarified.
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Peswme

KOHTAKTHASL 3AH0AYA XECTKOI'O TEJIA M TPAHCBEPCAJIbHO-H3OTPOIIHOTO
CJ104

PaccmarpuBaeTca 3aRa4ya TPAHCBEPCAIILHO-H30TPOIHOIO CI0A KOHTAKTHPYEMOIO C >KECTKHM TEJIOM.
Hrmxunit kpait crios yapyro nomnépreiii, Ha Bepxueli mlowanxe JaHo HOPMAJIBHOE NEPEMELIIEHHE BHYTPH
KPYroBoi oONEacTH ¢ HEM3IBECTHBIM PafXMyCoM, BOKPYT KOTOPOLO BBLICTYNAIOT HOPM&NBHLIE HANDSIKEHHMA
B 00J1aCTH 1COJIBYA M HCUEIAIT HOPMAIBHLIE IEPEMEIEHH Ha OCTANGHON UACTH BEPXHEro Kpas CiIoA.

__ SBapmaya cHopMYTMPOBANA KAK PEINEHNE TPOMHLIX MHTETDANBHBLIX YPABHEHHH. Tpu penrenmn STHX
ﬁpasﬂeﬂuﬁ MCIIOIIBAYIOTCA JuddeperiiHansHoe, HITErpaIbHoe M PANOBoe IPEACTABIeHUA HEN3BECTHOR
hyHHIUHH, KOTOPAs YOORIETBOPAET ABa M3 TPEX YPABHEHUH TOUHO, B TO BPEMA KAK TPEThE BEJET K TPEM
GeCKOHEYHBIM CACTEMaM arebpanyecKHX YPABHEHAA OTHOCKTENBHO K03 (bHIMEHTOR BBEACHHBIX B IIpeX-
CTaBJleHHH,

Dusyryeckne BENMYMHBI, KOTOPLIE XAPAKTEPH3YIOT KOHTAKT H KoI(h(hMIMEHTLI HHTEHCHBHOCTH
HAOPAKEHMA NPESCTABIEHB] DK TTOMOLIH ko3¢ dHIHEHTOR — penlenuy anrefpanyecKuX YpaBHEHMH,

Paccmorpeﬂbr HEKOTOpbIC 3aaUd O LITaMIIE, BKIIOUCHMH H TPEINHHE B TPAHCBEPCAIBHO-H3OTPOII-
HOM CJoe. .
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Streszczenie-

KONTAKT MIEDZY SZTYWNYM CIALEM I POPRZECZNIE IZOTROPOWA WARSTWA

Rozpatrzono zagadnienie warstwy poprzecznie izotropowej kontaktujacej si¢ z cialem sztywnym.
Dolna plaszczyzna warstwy jest sprezyscie podparta. Na gérnej powierzchni warstwy dane jest normalne
przemieszczenie wewnatrz kotowego obszaru o nieznanym promieniu; na zewnatrz tego obszaru wyst¢puja
normalne naprezenia, a na pozostalej czeSci tej powierzchni przemieszczenia normalne sa réwne zeru.
Na obu brzegach warstwy naprezZenia styczne nie wystepuja.

Autor sformulowal zagadnienie jako rozwigzanie potrdjnych réwnan catkowych. W celu rozwiazania
ich wprowadzono taka rézniczkowa, catkowa i szeregowa reprezentacj¢ poszukiwanej funkeji, ktéra
spefnia dwa z trzech réwnan Sciéle, podczas gdy trzecie réwnanie prowadzi do trzech nieskoriczonych
ukfadéw roéwnad algebraicznych wzgledem wspolezynnikdéw wprowadzonych w reprezentacji. Fizyczne
wielkosci, ktore charakteryzuja kontakt oraz wspodlczynniki intensywnosci naprezenia wyznaczono za
pomocy rozwiazan ukiadéw réwnan aigebraicznych.

Rozpatrzono pewne zagadnienia stempla, inkluzji i szczeliny dla poprzecznie izotropowej warstwy.

Praca wplynela do Redakceji 28 pazdziernika 1984 roku



