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1. Introduction

One of the first applications of the dimensional group of-transformations to the simila-
rity solutions of problems in fluid mechanics is found in Birkhoff’s Hydrodynamics [1].
The work was further extended for applications to partial differential equations by Morgan
and Michal [2, 3]. Moran and Gaggioli [4] applied it to a system of partial differential
equations arising in Fluid Mechanics taking into account the auxiliary conditions. Moran
and Marshek [5] made use of the matrices of exponents of the parameters of a group of
transformations to determine the similarity variables of a system of partial differential
equations along with their auxiliary conditions. Seshadri and Singh [6]- made use of the
similarity characteristic relationship at the wave front to reduce a hyperbolic partial differen-
tial equation into an ordinary differential boundary value problem in the case of wave
propagation in nonlinear elastic rods, Frydrychowicz and Singh [7] applied multiparameter
dimensional group of transformations to the analysis of quasilinear partial differential
equations of order two in two variables. In this paper, the technique is applied to the study
of wave propagation in a nonlinear elastic rod subjected to time dependent velocity impact.

A multiparameter dimensional group of transformations is widely applicable to a variety
of non-linear dynamical problems in fluids and solids. This approach leads to the determi-
nation of similarity transformations which in the case of unidirectional wave propagation
leads to a similarity representation consisting of an ordinary differential equation and the
associated auxiliary conditions. Making use of the similarity characteristic relationship
[6, 7], the wave front can be located in the transformed space. It turns out that in the case
of a nonlinear elastic rod when the similarity characteristic relationship is satisfied, the
kinematical condition of compatibility and the balance law of linear momentum are also
identically satisfied at the wave front, [8, 9, 10]. For general non-linear case the location
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of the wave front in the transformed space is given implicity and depends on the slope of
the unknown similarity function. However, in the case of a constant velocity impé,ct the
location of the wave front is obtained explicitly. The same result holds for time dependent
velocity-impact and linearly elastic case. A solution of similarity representation is obtained
by assuming the parameter of the material nonlinearity, ¢, to be close to unity. The solution
of general nonlinear case is obtained by numerical approach. A similar problem was treated
by D. B. Taulbee et al [L1] as a special case in their study of wave propagation in a non-
linear viscoelastic rod. However, there was no application of group theoretic approach,
and their results were obtained only for odd positive integral values of parameter of non-
linearity, ¢. Also the location of the wave front in the transformed space was assumed
fixed and the similarity variable was taken to be unity thereat which holds true only in
special cases. In general, under this assumption the kinematical condition of compatibility
across the wave front is not satisfied. Furthermore in the treatment of their special case the
transformation for y = 0 is not the similarity transformation since the variable 7 is no longer
present in the similarity variable. In this paper the application of the continuous multi-
parameter dimensional groups of transformations gives the similarity representation for-
mally, the location of the wave front and the boundary conditions are obtained precisely

nd the problem can be solved for any positive value of the parameter of nonlinearity, g.

2. Basic Equations

For a non-linear elastic rod the governing equations are:

LA ] equation of moti " 1
oy = T @, equation ion (1a)
de v s .
T T A compatibility relation (ib)
C dv ! I . . .
A 2 (_{7_) , constitutive law for a nonlinear elastic material (lc)
ox ot |\u :
where
e
=T YT a : (1d,¢)

x20, t20, g¢g>0.
The boundary conditions for a time dependent velocity impact applied in the direction of
positive x-axis are assumed to be in the form ,
é
HE=00 =V >0, (a)
and
u(x 2 x,(0),0) =0, >0, (2b)
The initial-conditions are
u(x,t =0=0, x>0, (3a)
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0
~a%(x,t=0), x> 0. (3b)

In the above equations x is the axial coordinate, 1 is the time, o is the normal stress, u is
the displacement along the x axis, v is the particle velocity, e is the strain, ¢ is the mass
density, u is the modulus of elasticity, ¢ is the material parameter of nonlinearity, 6 and ¥,
are parameters of the velocity impact, x,,(7) locates the wave front at any time ¢. Compress1—
ve stress is assumed to be positive. 7

Tt may be pointed out that the initial conditions (3a, b) are a Consequence of /(2b), as
at ¢+ = 0 the wave front in (2b) is coincident with the origin and (3a, b) follow. Thus, con-
ditions (3a) and (3b) are redundant and as a consequence only the conditions (2a, b) need
to be taken into account in the formulation of the similarity representation.

3. Determination of four parameter group of transformations G and
Derivation of similarity transformations

In order to determine the 4-parameter dimensional group of transformations G% (for
dimensional group of transformations see, for instance, [5], [7], [12], [13], [14], [15]) under
which the system of equations (1) together with auxiliary conditions (2), (3) are invariant
we introduce the following 8-parameter group of transformations:

. X=A.x,t = A independent variables
GB: "% \p = A, 1,079 = A09), V. = Ay V.; physical variables C))
U= Au,v =A4,v,0 = A,0; dependent variables
Where 4., Ay, A, Ay, Av,, A,y Ay, A, are eight nondimensional parameters introduced to
characterize the eight parameter dimensional group of transformations. In order to check
the invariance of differential forms involved in the basic equations, the group G§ may be
enlarged by including the following transformations

(’)cr\) _ o oy, 0
(’a}? = = At Ao s (5a)
dv v L, O
il P S 5b
\ Ot ) ot = AT A at’ (5b)
du\ o L, Ou
20 = 2 = el 5
( ot ) ¢ A A o’ (5¢)
v\ L. v
Rl LTS I i 5d
(&)= & aran 22, (sd)
z al* 2 [Er — A—lA‘IA—‘I—a— i)q_ (5¢)
alu) T ale PR a ‘
Making use of the transformations (4) and (5) the differential form of (12)
do dv
6a
{&\ tes ot } (6a)
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assumes the form
do . ov .
-1 4 Y9 -1
{[Ax] Ao‘ Y +Ao [At] Av@ a[} (6b)
which yields the expression (6a) whenever

Ay = A A7 A, A, (6¢)

Thus, (6a) is invariant under the group of transformations G§ and its enlargement consisting
of equations (5) when the group parameters satisfy equation (6¢). Similarly the invariance
of the differential form of (le) implies

Ay = A4, (6d)
and the invariance of differential form of (1c) yields
1 1 1
Ap= A, T AT AT A, C(6e)
Combination of (6¢c) with (6e) leads to
_l+q lta __a_ _4
Ay= A TUAST A, TR (6f)
Substitution of (6f) into (6d) and (6¢) gives ' '
| _i+e 29 a4 _4 _
Au = Ax q-1 A’q—l AQ q—1 Al_?—l , (Gg) :
-2 2 -t
Ap= AT A A A (6h)

Fineilly, the boundary condition (3a) is invariant under G2, whenever

1+q 144 q q

Ay, = A, TUAFYT 4 T8 (6i)
Similar treatment of the differential expressions of equations (1b, d) and (2b) yields no
additional independent relationships. Consequently, (6f, g, h, i) represent a system of four .
equations among the eight parameters; therefore at the most four of them can be considered
to be independent. So, the 4-parameter group of transformations G% assumes the form:

e

E=Axx, ?=A1t, (73.)
SE: ,u = A‘,,/.L, @‘—I = Aa(e q)’ (7b)
_ _lte e g _a_
Ve= A, 71 AFY 4, THATY, (79
GB- _l+a  2¢ g 4 :
4- i_l ={1x g-1 A’Q"l Ao q+1 A:—l u, ! (7d)
_lte t+a _ g _q_ '
U=Ay T AT 4, 47 o, (7e)
' 22 1. 4
G=A, " 4 4, T A o, (7f)

In the above relations S7 is a 4-parameter subgroup of G%. Also, the equation of characte-
ristic is conformally invariant under G? (see theorem 3 in [7]). It turns out that the kinema-
tical condition of compatibility across the wave front [8, 9, 10],
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du(x,t)y | | du(x,?) ou(x, t)y dx,(1)
[_ dt ] B [ a T ax dt ®)
and the balance law of linear momentum
_dx, () | dulx,t)
[G(x5 t)] =0 dt [ ot ’ (9)

across the singular surface, [8, 9, 10, are also invariant under the group G%. The symbol of
square bracket, [ -], in (8) and (9) means the jump of the function across the wave front.
The proof of invariance is similar to that given in [16], and is omitted here. This implies,
that the conditions on the wave front do not give further restrictions among the group
parameters and the parameters are essential.

The dimensional matrices associated with the dimensional group of transformations G%
assume the forms:

- l+g 29 ¢ q
qg—1" q-—1° g—1" ¢q—1
I+ 1+
A: —q_‘f, q_‘l’, —qfl, qﬁl , (102)
_ 2 2 1 q
. gq-17 g-1" -7 g—1_
1, 0, 0, 0
B: L), 1, 0, 0}, (10b)
0, 0, - 0, 1
C: 0, 0. L 0 . (10c)
_Ate d+q o4 4
g—1° qg—1 2 " g=1" g-1

The matrix BC, constructed by augmenting the matrix B with C, has the rank, r = 4, while
the matrix C has the rank, s = 3 (since ¢ > 0). These properties of the matrices BC and C
indicate that since r > s the similarity transformations for the problem formulated above,
can be obtained. |

Theorem 2 in [7] indicates that the group G% has [n+m+p—r] = [3+2+3—-4] = 4
functionally independent absolute invariants, where z is the number of dependent variables,
m — independent variables, p — physical parameters. Makmg use of formulae (1.16) - (1.21)
(1.21) of [7] we obtained respectively: :

7 = X172 ] [oq] fod]r, (1n
where I'y; and yy;, j = 1, 2, 3, provide linearly independent solutions to
bay 5 Cut byy
baa Co2 by
@ = — 1 <
Iy, bys + Z%w Cos | bys (12a)
baa Cag bia
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Taking into account (10b, c), the above equation (12a), can be written as

S
0 0 0 _U+a 1
g—1 . .
1
1 0 0 Yo 0
To| 7] v v =—| | (12b)
0 0 1 —_ 1 0
—~1
q
. 0
_0_ Ll- _0_ | g—-1 _ o
The system of equations (12b) gives
' q q q-—1
=1 =1 =1 13
Y11 T 1+q’ Y12 l+q’ Y13 1+q° (13a)
Iy, = here m = 1464 (13b)
12 = —m, where m= 1+ e
Substituting (13a, b) into (11) we obtain
=K, (14a)
where
, LI
. l(i)m VCHZI ’ (14b)
eq
m=1+6-"2 5 ¢ (14c)
1+q '

Next, the functionally independent absolute invariants are determined as new dependent
variables Fy, j =1, 2, 3:

Fy = a1t [ul s [oq] 2 [v] s, (15a)
Fp = o[t]*2[u]* [og) 2 [o.] 2, (15b)
Fy = ot} ][] [oq):[v.]">>, : (15¢)
where A;, and 1, provide linearly independent solutions to
2%} 3 Cot aj |
by, R’ » :
‘AJZ 2 +Z }'JCU o2 = - %2 s .] = 1’ 29 3 (163.)
b23 o= 00)3 a,3 .
baa Cua Qja

Taking into account the elements of matrices B and C, from equations (10), equation (16a)
becomes '
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. l+q
1
1 . O O —t‘q_ - fljz
qg—1
/1‘,2 +}-j1 +}-_]2 +/1_]3 = -
- q
0 0 1 _—-é_——_]— a3
q
—0_ hl O- ] #q—_-—l ] _aj4

kd

25

j=1,2,3. (16b)

In relations (16) a;, are the elements of the matrix A, (10a). For j = 1 the solution of (16b)

can be expressed in the form
)‘11 0: )‘12 = 0,
A1z —(1+490).
hence, the invariant F; assumes the form
FL = uV;lt“““’).

If j = 2, the system of equations (16b) leads to

)‘13 = _1:

221 =07 222=0; 123= —1,
122 = —90. \
Substitution of (19) into (15b) results in
B, = oV,
Finally, setting / = 3 we obtain form (16b)
q 1
j. = - = —-_— =
31 \'j+1, )‘32 q+1’ 133
26
Azg = — ——.
32 q+ 1

The last invariant of the group G4 assumes the form

_.2d e N S
Fy =gt ' p 9% (gq) M p, 07,

(172)
© (17b)

(18)

(19a)
(19b)

(20)

_—, (21a)

(21b)

(22)

The set {5, F,, F,, F3} of independent absolute invariants of G, given by (14a), (18), (20)

and (22), gives the following similarity transformations:
x

™

n=K

u(x, 1) = V 1 +OF (x),
v(x, 1) = V °F5(n),

a(x,t) = K t™F,(n),
where

{23a)

(23b)
(23c)
(23d)

(23¢)
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1-q

= 2 23t)
m= 1+0 T (23t)
L
’ K, = (uloqv®)'*, (23g)
26
= —, 2
M= (23h)

4, Similarity Representation

Making use of the similarity transformations (23), the system of equations (1) and
auxiliary conditions (2) can be reduced to an ordinary boundary value problem. The partial
derivatives appearing in equations (1), can now be expressed in terms of similarity trans-
formations as

ou : ,
S = Vel l(1+ &) Fy(n) — my Fi ()], , (242)
0v 51 ,
o = Vet PIBE () —mnFa(n)], - (24b)
do (my—-m) g’
W = Kth B F3('I’]), (240)
— 2 KV F) | (24d)
ax X L[4 b
21(=)] = q -K_‘)qzmm-lﬁa—”( Ymy Fs(n) — myF ()] (24e)
ot P 7 3 n 143 i’ .
Substituting (24a) and (23c) in (le) results b
Fa(n) = (1+8)Fy(n) —mFy(n), - (259)
the equations of motion, (1a), can be expressed in terms of similarity transformations as
- qF3(n) = —8Fy(n)+mnF(n), (25b)
and the constitutive law (lc), taking into account (24d, €), assumes the form
_ Fa(m) = —qmy F§(n)+gmnF3='(n) F3(n). (25¢)
The boundary condition (2a) also can be transformed to the similarity space, as
. , Fy(0) =1, , (26a)
and by the use of equations (25a, b) and (26a) we obtain '
' 1 8
F = (0) = — —
1(0) 155" F5(0) e (26b, c)

It should be pointed out, that boundary conditions (26) are not linearly independent and
only one of them can be taken into account for further consideration.

The boundary conditions on the wave front will be determined on the basis of the si-
milarity characteristic — relationship [6, 7] and the relation between F3(7) and F(z). The
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system of coupled equations (1) leads to the partial differential equations of second order
in terms of stress as

o2 5

Po o i Do 0= 0

o = g C e T ki vy Q7
Making use of theorem 3, given in [7], we know that the equation of characteristics of
quasi-linear partial differential equation (27) is invariant under the group G%. This allows

us to transform the location of the wave front into the similarity space. The characteristic
equation of (27) has the form

1j2 -
d_ (ﬂ) 5

I g (28a)
Making use of the equation (23d), (28a) becomes
dt og ' Azt ma-n a1
dx = (W) K 2t F_s (m (28b)
and hence
m(1-qg) Q(] 1/2 g-1 _u
t 2 dt = (——) K, 2 F;2 (n)dx. (28¢)
H“q _
Integration of both sides of (28¢c) gives
1 M2 oa-1 g-1 :
;t"‘ = (%) K2 F 2 (mx+ec. (28d)

For the characteristic passing through the origin the constant ¢ becomes zero, hence on the
wave front the following relation holds

1 g\ ezt a-1 :
m "= (ﬁ) K 2 K~U"F 2 () s (28¢)
where 7, is the location of the wave front in the transform space.

Finally, after substituting the values of K; and K in (28e), the similarity characteristic
relation assumes the form

Mo = (Rl 7 - (29)

It can be easily shown that whenever the characteristic relation, (29) holds, the kinematical
condition of compatibility, (8), across the singular surface and the balance law of linear
momentum, (9), are identically satisfied. The calculations are similar to that given in [16j
and are omitted here. The relation (29) locates the wave front, however, this is given
implicitly. In order to state full boundary value problems we need one more boundary
condition. This will be obtained by the use of the relation between Fs(n) and Fi(n). The
constitutive law, (1¢), is equivalent to

1

_@9@)? 30)

o(x,1) = M( Ep
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Making use of the similarity transformations (23), it is found that (30) becomes

1
Fa() = (—Fim)". (30
Now, we can eliminate F,(n) and F5(n) between equations (25a, b, c) to deduce a smgle
differential equation in terms of F;(n):

i-q '
{[ —Fipl * ~ "72'72} F{(n) —m(m—26—1)nFi(n)—6(6+ )F(n) = 0, (32a)
with boundary conditions

) 1
Fyi(0) = 135" (32b)
Fi(h=n.,)=0 and (32c)

1 q

77\0 = ——[ Fl(nw)] . (32d)

During the derivation of equation (32a) the relation (31) has been used and the cha-
racteristic relation (29) becomes (32d) after the substitution of (31). The boundary con-
dition (32c) is obtained on the basis of physical consideration, since the displacement u(x, 1)
is a continuous function and must equal zero at the wave front.

The boundary value problem (32) is in agreement with a special case of a more general
problem given in [17], however the solution in [17] is obtained only for almost nonlinear
case. The boundary value problems (32) can not be considered for arbitrary values of the
parameters & and g, suitable restriction given by equation (I4c) must be taken into account.
Also in order to include the physically interesting case of an applied velocity impact which

“1is infinitely large at 1 = 0 followed by a decay in time, the parameter 8 is permitted to take
on negative values. However, it seems reasonable to consider only those cases for which
both the impulse and displacement at the origin are finite. Accordmg to equations (23b, ¢)
we must then require

6> —1. 33)

" The restriction on parameter ¢ and ¢ given by (14c), which requires m to be positive and
inequality (33) implies that for g = 1, linear case, 6 can assume any real number greater
than —1. It turns out that this assumption is valid not only for g = 1, but also for any
0 < g < 1. However, when ¢ > 1, 4 has to satisfy the inequality

l+q

~l<d<—F g=1"

(34

5. Closed Form Solutions of Some Special Cases

a). Linear elastic rod, ¢ = 1, subjected to time dependent velocity impact 6 > —1
For some special cases closed form solutions can be obtained for the system of equations
(32). For instance, if we consider a linear elastic material (g = 1) then the function

Fl(’?) (1'_ )1+6 0<"7<1, 6>'—1’ q=l, (35)

1+5
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satisfies equation (32a) and boundary conditions (32b, ¢, d), see [6, 18]. The similarity
function, F5(n), may then be obtained by substitution of equation (35) into equation (31)

Fal) = (=n, 0<n<l, 8>—1, g=1. (36)
The displacement and the stress distribution. in the original (x, 1) — space can now be
easily expressed by making use of equations (35) and (36) in equations (23b) and (23d) to
obtain

' 1 3 N
— 1+ = K _ —
u(x, ) = V. 1+5(1 Kt) , O0>-—-1, g=1, (37a)
£\
d(x,f):Klt"(l—KT), 0> ~1, ¢g=1, (37b)
or .
1 X 140
8
a(x,t):(ygi)‘/z(t—%), 0> -1, ¢g=1," (38b)

where ¢ is the velocity of wave propagation in the linear elastic rod. We can express the
above relations in nondimensional form for convenience in the evalutaion of numerical
results. For this purpose we set

— X - it
X=— and ¢=— 39

Xo Iy
where ¥ and ¢ are dimensionless, x, and ¢, have the same dimension as x and ¢ respectively,
otherwise they have nonzero but arbitrary magnitudes. On this basis we obtain the following

nondimensional expressions:

u()?,f) 1

{
= o+ _ —
i= g = Ty G0 0> - a=1, (40a)
_ 0(55,;) T s 5 :
- = (f— -1 =1, 40b
°= Qo T 0 ohoa=t (10b)
where : X = E% = nt. (40c)
0o

b). Nonlinear elastic rod g > 0 subjected to step velocity impact, 6 = 0
The second class of closed form solutions is for step velocity loading, 4 = 0. In this
case equation (32a) reduces to :

A-a
{[—Fi(n)] ! —mznz} Fi'tn) =0 (41)
which is identically satisfied if F;’(») = 0. Thus, the general solution is given by
Fi(n) = ey +cam. (42)

The boundary conditions (32b, ¢, d) give
cy=1 and ¢3=—1, . 43)



30 W. FryDRYCHOWICZ, M. C. SINGH

which implies, that for any ¢ > 0
N = 1. (44)
Hence,
Fip=1-n, 0<y<l, 6=0, ¢>0. . (45)
Thus, for 2 nonlinear elastic bar with step velocity impact, the function F;(n) related to
stress by equation (23d) assumes the form

1
Es() = (=Fim))? =1, 0<n<l, ¢>0, §=0, (46)
In the manner similar to case a) the displacement u(x, t) and the stress o(x, ) for the con-
stant velocity impact can be expressed in nondimensional form. Taking into account (39)

and the solution (45) and (46) and the similarity transformation (23) we obtain respecti-
vely:

ux, t) = Vct(l_K’-:—) =V(i—-Kx), q>0 . (472)
o(x,0) = K;, ¢>0 (47b)
or
_u(x, ) - .
U= =(-%X), g>0, =0, (47¢)
Veto .
~ 1
o = Ml_=ql+‘l, q>0, 5 =0, (47d)
(uioyd) %
where .
R .
e, : o (47¢)

1 . . . .
and ¢, = —, where K given by (23e), is the velocity of propagation of the elastic wave in

the non-linear material. When ¢ = 1, ¢ = 1 which is in agreement with that obtained in
[183.

¢). Almost non-linear material for ¢ close to unity

A valid analytical approximation can be obtained for the parameter of the non-linearity
g close to unity.

For an almost nonlinear rod we assume that the parameter ¢ assumes the values close
to unity such that

1-g
— _ [-Fie)] © 1. (482)
It is understood in equation (48a) that the slope of similarity function F; () is not zero and
does not tend to infinity at any point 0 < % < 7,,. With the above approximation the
similarity representation given by equations (32a, b, c, d) assumes the form

[1—m?n*]F{ () —m(m —20 = )nF () =08+ ) Fa(n) = 0, 0< 7 < 7., (48D)
: 1

Fi(np = 0) = 155

-Fl("? = 77w) = 0’ _ (48d)

(48¢)
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where
1

U and g=1, m>0. (48e)

It should be pointed out, that the paraméter of nonlinearity of material, ¢, is still included
in the similarity representation (48), since the parameter m depends on g. The approxima-
tion is made only in one term, namely [— F(n)]. Following the method given in [17] and
applying directly the theorem 5, page 369 of Kaplan, [19], two linearly independent solu-
tions of equation (48b) are obtained as

0 sl _ _
FO@) = 1+ 2172.\. (L+9)7 8(6+1) (8—2m+1)(6—2m)

£ 2t (I+9  3(1+9q)
@—Am+1)(0—4m)  (8=2m(s— 1)+ 1) (8 —2m(s—1)) (492)
51+q) @s—1D(1+9) B (
[0} . sl _ 5 —
s=1
L @=ImaDo-3m) (6—2m(s—1)+1—'m)(5:f?’(2~°'1))}. (49b)
5(0+9) Qs+ D(T+9)

The general solution of equation (48b) in terms of two linearly independent functions
F{M(n) and F{®(n) can be written as

Fi(n) = er F{P(n) + c2 F(n), (49¢)

where ¢; and ¢, are constants to be determined from the boundary conditions. Making use
of the boundary condition (48c) the value of ¢, is obtained as

1
= 50z
_ | ST Ty (50%)
and on the basis of the boundary condition (48d) we obtain
F{Y(n)
= .1t 50b
Cz (1 +6)Fi2)(7]w) H ( )
where 7,, is given by (48e). ' .
Thus, on the basis of equations (50a, b) the solution (49c) can be written as
1 F{" (1) ‘ -
= | FO) — 2L Miw) pe2) 5la
1
< —_ 5lb
0<n< —, (51b)

and under the condition that the parameters g and é must satisfy the inequalities (33) or (34).
Furthermore, it may be remembered that the solution holds for the values of g close to unity.
The numerical analysis shows that the solution given by (51) gives an acceptable approxi-
mation for 0.5 < ¢ < 1.5. This would approximate the behaviour of such engineering
materials which are not idealy linearly elastic but are close to it.
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The nondimensional expressions for displacement u(x, t) and stress G(%, t) for the
almost nonlinear case assume the forms

A t— _
7 = ;(x(;J = 1OV (), (52a)
ctO
1
X)) L oen) Fi‘)(nw)]q
= —— = |~ M B = 0,
' (w4 Vz)%,,, L+9 F20) [
oV:
X
= [—t@DF(I?, 7 #0, (52b)

where Fy(n) is the derivative of F,(n) evaluated on the basis of (51). The results are in
agreement with those obtained in {17).

6. Numerical Solution

Numerical solution of nonlinear similarity representation, equations (32), is obtained
by Gear method for precision and convenience [20, 21]. The Gear subroutine package is
available, for instance, in MULTICS computer system. It solves the initial value problem
for a system of ordinary differential equations given in the form

.i) = f(y’ t)’ (5321)
with initial values

¥(to) = Yo, (53b) |

where y,  and f are vectors of order N = 1. With a subroutine for the calculation of f,
the GEAR package computes a numerical solution of equations (53) at values of the inde-
pendent variable ¢ in some interval [t,, T, as desired by the user. It must be remembered
that the right-hand side f of the ODE’s must be a well defined function of y = y(¢) and ¢.
Thus, it cannotinvolve y at previous values of ¢ as for example in delay or retarded ordinary
differential equations or in integro-differential equations. The approach used in the GEAR
package are linear multipoint methods of the form

ky ky
Yn = Zajyn—j'l'hZﬂj}l)n—j) (54’)
j=1 J=1

where y, is an approximation to y(¢), i = f(x, t) Is an approximation to p(z,), and 4 is
a constant step size: 1 = 1, , —¢,. In the case of the Adams method of order / we have
ky =1 and k, = /—1. In the case of the backward differentiation formula (BDF) of
order /, also called Gear’s stiff method, we have k;, = [ and k, = 0. The BDF’s are so
called because, on dividing throught by Af8,, they can be regarded as approximation for-
mulas for y, in terms of y,, y,_1, ..., ¥._;. In either case, a; and B, are constants associated
with the method, and B, > 0. The latter means that equation (54) is an implicit equa-
tlions for y, and is in general a nonlinear algebraic system that must be solved on every step.
‘The fact that the order of a given method is / means that, if equation (54) is solved for y,
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with all past values being exact, then y, will differ from the correct solution of the ODE by
a local truncation error that is 0 (4'**) for small A.

A prime feature of GEAR package is its ability to solve stiff ODE problems. Also, it
contains, as aft option, a method well suited for non-stiff problems as well, namely the
‘implicit Adams method with functional (or fixpoint) corrector iteration, also called the
Adams-Bashforth-Moulton method. In this analysis both the stiff and non-stiff methods
are implemented in a manner which allows both the step size and the order to vary in
a dynamic way throughout the problem.

For details concerning the Gear’s stiff method we refer the reader to Hindmarsh [20],
where a description of method, testing examples, and listings of subroutines can be found.

In application of Gear method to the solution of the system of equations (32), first
of allit is reduced to a system of two first order equations

Y1) = y2(n), . (55a)
pal) = —2ZRZI0 e 2CED 6y ssw)
(=y0m) ¢ —mPy? (=22(m) * —m¥p?
with initial conditions
7O = 15 (56)
¥2(0) = Fi(0) = «, (56b)

Where, as first approximation, « is evaluated from the series solution for almost nonlinear
case, equations (51). It turns out that the slope of the function F,(n) does not change
sharply with the parameter of nonlinearity ¢ in the neighbourhood of % = 0. Thus, the
second initial condition (56b) can be determined from the analytical solution of almost
nonlinear case. The correction for « is obtained by taking into account the boundary con-
dition (32¢, d) in such a way that the error in %,,, equation (32d) is kept less than 1073,
Then, the boundary value problem is numerically solved by making use of Gear method.
Computations were made for § = 0 and ¢ = 1.25 and results were compared with the
corresponding solution for almost nonlinear case. The numerical results obtained by Gear
method were also compared with those obtained as close form solutions for ¢ = 3 and
é = 0. In both the above cases the numzrical results were in good agreement with the
corresponding exact solutions.

Effect of time dependence of impact, through the variation of parameter 4§, is shown
in Fig. 1 for a linear case, g = 1. It may bz noted that whereas the value of F,(n), in general,
decreases with increase of 4, the value of 7, is independent of & and remains fixed as unity.
Corresponding variation of & as against X are shown in Fig. 2. Solution for almost non-
linear case with ¢ = 1 is given for values of 0.5 < ¢ < 1.5 in Fig. 3. It is clear that in this
case n,, varies with ¢.

Corresponding values of & are given in Fig. 4, where it is seen that the values of ¢ and
X,, decrease with decrease in the values of ¢. In Fig. 5 is shown the effect of variations in the

parameter of nonlinearity, g for a constant velocity impact, 8 = 0 and a fixed #, it is seen
that value of o approaches unity as g — co.
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Peawome

PEIIEHME IOOOBUS HEJIWHEMHOI'O YIIPYI'OI'O CTEPXHS IIOI, BO3NENCTBUEM
VMIIYJIBCA CKOPOCTH C IIOMOIIIO METOIA TPYHIIOBLIX TIIPEOBPA3OBAHUII

IIpeoGpazoBanusi MOMOOMA U1 OCHOBHBIX YPAaBHEHWH NBHH(EHHS HEJMHEHHOrO YIpPYroro CTEPIKHA
TIOJ [AEHCTBHEM COYHAapEHMs CO CKOPOCTHIO 3aBHCHMON OT BPEMEHH IOJYYEHbI MYTEM TIPUMEHEHHST TPy
npeobpasosanuit. Ilomofue NpenCTaBJeHO B BUJE CHCTEMBbl HEIMHENHBIX 0OblKHOBeBHBIX Au(depen-
IMANLHBIX YPABHEHMH C IPAHHYHLIMH YCTIOBHMSIMH B TOUKE BOSHHWKHOBEHHS BONHBLI M HA BOJIHOBOM
¢ponre. Peurennsa 3aMxHyTOro THNa ObLIM NMOJYUYEHDI B HeJIHHEAHOM Clyuae NpH COYNAPEHHH C IIOCTO-
SIHHOH CKOPOCTBIO M B JHMHEHHOM Clyyac Npu COYAApeHHH C IePeMeHHOM cropocrsio. Perrenue B Bupe
pANa IOJIyUeHO IS TOUTH HENHHEHHOro Clyyas, TaK KaK s oOLIero HENMHEHHOro Ciyyast YIoNyueHbl
YHUCJIEHHbIE PELIeHHUS.

Streszczenie

TRANSFORMACJE PODOBIENSTWA W PRZYPADKU ZAGADNIENIA NIELINIOWEGO
PRETA SPREZYSTEGO POD DZIALANIEM IMPULSU PREDKOSCI PRZY POMOCY
METODY PRZEKSZTALCEN GRUPOWYCH

Transformacje podobienstwa dla podstawowych réwnan ruchu nieliniowego preta sprezystego pod
dzialaniem impulsu predkosci otrzymano przy wykorzystaniu przeksztalcen przestrzennych.

Przedstawienie podobienstwa otrzymano jako system nieliniowych, zwyczajnych réwnan roéZniczko-
wych, w warunkach brzegowych w poczatku uktadu i na froncie fali.

Wyprowadzono réwnania w postaci zamknigtej dla przypadku liniowego zaleznego od czasu impulsu
perkosc1 oraz nieliniowego niezaleznego od czasu impulsu predkosci.-

Caly szereg rozwiazan otrzymano w przypadku prawie nieliniowym, natomiast w ogdlnym przypadku
nieliniowym przedstawiono rozwiazania numeryczne.

Praca zostala zlozona w Redakcji 7 sierpnia 1984 roku



