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1. Introduction

In the papers [l - 4] continuum models of clastic hexagonal-type grid plates in plane
stress state have been formulated. The following Cosserat-type models have been analysed:
two versions resulting from the Wozniak’s concept of fibrous Cosserat media and so called
» — models corresponding to Rogula-Kunin’s pseudocontinuum description, Moreover
a simple asymptotic Horvay’s model has been recalled. In the mentioned paper [4] an
,,a priori” analysis of a range of applicability of the Cosserat-type models has been pre-
sented and several hypotheses concerning advantages and disadvantages of the considered
differential approaches have been put forward.

The ,,raison d’etre” of the present work is to elucidate problems concerning accuracy
of the Cosserat-type models of dense grid plates. The error analysis is carried out by an
example of a grid strip with hexagonal structure in a state of extension. The problem is
considered independently by means of analytical approaches based on continuum descri-
ptions as well as via finite element analysis which in the considered case of the grid structure
can be treated as an exact method (the errors produced by computer program are neglected).
Thus a direct error analysis of the considered continuum models viz. errors of evaluating
displacements and rotations of nodes as well as internal forces at the nodes is performed.

The statical problem considered makes it possible to disclose scale effects following
here from the coupling of constitutive equations by means of B tensor (see [I, 2]). As it
has been pointed out in [2 - 4] moduli B and C are determined non-uniquely; they depend
upon the choice of a version of Cosserat-type description. These moduli can be treated
as small parameters of the theory. Their influence on the final analytical results is various;
the aim of the present paper is to analyse this phenomenon and, if it is feasible, to dis-
tinguish the best differential approach which induces errors of the smallest values. The
presented ,,a posteriori’ analysis allows us to appreciate the hypotheses of the paper (4]
which have been obtained by ,,a priori” analysis of approximation of functions ®;(k)
in k-representation.

2*
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2. Formulation of the problem

Consider an infinitely long hexagonal grid strip of the unit thickness in the state of
extension, Fig. 2.1. Its height is denoted by L. The rods whose axes constitute hexagons
of sides equal to / are connected by rigid nodes. A position of the hexagons with respect
to the unloaded boundary lines parallel to the horizontal axis of symmetry is shown in
Fig. 2.1. The main nodes (cf. [1 - 4]) are marked by circles. The rods are assumed to be
made of isotropic elastic material, Young modulus and Poisson ratio being denoted by E

Fig. 2.1

and » respectively. The heights of rods /1 (measured in the plane of the strip) are assumed
to be constant. The slenderness ratio % of the bars is equal to /2/42. Tt is assumed that rods
are sufficiently slender so as to classical, improved (by taking into account transverse
shear deformations) theory of bars can be applied. Moreover it is supposed that all con-
ditions (concerning the loads, density of the grid as well as wavelengths of deformation
patterns, see [l -4]) being a starting point of the continuum Cosserat-type description
are fulfilled here so as to the mentioned mathematical models could be applied.

The displacements and rotations of main nodes are approximated by functions #*, ¢, « =
= 1,2. The state of strain.is determined by the tensors y,; and %, (see [l - 4]) while the
state of stress is expressed by means of the tensors of stresses p** and couple. stresses m®.
Elastic properties of the structure are described by means of effective moduli 4, 4, «, B
and C. ‘

3. Analytical solutions due to Cosserat-type descriptions

Consider a grid strip of honeycomb structure subjected to stretching forces as in Fig.
2.1. Boundary conditions on the unloaded edges are satisfied exactly whereas stresses in
transverse cross-sections are not exactly specified; it is assumed only that both the trans-
verse shear resultant and the resultant moment are equal to zero whereas longitudinal
resultant force amounts to N. Owing to the assumed method of fulfilling boundary con-
ditions the one-dimensional state of stress can be achieved. In order to make the functions
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u*p unique a middle point (L/2, 0) is supposed to be fixed. Thus the boundary conditions
take the form

p 0,y =0, p(L,y» =0,

p20,» =0, p*(L,» =0,
m©,y) =0, m(L,y)=0,
L 3.1)

L L
[p2ax =N, [pPax=0, [[p?2(c—L2)+mAdx =0,
0 0 0

w(L2,0) =0, @L[2,00=0, a=1,2,

where x! = x, x? = y, see Fig. 2.1.
By virtue of one-dimensionality of the problem the functions #* and ¢ can be expressed.
by means of equations linear with respect to the variable y:

W (x, y) = u(x)+m- y+ug,
w(x,y) =ov(x)+p- y+uj, (3.2)
p(x,y) = ¢(x)+s-y,

where m, p, s, u3 denote arbitrary integration coefficients.
Deformations associated with the state of displacement read

Yyu=4u4, Ya=pP, Ya=9—@—5y,

(3.3)
Y21 = m+@+sy, 2 =¢, %;=3¢,
where (-)’ = J(*)/éx.
Components of stress and stress couples take the form

= Qu+ A+ ip+ By,
p* = Qu+Np+ /- By, _
P = (pt )@ —p—s)+pu—o) - (m+e+sy)—B-s, (3.4
P = (pto)(m+et+sy)+E—o @' —p—s)—B-s,

G m' = Co'+B('—p),
m? = Cs—B(v' +m),

- where the constitutive equations of honeycomb grid plate (see [1, 2]) have been applied
One-dimensionality of the state of stress implies s = 0. The set of equilibrium equations
expressed in terms of displacements can be written as follows

Qu+N)u'+By" =0,
(u+a)v" —2a¢" =0, (3.5)
200" ~4ap+ Co"' +Bu'' —2mo. = 0.
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On integrating this system of differential equations and using boundary conditions (3.1)
with the aid of strain-displacement (3.3) as well as constitutive (3.4) relations, the compo-
nents of states of

— displacement

” iy | Bt Hpta)e L
ut(x, y) = u'(x) = [ Sai (2 1 A)eh(eL3) sh(a(x—L/2))+(x—?)]§
B(u+4d)

uch(sL)2) Ch(a(x“ %)) - 1]”2“ ’1)4’ (3.6)
p(x, ) = p(x) = — [B(”-l_l)' wroe she(x—é)]&

wi(x,y) = {271

el
2ouich -

— strain

g,

[ B (u+0). (u+ 1) e L\
Y= | Do @ut Aoh(eL]2) Ch(e("‘T)) 1

_ (u+A)(u—a)- Be
Y12 = | " Sauich(zL2) Sh(s(x"Lﬂ))]C,

- _ l .
o [  am,

2u+ A
Y22 = — /‘2 Z,

—B(u+ A 2
= [ 222;%13((552“))8 ch(e(x—L/Z))]C, 4y =0,

— and stress
P =pi2 =0,
22 _ | Bt (uta)e L du(p+4)
L [ auA(A+2p) ch(zL[2) Ch(e(x“i))‘—' 7 ]C’
—2B(u+Ae sh(e(x—L[2))
A ch(eL/2) & (3.8)
. _ 2B(u+d) [ ch(e(x—L[2)
m 7 [1 ch(eL2) ]C’
= B?s(u+4) sh(e(x—L/[2)) c
7y ch(eL/2) ’
are finally found, where
_ [ 4o2u+ Dy ]"2 ] = 1
wraCeutrn—g| » Ld=1m
_ 0.25N (3.9)

B? 22 .
[ 62(:;22/375/;; 2 th(*‘?L/Z)—u(uwl)L]

p21 —
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The quantity ¢, being a new ,,material” constant of the grid, exists due to the energy bounds
(5.3), [2]. As it follows from [6] this constant plays essential role in the theory of hexagonal-
type grid plates. Patterns of variations of functions (3.6 - 3.8) are presented in Fig. 3.1.
Two types of cross-sections are considered: along main nodes (y,, y;, B > 0) and — in-
termediate ones (y;, y3, B < 0).

Note that the function #'(x) does not depend on sign B so that ' displacements of

]
l +
N
|
|
'7‘/ ¥ || :
utix) olx) it u?(x,y") u?( x,y3)
B=<0 | |
R i N R - | ] . . 1
X e
/ )
m2{x) m{x) | 2Ax} p2lix|
B>0 +
) \
—7 7
m?{x) m'ix) p*{x) p2x)

B<0

Fig. 3.1
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main and intermediate nodes lieing in the same distance from the longitudinal axis of
symmetry are identical.

The function 2 consists of two terms; the first of them depends on sign B whereas the
second one is independent of this factor. Thus longitudinal displacements »? vary accor-
dingly to the choice of the sections being drawn along main or intermediate nodes (cf.
Fig. 3.1).

The function @(x) is proportional to signB. Thus rotations of main and intermediate
nodes, which lie at the same distance from the strip’s axis, have same absolute values and
opposite signs.

Stresses p?2 and m? do not depend of sign B whereas the stress components p?* and m?
depend upon this factor, cf. Fig. 3.1.

Nonlinear form of the graphs plotted in Fig. 3.1 resuits from coupling of constitutive
equations (B # 0). The results obtained can be devided into two groups (a) and (b).
To the first group these quantities belong which do not vanish if one substitutes B = 0;
whereas the quantities vanishing in the case of B = 0 constitute (b) group. The quantities
of (a) type have nonvanishing values along transverse cross-sections. The quantities of
(b) type take essential values in edge zones only. These areas which can be treated as effec-
tive carriers (i.e. domains where values of functions cannot be neglected in comparison
with the values of (a)-type functions) will be called further B-effect zones. Despite apparent
imprecision of this definition we do not see any need to give a precise one allthough such
a definition can be formulated.

In the subsequent section a numerical test of the theoretically obtained qualitative
results and corollaries will be carried out. Moreover the errors induced by Cosserat-type
models as well as by asymptotic model (in which B = C = 0) will be examined.

REMARK 1

Note that in the problem considered a density of strain energy

e = —%—(p“pyap+m°‘xa) (3.10)

does not depend of the choice of main nodes, i.e. of signB.

ReEMARK 2

Consider analogous problem of extension of a lattice-type strip of hexagonal structure
rotated at an angle /2 from the position considered above (as in Fig. 3.1). It can be pro-
ved that in this case an assumption of one-dimensionality of a stress state leads to a con-
tradiction; the boundary conditions of the form of (3.1) cannot be fulfilled.

REMARK 3

Examine rotations of the boundary nodes lieing at a distance of L/2 from the longitu-
dinal axis of the strip, subjected to stretching stresses o,, = N/L, in the limiting case

L — 0 at / = const. By inserting x = 0 into (3.6); and taking into account that L — oo
the following formula

"Pmnx/o'yyl =

B | Qu+du+a) ]"2 311
4 | eulCQu+ H= 57 .

is obtained. The RHS of Eq. (3.11) involves effective elastic moduli only. In the subsequent
section an accuracy of the derived formula will be examined.



HONEYCOMB GRID STRIP 193

4. Numerical analysis by displacement method

The subject of the numerical analysis are plane grid structures 4 and B (sce Fig. 4.1
where the quarters of the structures are shown). The rods are assumed to be made of
a steel with Young modulus E = 2.106- 107 N/cm?, Transverse shear deformations of
the rods are neglected. Cross-sections of bars are rectangular 1 x s where # = 1 cm or
h = 2 cm. The internode distance / is equal to 10 cm. The both grids are subjected to
stretching longitudinal forces P = 8660.250 N (cf. Fig. 4.1) hence the mean stress of
tension reads

o= —— = 1000 N/cm?3.
VY32

The state of extension is realized by various ways (exemplary loads are shown in Fig. 4.1).
For further analysis only these results are important which do not vary under various.
statically equivalent systems of loads. The aim of the numerical tests is to create a one-
-dimensional state of deformation. Thus at some distances from the loaded boundaries.
of the strip the displacements, strains and stresses (apart from the displacements u? parallel
to strip’s horizontal axis) ought to assume stable values, viz. independent of the distance
of the section from the loaded ends. Numerical computations (performed with the aid
of the program STRAINS 75, computer ODRA 1305) confirm this supposition which
can be interpreted as ,,discrete analogy” of Saint Venant principle. However, transverse
forces in horizontal bars (which occur due to the fact that the strips 4 and B are of finite
length) do not satisfy this condition; their values are not periodical. Nevertheless it should
be stressed here that these forces are negligible in comparison with transverse forces in
bars whose axes are situated at angles + /3 from the horizontal symmetry line. Moreover
it should be emphasised that periodicity od some quantities occurs in some boundary
layer only, e.g. the moments in horizontal bars, reaching the greates values in the vicinity’
of the unloaded edges, vanish rapidly towards the strip’s horizontal axis; the greatest.
moments only (in B strip-at the first, say, six nodes lieing at the edge) satisfy the desired
one-dimensional state of stress condition whereas the other (negligible) values vary at
random. '

The complete set of numerical results will not be reported; indeed not they are of
essential importance here. In the subsequent section selected results will be given together
with analytical results obtained by approximate differential models discussed in the paper.

5. Accuracy analysis of the continnum Cosserat-type
and asymptotic approaches

This section is devoted to comparison of results analytically obtained in Sec. 3 with:
results produced by computer analysis (outlined in Sec. 4) of the 4 and B structures, cf.
Fig. 4.1. Such comparison can be carried out, because

a) honeycomb grids 4 and B satisfy the desired regularity and density conditions,,

b) strip-type forms of A and B structures as well as the loads subjected ensure (as it:
has been pointed out in Sec. 4) a one-dimensional state of stress so that the fundamental
assumption of the presented in Sec. 3 analytical approach is fuifilled,

¢) deformations of structures vary smoothly except for the B zones lieing at unloaded.
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edges. Thus the mathematical models, based on the assumption that strain energy
density depends on the first deformation gradients only, may be applied.

Prior to performing an accuracy analysis of the considered differential models of
honeycomb grids, let the effective elastic moduli of the structures 4 and B, under the assum-
ption of slenderness of bars (n = %), be computedV. The following models are examined:
Klemm and Wozniak version (see [2], Sec. 3) with the set of constants (4, u, o, B, C),
second Wozniak — type (II) version (see [2], Sec. 4) with the moduli (4, u, &, B, C*)
and » — models (see [4], Sec. 5) leading to the constants (4, u, « B°, Cg,).

The values of the effective moduli are set up in Table 5.1,

5.1 Approximation of displacements of nodes.

1. Displacements u* perpendicular to the strip’s horizontal axis

The displacements u' of the nodes 188, 189, ..., 198, licing along the lines perpendicular
to the horizontal axis of the strip 4 (cf. Fig. 4.1), obtained via displacement method (de-
notations: V) as well as by the continuum models, are shown in Fig. 5.1. Relevant graphs
of relative errors induced by the latter approaches are plotted in Fig. 5.2. These errors
are computed by assuming the results of the displacement method as ,,exact’”” ones.

Table 5.1

=l0eml q | AN/emA|piNem?) | otNfer)| B IN/em]| 8'In/em) | EPIN/er]
al 1 100 583178 | 11781 1487 58907 | 29453 | %1470
2 25 1096390 | 91532 | 11893 | 457661 | 228831 | 398165

ol | CINT | C"INT [ ) | CyINT | gD
a| 1 | 393694 | 99160 | Si2634 | 319324 | 96215
b| 2 |3081580 | 793279 | 4271500 | 2486630 | 70177

The ,,exact” results confirm that behaviour of u! function is nonlinear. However,
this effect is so unconsiderable that it cannot be shown in Fig. 5.1. It can be noted that the
greatest errors are induced by: the zero-order approximation and the unstable (¢ = 1)
model. Apart from this a very good (0.5 - 0.6% error) approximation of u* by (» = 0)
version is worth emphasising. The second (II) version provides a slightly better results
than the first () one.

On the basis of computations which are not reported herein it can be stated that in
the case of # = 2 cm relative errors are greater than in the case of # = 1 cm.

An analysis of the »' displacements in B strip do not lead to new conclusions. Never-
theless the analysed relative errors are smaller in this case: the (I) version induces ca. 1.4%
errors (in A case — 2.3%); the (II) version — 1.07% (in A case —ca. 1.75%); (» = 0)
model — ca. 0.34% (in 4 case — 0.60%); (» = 1) version-ca. 4.4% (in A case — 7.35%).
Therefore the more dense a lattice is the better are results.

2. Displacements u* parallel to the horizontal symmetry axis

In order to examine %* displacements a slightly more complex procedure should be
applied since these displacements change their values along the strip’s axis. Apart from

D For the definition of 7, see [2].
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this an approximation of main and intermediate nodal translations #* should be considered
separately, see Fig. 3.1. :

The displacements 2 of the nodes 188, ..., 194 (4 strip) are shown in Fig. 5.3. Non-
linearities of functions fi, f5 interpolating ,,exact” translations of main and intemediate
nodes respectively can be noted, but, on taking into account that their deviations from
the straight lines are very small, it could not be shown in Fig. 5.3. However, differential
theories produce curvings of »? functions much stronger.

88

189F— ——

nodes

191_. e [ T - F - S - RN

192[— -

W

194

09

The displacements u? of main nodes are approximated in a different manner than ana-
logous displacements of the intermediate nodes. An error analysis of 1 along cross-sections
perpendicular to the horizontal strip’s axis proves (cf. Fig. 5.3, see also [5], where approp-
riate graphs were plotted) that main nodes’displacements are over estimated whereas
the intermediate ones are underestimated. Approximation errors of the main nodes’trans-
lations u? decrease in the edge B-zones while the analogous errors of computing the dis-
placements of the intermediate nodes increase in this zone. A behaviour of relative errors
along the horizontal strip axis from the loaded edge to the transverse symmetry axis is
worth examining. The relevant graphs are plotted in Figs. 5.4, 5.5. Absolute values of
relative errors grow rapidly in the vicinity of the symmetry axis where u* tends to zero;
then their values go down and again grow at the loaded boundary. Similar diagrams
concerning B structure are plotted in Figs. 5.6, 5.7. In this case a stabilization of errors along
the strip axis is readily seen.
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It is worth stressing that approximation errors of displacements of nodes of the B
strip are less than analogous errors in the case of the 4 strip. Thus the errors vary together
with the density ratio //L. Moreover, it was tested that the errors grow if the slenderness
ratio 7 increases.

3. Rotations of nodes ¢

Rotations of the nodes lieing along the cross-section lines perpendicular to the strip
horizontal axis are set up in Tables 5.2a, 5.2b; the values of rotations are increased 1000
times. The results of the Table 5.2a are shown in Fig. 5.8. A similar behaviour of ¢ function
yields from an analysis of B strip so that the second set of diagrams concerning this struc-
ture is omitted here.

Table 5.2 a

Strip A continuum models Displace-
nodes 1 11 #:0 #:1/2 | =1 mmemgd
188 a | 59.613 57.109 43.026 57.117 | 12 .127 41.782
b 7.667 7.272 5.446 7.32% 15.822 5.380
189 ¢ -21.701 -7.625 -18.242 -18.607 | -14.051 | -8.452
b |-2.708 | -0.937 ~2.275 -2.305 | -1.527 | -0.994
150 © 7.899 1.020 7.734 6.061 1.761 1.695
b | 0.9%7 0121 0.951 0.725 0147 0.169
191 a |-2.876 | -0136 ~3.279 -1975| -0.221 | -0.329
b [-0.338 | -0016 -0.397 -0.228| -0.014 | -0.028
192 © 1.047 0.018 1.390 0.643 0.028 0.085
b | 0119 0.002 0.166 0-072 0.001 0.007

a} h=1cm, b) h=2cm

Table 5.2 b

Strip B continuum models Displace-
nodes 1 11 =0 #:1/2 | 2= m"t;ter:‘c;d
528 57.887 | 56.305 42,232 | 55.726| 106.888 | 40,927
529 |-21.072 | -7.518 -17.905 (-18.153 | -13.395 | -8.287
530 7.671 1.004 7.581 5814 1.676 1.647
531 -2.782 | -0434 -3.218 -1926 | -0.210 | -0.32%
532 1.016 0.018 1.364 0.628 0.026 0.067
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It should be pointed out that continuum description of nodal rotations is qualitatively
correct because the all analysed differential theories ensure that: ‘ _

a) rotations of the main and intermediate nodes lieing at the same distance from the
horizontal strip axis have opposite turns since the function ¢ is proportional to sgnB
(cf. (3.6);) which amounts to —1 and 1 at the intermediate and the main nodes, respec-
tively, .

b) the function |p| grows rapidly in the edge B-zones,

¢) the B-zone (being a carrier of the essential values of nodal rotations) varies accor-
dingly to the density ratio //L. In the limiting case when //L — 0 the B-zone’s height
vanishes. .

The all continuum descriptions produce essential quantitative errors, see Fig. 5.9
where the interpolations of absolute errors (being devided by the maximum value of the
rotation of the node lieing on the boundary) are given. A correct evaluation of order of
¢ is yielded from both the second (IT) model and (% = 1) model. The zero-order model
does not forecast an existence of nodal rotations in the considered example. Fig. 5.9 dis-
closes that (I), (2 = 0) and (» = 1/2) versions bring about greater errors of the rotation
description than the most simple asymptotic (zero-order) approach. This fact confirms
one of the ,,a priori” formulated hypothesis following from the approximation analysis
of equilibrium equations in k-representation, see [4]. Thus the second (II) version of
WozZniak’s theory seems to approximate nodal rotations in a best fashion.,

A comparison of the results set up in Tables 5.2 leads to a corollary that there is no
relation between density of the grid and the approximation errors of ¢. Similarly it is
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difficult to find a relation between slenderness of lattice rods and an accuracy of analytical
solutions.
5.2 Approximation of internal resultant forces. Internal forces in lattice rods can be
computed by means of three methods
i) stress method
Consider stress and couple-stress components at the boundary I" with a unit normal
n and a tangent t (Fig. 5.10). We have
o = sin?a - p'l+-cos?a - p?2 +sinacosa(p'? +p*'),
7 = sinacosa(p*!t —p??)—sin2a - p*?+cos’a - p*,
m = sing - m' +coso - m?,
where « denotes an angle between t and x* axis.
On the basis of the above formulae the stresses at the sections perpendicular to the
bars joint in main nodes of the grid can be found. The longitudinal force, the transverse
force and the moment at the nodes are '

N=oc-1yY/3, T=x<1y3, M=ml1y3,
respectively. '

3 Mech. Teoret. i Stos. 2/85
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ii) approximate slope-deflection equations’method.

A main idea of the method consists in applying equations which express internal
forces in terms of strains, i.e. by means of the formulae (3.3), 2] in (I) version or (4.1),
[2], in (II) version. Thus only in the two mentioned cases of continuum descriptions this
method can be applied.

Fig. 5.10

iif) exact slope-deflection equations’method

Internal forces can be calculated by substituting the values of nodal displacements
(translations and rotations) into slope-deflection equations well known from the classical
theory of bars. However, it occurs that such apparently natural procedure results in com-~
pletely incorrect outcomes. The appropriate negative examples are presented in [5]. The-
refore this method will not be applied in further analysis.
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1. Longitudinal forces

Sloping bars. The graphs of functions which interpolate values of longitudinal forces
n sloping bars 513 - 512, ..., 524 - 525 (viz. in bars which are inclined from the horizontal
symmetry axis of the strip at angles /3, see Fig. 4.1) are plotted in Fig. 5.11. By means
of a prime (I, II’) and the lines —. —. —., the results due to (ii) method are distinguished.
The best results are produced by (» = 0) version, the worst — by the asymptotic and
unstable (» = 1) models.

Horizontal bars. Appropriate graphs are shown in Fig. 5.12, Similarly to the preceding
case the best results yield from (I), (II) and particularly from (» = 0) versions; the worst-are
produced by (x = 1) and the asymptotic versions. The latter model does not describe the
B-effect, of course.

2. Transverse forces
Sloping bars. The functions interpolating transverse forces in bars 513-512, ...,
524 - 525 of B strip are plotted in Fig. 5.13. The remarks concerning approximations of
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longitudinal forces in sloping bars can be transferred to the considered case of transverse
forces. It can be mentioned yet that the method (ii) becomes incorrect in B-zones.
Horizontal bars. Transverse forces in the horizontal bars are equal to zero provided
the considered strip is infinitely long. The analytical solution found in Sec. 3 (which is
based on the assumption of an one-dimensional stress state) is obtained by virtue of the
approximate way of fulfilling the boundary conditions. Specifically the condition p2* = 0
on the loaded boundary is substituted by an integral expression (3.1)s. Thus p?! 5 0
in each Cosserat version whereas the mentioned contradiction does not hold in the zero-
order theory where the condition p?! = 0 is not in contrast to the assumption of onedimen-
sionality of the state of stress. A domain of essential values of p?! is a B-effect zone. Thus

the solution T = p?!.]}/3 = 0 is approximated exactly only by the asymptotic model.

3. Approximation of bending moments

Sloping bars. The functions approximating moments at the nodes of the bars: 513 -
512, ..., 527 - 526 in B strip are plotted in Fig. 5.14. One can pointed out that the second
version II’, method (ii) provides a very good approximation whereas the ordinary method
(i) leads (in the case of the same version) to errors of ca. 50%,. Two times increased results
of (II) version are shown in Fig, 5.14, the appropriate graph being denoted by 2 My;. The
coefficient 2 results from the ratio B'/B" = 2 when 5 = 7. The physical interpretation
of m* in (II) version especially and also in other versions is not clear and is retained in
this paper as open question; some theorems on this problem are formulated in [5].

Horizontal bars. Appropriate graphs standing for moments at nodes of the bars 511 -
528, ..., 527-544 in B strip are displayed in Fig. 5.15. The considered moments are
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negligibly small comparatively with moments in sloping bars except for the one moment
(in the bar 511 - 528) which is of the same order as moments in sloping bars. However,
exactly this maximal moment is approximated in the best way, specifically by (I) and
(I1") methods. ) _

Continuum models supply qualitatively correct description of the bending moments
in horizontal bars. However, quantitative errors are considerable; the best results yield
from (II') method.

6. Concluding remarks

1) Numerical analysis confirms an existence of B-effect zones which have been predicted
previously by the analytical considerations based upon Cosserat-type models (the asymp-
totic model does not describe this effect). Numerical test proves that the effective height
of this zone is evalvated with various degrees of accuracy, the minimal érrors yield from
the (IT) Wozniak’s version and from the unstable (¢ = 1) model. Both analytical consi-
derations and finite element computations show that the B zone’s height H varies almost
independently of the strip’s height L so that a relative height of B zones: H/L decreases
if L grows.

2) Quantities characterizing states of stresses and strains of the grid can be divided
(as has been done in Sec. 3) into two groups (a) and (b). Computer analysis confirms
that such a division is reasonable. Quantities of (a) type take essential values in every
point of the strip’s cross-sections whereas (b) — quantities take inconsiderable values
outside the B — effect domains.

In the B-zonmes relative errors induced by the continuum models are extreme since
exactly in these zones gradients of #* and ¢ functions grow rapidly. In these areas a fun-
damental assumption concerning a smoothness of functions which stand for nodal displa-
cements and rotations is not satisfied.

3) One of the aim of the present paper was to appraise the models which are more
complicated than the simplest theory of zero-order accuracy and to answer the obvious
question, i.e. whether it is reasonable to use such models. One could get a negative answer,
provided in several cases the results produced by asymptotic theory would be more accurate
than the results yielded from the models of higher order. The performed analysis proves
that such a phenomenon does not hold except for two cases of approximations of the u?
displacements of main nodes and- the transverse forces in bars horizontal to the strip’s
axis.

4) Computer analysis confirms that rotations of boundary nodes tend to a non-zero
limit gh when L grows. In the considered case this limit is ca. 0.041 rad. Theoretical
evaluation of this value has been found in Sec. 3, Remark 3, Eq. (3.11). The theoretical

results obtained by (I), (II), ( = 0) and (x = 1) versions are displayed below in the Table
6.1.
Table 6.1

1 J 11 -%=0 n:ﬂ

P | 0.0552 | 0.0550 |0.0409 | 0.0992
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Sufficiently good approximation of the boundary rotation (except for (» = 1) version)
is worth emphasising.

5) It has been noted that making of the grid denser implies that errors of approximation
of (a) type quantities considerably decrease whereas the errors relevant to (b) type quanti-
ties vary inconsiderably and their decreasing has not been observed.

6) An increase in the slenderness of the grid bars makes the evaluation of the displa-
cements ' better and the evaluation of the displacements »#*> — worse and has no apparent
influence on the approximation of nodal rotations.

A slightly more general accuracy analysis is presented in [5] where errors induced by
the so called (IT1T) Wozniak-type model are additionally examined. This version js derived
in [5] and has not been a subject of consideration in the papers [1 - 4]. It is sufficient to
mention here only that in this model elastic properties of the grid are characterised by the
moduli (4, 4, «, B”, C) where

~ V3 Tn+4 EJ T .
C=—. .
3 9+l ! 4 ¢
in the case of slender grid bars (y & 7). Results produced by this model are resemble
to that following from (» = 0) version. The (III) version has not been examined here in
order to make an analysis as brief as possible.
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Pesome

PACTSDKEHUE CETUYATOW ITOJIOCHI CO CTPYKTYPOM COTLI MEIA

ITpenmerom paGoTHI SIBNAETCS CTATHUECKHMA aHAJIM3 CETUATOH MONOCHI (C reK3arOHaNBHON CTPYKTY-
poit), pacTsHKEHHOM CHJIAMM, MAPAUIETBHBIMK K eé KpaaM. IlepeMelleHusa YaloB M BHYTPEHHHE CHIIBI
B CTEPYKHAX aHAJM3UPOBAHBI HA OCHOBE KOHTMHYAJLHBLIX pacueTHLIX Moneneit Tuna Koccepa: nsyx Bep-
CHit, BeITeKaIOWuX U3 obwek xonnenuuu BosHsxa ¥ Tak HA3BIBaEMbBIX % — Mapelell, npenoMeHHbIX
aBTOpOM B [4], © — NpH IoMOILM Momend XopBas aCHMITOTHUECKOro THTa. Pe3ynbTaThbl, BLITEKAIOUIUE
M3 pacyeTHBIX JudepeHUHANBEHBIX Moaelei, CpaBHEHbI C COOTBETCTBYIOLIMMH pe3YJILTATAMH, IIONY-
YEHHbIMH Ha QCHOBE MCXOJHOM MUCKPETHON MOAeNH KOHCTDYKITHM.

CdopMyIHpoBaHbl PaayMUHbIe MpemioyKeHUs, KacarOlLHecs MOJIE3HOCTH M JHanasoHa arrjiiKa-
LHOHHOCTH MoAeneil Tia Koccepa u mogenn Xopsas.
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Streszczenie

ROZCIAGANIE PASMA SIATKOWEGO O STRUKTURZE PLASTRA MIODU

Przedmiotem rozprawy jest analiza statyczna pasma pretowego o strukfurze heksagonalnej rozcia-
ganego silami rownoleglymi do jego brzegdw. Przemieszczenia wezidw i sity wewngtrzne w pretach badano
za pomocg modeli kontynualnych typu Cosseratéw: dwoch wersji zgodnych z ogblna koncepcja WozZniaka
oraz tzw » — wersji zaproponowanych przez autora w pracy [4] oraz — za pomoca modelu asymptotycz-
nego Horvaya. Wyniki analityczne poréwnano z wynikami numerycznymi otrzymanymi metoda przemiesz
czen.

Sformulowano szereg wnioskéw dotyczacych uzytecznoéei i zakresu stosowalno$ci modeli typu
Cosseratow i modelu Horvaya. ’

Praca zostala zlozona w Redakcji dnia 30 czerwca 1983 roku



