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1. Introduction

This paper deals with a phenomenological theory of large, non-isothermic deformations
of solid bodies which can be considered as classical continua. We suppose that the ther-
modynamical state of each material element is uniquely defined by the values of a finite
set of state variables even in irreversible processes. Such a phenomenological theory is,
of course, restricted to a limited class of materials on the one hand and to processes running
not too far from thermodynamical equilibrium on the other hand.

A thermo-mechanical process starts in the initial state 2 of the body which is chara-
cterized by the initial configuration and by the initial thermodynamical state of each
material element. The process is determined by the history of the independent process
variables, These are the prescribed thermo-mechanical boundary conditions and the
prescribed body forces and energy sources acting inside the body, The course of the process
is governed by the material independent field equations (balance equations) and by the
constitutive law of the material. We focus our considerations to the constitutive law which
governs the local thermo-mechanical process within the thermodynamical state space.

Concerning these local thermo-mechanical processes we can distinguish on the first level:
1. strictly reversible processes governed uniquely by thermodynamical state equations,

2. other processes.
From the phenomenological point of view we can subdivide the second class into four
subclasses:
2.a) plastic deformations characterized by constraint equilibrium states,
2.b) internal processes leading to changes of the internal structure of the material,
2.c) thermal activated processes (without constraint equilibrium states) leading to unlimited
creep processes (high temperature creep or long time creep)
2.d) viscous (damping) processes.

The internal processes 2.b) may be coupled with processes of the kind 2.a) or 2.c). Ho-
wever, they can also occur independently like, for instance, solid phase transformations,
recrystallization, or recovery. They may or may not be connected with deformations.
Damping processes finally may be correlated to all other kinds of processes including
reversible processes as, for instance, in viscoelastic deformations.

These considerations suggest a material model as shown in fig. 1. The particular structure
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and the mutual arrangement of the different elements is determined by the respective
constitutive laws. Some particular cases of such constitutive laws will be discussed later.

reversible | | plastic structural creep
processes | |deformations| | changes processes

damping parallel arranged

Fig. 1. Material model

_ The real thermo-mechanical process carries the body from the initial state 2 into
the actual state .#. All physical quantities are acting in the respective current configuration
of the body. We attach to the actual state & of the body an accompanying fictitious re-

ference state Z by means of a fictitious reversible process which carries each material
element from its actual thermodynamical state into an unstressed state at reference tem-

peraturé T (see fig. 2). During this fictitious process the internal variables are kept constant
in order to ensure a unique definition of reversible energy [1, 2].

fictitious reference state
{incampatible)

initial state
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.
| fictitious reversible process
| lintesnal voriables frozen)

real thermo-mechanjcat
process

actual state

Fig.. 2. Thermo-mechanical process

There is no real or fictitious process leading from the initial state 2 to the reference

state .#. Therefore it becomes unneccessary to introduce any strain tensor defining the
non-reversible deformations uniquely. We peed, however, a unique decomposition of
mechanical work rate into its reversible part and its remaining parts. This means at the
same time a unique decomposition of the deformation rate into corresponding parts.
Furthermore we require a unique measure for the reversible strain serving as thermody-
namical state variable. '

In the following we shall at first discuss the mechanical and thermodynamical frame
for the formulation of the constitutive law in our sense of a phenomenological theory.
Then we shall compare some different constitutive laws. We shall also discuss by which
experiments the material parameters and functionals entering the constitutive laws can
be determined. Finally we shall point to certain coupling effects occuring in some thermo-
mechanical processes. ‘ '
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2. Mechanical and thermodynamical frame for the formulation of the constitutive law

A thermo-mechanical process in a body can be described with respect to an independent
Fuklidian space of observation endowed with a space-fixed coordinate system x* However,
we can also relate the process description to a comoving and codeforming body-fixed
coordinate system &'. Many authors prefer the first possibility. Concerning the formula-
tion of constitutive laws, however, the second way offers many advantages. This cannot
be discussed in all details. Only some aspects may be emphasized.

The initial position of a material point at time f may be denoted by
= x4(1). 0

The base vectors and the matric of the space-fixed coordinate system in this position
are '

ga = ga(i-(’)’ gnaﬂ = gap(ilg)' (2)
At time t the actual position of the same material point is
X = X%, 1). 3)

(3) describes the motion of body in the space of observation. The base vectors and the
metric of the space-fixed coordinate system in the actual position are

§a = gu(xe)s 8up = gap(xe)' . (4)
The velocity of the material point in the space of observation is '
o* = X¥(X% 1) ®)

where * means the substantial time derivative (X kept fixed). The so-called deformation
gradient is defined by

F = T0%F guguﬂ- (6)

It represents the basis for the description of the deformations of the body within the space
of observation. For simplicity we restrict ourselves in the following to a representation

which is related to the actual state of the body. The polar detomposition of the defor-
mation gradient leads in this case to

F=V-Q (7

where @ means a proper orthogonal tensor. Using this decomposition we derive from the
deformation gradient ‘
left Cauchy tensor:

ox™ P

BV = 0 A7 = G 87 G o = gty ®

~

N

deformation rate;

. 1 )
D= {E-E')s = o {o%la+up g’ = digegls ©)
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spin tensor:

W= F ) = (ol g’ = 058" (10)

In these formulas mean
FT: transposed of F,
{ }s: symmetric part,
{ Y4: antimetric (skew-symmetric) part,
|s: covariant derivation in the actual position.

From (8) we can derive different strain tensors.
This is well known. We refer to [3, 4].

The true stress measured in the dctual configuration, the so-called Cauchy stress tensor,
is

I = gy = dhgg’. an
With respect to energy considerations we introduce the weighted Cauchy stress tensor
é % é o o '
S=ry ,,/; =y %888 = Sigag’ - (12)

Then we can write the specific work rate in the form

. 1
b= 8D = sl (13)

e e '
Using a body-fixed coordinate system a material point keeps its coordinate & during
the whole process. The base vectors and the metric in the initial configuration of the
body are denoted by

gl = g:(fr, ;), & = gulE’s t3. (14) -
The corresponding quantities in the actual configuration are
& =& 1), gu=gul,1). (13
The deformation of the body can be measured by the quaﬁtities [1, 3]
gl = &"gn, (@ = &8 (i16)
Relating ¢; to the actual configuration, we obtain the tensor
9= qgg" (7
From (17) we can derive arbitrary strain tensors by means of isotropic tensor functious
[1, 3]. Furthermore the deformation rate is expressible in the form

I : _
D = - (g HDIgg" = digig (18)

) a M r . . .
)= N denotes the material derivative with respect to time (&* held fixed) which is

different from. the substantial time derivative in the space-fixed coordinate system. It
- corresponds to one of the Oldroyd-derivations [4 to 7, 1]. This material time derivative
is objective in contradiction to the substantial time derivative, since the rigid body rotations
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are climinated from the very beginning by the introduction of a body-fixed coordinate
system,

Using the definition (18) for the deformation rate and relating the weighted Cauchy
stress tensor to the actual configuration of body-fixed coordinate system, i.e.

| $ = sigig* (19)
the specific work rate can be written
. I Vo .
Wo=-r 81D = sig7 5 @ (20)
0 0 2
This means
& 1 1
S = Sig™, and -.-¢F or 5 (gk— ok) (21)

can be considered as a conjugated pair of stress and strain [1].

The total work rate can be decomposed into the rate of rcversible work w and the
)
rate of remaining work W according to
)
(NN
If the reversible processes are without damping we obtain from (22) also a cotresponding
additive decomposition of the deformation rate. In this case holds

. |
--‘],—S:L)=13’=W+W=;§:D+—a—§2-,’?- (23)

4 o o 07 n 27O
This means
D=D+D. (24)
" O
For thermodynamical reasons the rate of reversible work must also be expressible as
the double scalar product of a suitable defined stress tensor and the time derivative of
the conjugated strain tensor. At the same time this strain tensor must fulfill certain physical
requirements in order to define the reversible deformations independent of accompany-
ing non-reversible deformations. In many papers this problem is discussed from different
points of view (see, for instance, [8 to 18] and [3]). Concerning the possible decompositions
of total deformation and total deformation rate we shall only discuss two approaches.
An often used procedure starts with the multiplicative decomposition of the deforma-
tion gradient ([8] to [10] and [13 to 15])

ox* e o,
ropr- (00 k) (G ) (29)
r xt ~ - oxl =%
The superscribed * relates to the accompanying reference state % (often called interme-
diate state). The polar décomposition of F leads to '
(r

F=V.Q | (26)
o O 6 :
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Q, however, cannot be uniquely determined since the reference state é is a geometrically
0)
incompatible state. From (25) we derive an additive decomposition of the total deformation
rate
D ={F - F 1} = {FF“} {FFF‘F*‘}. 27
OGOt bhd O s
Using the polar decomposition the first therm on the right hand side reads
(B-E1 -{ Q-Q"-y-! } +{L"Q"Q"'- z-l}
) () O 6" G %) s O & O ) s
| I (28)
-—=V y-iyp-t -V}+——{V W-v-i-y-iw- V}

hoH OO N I O N R G R )

We see this expression depends on the arbitrary (local) spin of the reference configuration.
The reason is that the substantial time derivative entering this expression is not objective.
If, however, the reversible behaviour of the material is isotropic the expression for the
work rate reduces to :

_—

~Lsp-1 §:—L{V At S ALE }+‘
0" 26 O 6

[

s:lp g gl
" ® o ) Js (29)

é
s pesi|e il 0|
9 (r) » 0 Gl 6 Jgo
This means that the first term on the right hand side and therefore also the second term

become independent of the rotation of the reference configuration..
In this case we can define -

D = {V yoiyyp-t V} (30)
» 26 6 6
as reversible deformation rate and
S=S8-¥* and V 3Ll
R ) ")

as conjugated pair of stress and strain with respect to the reversible deformations. Ho-
wever, it must be emphasized once more that this is only possible in the case of isotropy
of the reversible deformations [4].

We avoid these restrictions when we base our considerations on a multiplicative de-
composition of the tensor g writing

= $" el G = Gl
@ »)

with ‘Iﬁ = t§rsgsli and qfr = éimémr-
.0 0}

~ This leads again to an additive decomposition of the total deformation rate according to

(32)

) 1 H r r .
d = 0N @ 9@ = %_— ((g)“) (é) (q“)r((r)) gi = d' +ds. (33)

r\0) =) 0 O
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The partial deformation rates d'; and 4, are in general unsymmetric tensors. Ho-
(r) @)

wever, their sum is symmetric and only their symmetric parts enter the respective

expressions for the partial work rates.

Therefore we can write

W= sidk = s‘(q‘l)r—l—(b)k (34)
®» 6 'm0 \o J2\eh
This means we can
- . \r 1
S! =S‘,(q‘1) and  — gi, 35
¥ o Ik 2 K 33)

consider as conjugated pair of stress and strain with respect to the reversible deformations

even in the anisotropic case [19]. In the case of isotropy S‘_"k becomes symmetyic. Then
we can also write

PP v
W= Si i qk, 36
r) ¢ 2 (r)l ( )
where
v . r r p
gt = (a)f +drgi—diar = (@), @7
) )} (r) r)

represents the covariant time derivative which corresponds to the Zaremba-Jaumann
(objective) time derivative in the space-fixed coordinate system [1, 20]. In the isotropic
case also holds [1, 3]

b = si%, 38)
n 2 ®»
with the logarithmic strain tensor
| ! .
g = — (lnq) . 39)
@ 2\ @k

For simplicity in the following we restrict ourselves to isotropy of the reversible processes
using sf and &} as conjugated pair of stress and strain.
Q)

The first law of thermodynamics states

it = o L gl = o — gl “0)
4 o o 0

Herein denote

u: specific internal energy,

g': energy flux,

r: specific energy sources.
The energy flux comprehends heat flux and other energy fluxes which may, for instance,
due to diffusion of selfequilibrated microstress fields. These other energy fluxes may
be mostly small in solid bodies and therefore negligible in many cases. We shall neglect
‘them in the sequel.
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Within the frame of our phenomenological theory # must be expressible as a unique
function of a finite set of thermodynamical state variables. This set may consist of
el : reversible strain,
(]
s: specific entropy,
b, Bi: representative set of internal variables.
Then we can write
U= u(s}c,s,b,ﬂ;;). ' “n
) :

chlacmg &, and s by their conjugated state variables, i.e. by the stress si and the tempe-
(O]

rature T, by means of Legendre transformations we obtain the specific free enthalpy

Y= u— —Ts = W(SL7 T, b,ﬂi), (42)

2
as thermodynamic state function. From (42) we derive
thermic state equation:

, & |
E;‘ = —0 a;/:( = Ek(gks T b ﬂk) (43)
. Q) i Q)
caloric state equation: ‘
op
§ = —ﬁ = s(si, T, b, B1). ' 44

Concerning the changes of the specific free enthalpy we obtain from the equations (42)
and (40) the two expressions

. R | 1w, . .
P = w+w——q'|,+r—T¥,“ e{‘—é—siz’,‘—Ts-—Ts (45a)
o o @ 0 r) e
0 0
S Gy D gy b 4sb)

From the equations (43), (44), (45a) and (45b) we finally derive: balance equation for
specific reversible work:

b L gl v oy v o Py Py V,l
== TS \Gyrasy S aTast Tt bast b+ T

balance equation for remaining specific energy supply:

1 2 2 .
=gl = —T{ AU T}

® os, oT oT?
) aw a Y @D
2 ¥t
balance equation for specific entropy (bebs equatlon):
| op
Ts = W——g'|,+r——b— . 48
o e . db 3/3 @
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In the balance equation (48) we have to decompose the evolution of the specific entropy
into its reversible part 2.‘;) and iis irreversible, dissipative part (.S) (entropy production):
Ts = T5+T5. (49)
" @
Concerning this decomposition within the frame of a phenomenological theory we have
to distinguish four different classes of processes:

a) strictly reversible, non-dissipative processes governed by state equations and re-
presenting a sequence of equilibrium states;

b) irreversible, dissipative processes characterized essentially by non-equilibrium states;

c) dissipative processes appearing as a sequence of equilibrium states;

d) non-dissipative processes appearing as a sequence of equilibrium states but not-
governed by state equations. ,

On the micro-level only the classes a) and b) occur which can be treated within the
frame of the classical theory of reversible or irreversible processes, respectively. The
existence of class ¢) is due to the fact that some irreversible processes on the micro-levet
may have very short relaxation times. Thus these dissipative processes appear on the
" macro-level as a sequence of equilibrium states as, for instance, plastic deformations.
The occurence of processes of class d) is a consequence of the fact that on the macro-
level we are dealing in a so-called small (incomplete) state space. Therefore certain non-
dissipative processes become dependent on the history of the processes as, for instance,
anisotropic hardening (and softening) due to inelastic deformations and connected with
storing and restoring of mechanical energy.

From these facts it follows that the contributions to the entropy production have to be
defined within the constitutive law. These contributions comprebend:

1. the immediately dissipated specific work

W= W—W, (50) -
@ & ®»
where w denotes the specific mechanical work stored in changes of the internal
®
structure of the material,
2. the irreversible part of heat flux
- —Q'lf q lT ,i ’

3. the entropy production 7% due to other dissipative processes which may be involved
in internal processes, in energy supply by sources, and (as far as not negligible)
in energy fluxes different from heat.

According to the second law of thermodynamics the entropy production cannot become

negative. This means
T5 = Yo ¢ Ty T 2 0. 5D
@ @ oT
The dissipative (rate dependent and rate independent) processes can be treated by means
of so-called dissipative potentials. How this can be done shall not be discussed here. We
refer to [21].
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Within the thermodynamical frame which is given by the relations (42) and (46) to
(51) the constitutive law has to be defined. It consists of

a) state function for the specific free enthalpy governing also immediately the reversible

processes, -

b) evolution laws for the non-reversible deformations,

¢) evolution laws for the internal variables,

d) flux laws for energy (heat flux and possibly other fluxes)

e) laws of entropy production ((14;) , Tn).

As already mentioned we shall disregard energy fluxes different from heat. In this case
the evolution laws for the internal variables degenerate to first order ordinary differential
equations in time of the form

b =BGk, T, b, 8L, 3, T), (522)

v v . 7,

B = BiGsi, T, b, Bi, s, T). (52b)
Otherwise they represent first order partial differential .equations containing also the
gradients of the state variables (for more details see [1]).

3. Some different models concerning the constitutive law in thermoplasticity

Many different models of constitutive laws are introduced in order to describe the
inelastic behaviour of solid bodies, particularly of polycrystalline metals. Some of them
are more directed to small deformations occuring in creep and relaxation processes. Others
aim at large deformations in general processes. Another group deals with special problems
connected with solid phase transformations occuring in quenching processes [22 to 24]
or in deformations of so-called memory-alloys [25, 26]. All these models fit the frame of
the general material model given in fig. 1. They emphasize special features respectively.
In this paper we cannot give a comprehensive survey of all existing theories. Only four
of them are selected to demonstrate some different points of view.

3.1 Krempl’s and Cernocky’s theory of thermo-viscoplasticlty. Krempl’s and Cernocky’s theory
of thermo-viscoplasticity [27], [28] relates primilarily to creep and relaxation processes.
Therefore it takes into account only small strains. The central constitutive equation
reads

MG, eu> TWu—KklOus &> TIow = One—Guleys, T, (53)
with
. _ YEnn Eik & 7
Vi = (M) (1—2) Out I+ 1-2 (T=T) Ou (54)
A v[ei, T]: Poisson’s ratio,
a[T7: coefficient of thermal expansion.
Assuming

mlow, &, T]_

klow, &u, T) = ElT1 (55)
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equation (53) can be transformed into an equivalent integral equation

O = G,k[e,:,:r]+f | ey 2 M ‘f,f“f}{exp— | %} badr.  (56)

mlow, e, T,  klow, &, T1,  Gules, T, v[ew, T, and  a[T]

have to be determined experimentally.

This theory which does not contain any yield condition is presented in functional form
avoiding the introduction of internal variables. The disadvantage of such a theory, however,
is that it can not include such phenomena like recrystallization or solid phase trans-for-
mations, since in that case m and k do not depend any more on the total strain uniquely.

3.2 Hart’s theory of thermo-viscoplasticity. Hart’s theory of thermo-viscoplasticity [29 to 31]
intends to cover the whole field of non-elastic deformations, i.e. as well viscoplastic processes
as thermally activated creep and relaxation processes. The theory is based on a material
model whis is scetched in fig. 3 using the customary rheological diagram representations.

Fig. 3. Hart’s material model

The constitutive law consists of the following set of equations (omitting the reversible
processes)

d
m =0y, ©
@ o (‘; (f) :
d .
di =9 g (58)
(a)k (") (al;
tlic = Ma;n (59)
@)
o )"
= o(TH |- 60
* *\m _Q )4
in (%) _ l_{’_(%) e l 61)
(@) (@)
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*
for A > 1,
o
(@
&*
= dF(o* o). (62)
% () (a)
In these formulas denote

= sk -3 sT 0L stress deviator
o= 1/ t_,i—t,‘T : stress invariant
d=ydidF: deformation rate invariant
o* (hardness): scalar-valued internal variable
a. (stored anelastic strain): tensor-valued internal variable
G: shear modulus
R: gas constant
Q: activation energy
M,m,n, A,fj° constants } to determine
g(1), T(a*a): material functions | experimentally

t or | respectively are not addxtlonal internal variables, They are detérmined ,by the
) (@

relations
th= i+t (63)
fy @

and

dy = di = dy+di = dk+ a;, (64a)

] ) @ @ ()
or

d d
V
di =D o @ t,£+—1— i, , (64b)

) oy Oo@ Mau
fy (@)

which result from the material model (fig. 3).

The system of constitutive equations (57) to (64) is derived from the evaluation of experi-
mental results rather than from fundamental thermodynamical considerations. The scalar-
valued constants and material functions can be determined from uniaxial experiments
with different loading histories. The integration of the constitutive equations becomes
rather complicated in arbitrary processes. The theory simplifies when the viscous overst-

resses ¢} can be assumed remaining small.
f)

3.3 Ranlecki’s theory of thermoplasticity. Raniecki’s theory of thermoplasticity [21] is based
on the thermodynamical frame given in chapter 2. It is restricted to non-isothermic elastic-
plastic deformations. Changes of the internal structure independent of plastic deforma-
tions and creep: or relaxation processes are not considered. The frame of the theory,
howeyver, allows for such extensions.
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In the particular case which is fully treated in [21] the specific free enthalpy is assumed
in the form

p = p*( Sk, D+ y**(T.a, b, Bi). (65)

where a, b, B} represent internal variables.
The corresponding Gibbs equation (48) reads

D U GpRE L Gyt . Dyt T
TS = z skg), o q'li+r— 524 b— 3 B (66)
The 14 quantities
. 1 ; B a,,p** . a'lp** , a.‘p**
Ziy: ?Sk, A= P —B= - 2 — B = T 67

are considered as dissipative thermodynamic forces. The conjugated rates (fluxes) are
Zuy:di, i, b, ©®)

The existence of a dissipation potential @(2,,) with the property

(69)

is assumed defining the entropy production. For rate independent plastic behaviour @
must be a homogenious function of order one with respect to Z,.

Now the existence of additional yield conditions in the space of the dissipative ther-
modynamic forces is assumed which may also depend explicitly on the state variables.
They are chosen in the special form: '

FO = [(5— By (tf—BHY*~ YD (4,b,T) = 0, (70a)
, F = [BB{J2—Y(B, T) = 0. (70b)
The resulting rate equations (e\;olution laws) read
A oFD if FM =0, 1M >0,
di = ost (712)
®© 0 if F® <0,
oF @
di — A1 i M) = F@ = L M 5 0,
(i)k 3B if F F 0, Ab >0, >
v d} if FO =0, iH>0, F2 <0,
Bl = o (71b)
QF®
Sy Ly if F® =0, A»>0, F® <0,
9B ' .
0 if FM <0, A® <0,
Y AR ikl if F® =0, MY>0,
4= 24 . (71c)

0 if F® <o,
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aF®» »

R 1O - if F® =0 150

b= oB (71d)
0 if F® <0,

The quantities AV, A® can be calculated from the consistency conditions F(® = 0
or F® = 0, respectively.

The inelastic behaviour is completely governed by the two yield conditions (70a) and (70b).
It should be emphasized that F‘»> does not depend on the stresses. Therefore it does not
represent a yield condition in the stress space.

If the general form of the yield conditions is given as proposed by (70a) and (70b)
then the constitutive law can be determined immediately from experimental investigations
of simple cyclic processes. Therefore this theory may prove its ability particularly for such
cyclic processes .

3.4 Another proposal for the constitutive law of thermoplasticity. The author has proposed
a generalized constitutive law as well for elastic-plastic as for elastic-viscoplastic beha-
viour [1, 2]. Changes of the internal structure of the material as, for instance, by recrystalli-
zation or solid phase transformations can be included. Long time creep and relaxation
processes represent a separate mechanism which can be added as indicated in the material
model fig. 1. This will not be treated here.

The theory is embedded in the frame developed in chapter 2. The specific free enthalpy
is assumed to be given in the form (42) which can be specialized in many cases to

w(sllu T, b, ﬂllu allc) = q)*(sliu I,)+1/)**(T, b, Bs A)
~with B=gpf and A= ofok.

b, B, and «f represent internal variables. From (72) we derive by means of the thermic
state equation (43) the incremental law for the reversible deformations

(72)

df = di(31, T, s, T). (73)
) )
In many cases it can be approximated by a linear hypoelastic law [1, 32]
dt = L?w L srpatls (74)
(r)k 2G k qK r k-

Concerning the balance equation for the remaining specific energy supply (47) we obtain
from (72)

1 : v B dd
W= g7 = ¢, T+ BESL+hb+gB+dd

w @ @

w

)
o o Py - *yp*
with cp = —TW’ Bf = _TW (75)

di di oi
h(T,b,B,A)—a_b, g(T,b,B,A)=ﬁ, d(T,b,B,A)=W,
*¥ok
i= e 2

or -
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With respect to the inelastic deformations apart from thermally activated creep and re-
laxation processes we assume that two different mechanisms contribute to these defor-
mations. Therefore we put

df = di+df (76)
@@ ©
and accordingly
. 1 1, | . .
W o= o stdb = - sidb o shdb = 4w (77
@ e o e »m 2 ©» m ©

d} represents the plastic or viscoplastic deformations resulting from slip processes which
()

are governed by the actual stress state. (c)!,ﬁ is connected with certain rearrangements of
L)

the distribution of lattice defects due to stress increments. In principle we assume that

these two different mechanism depend on different yield surfaces F(?, F which are defined

in the space of the thermodynamic state variables and can be interpreted as yield conditions

in the stress space (depending on the remaining state variables). Restricting ourselves

for the present to plastic deformations we can write

F® = FOGsh, T,b, ) =0, M
F® = FO(E, T,b, af) = 0. (79)
The introduction of an additional internal variable of into (79) is necessary in order to

allow for independent changes of (78) and (79).
Concerning the corresponding deformation rates we assume

oF
| = 80
(‘Z)k A aF (80)
b p i i
dk = -R(tk—“k): -R(tka T’ ba A)' (81)
®)

This means that di is governed by the normality rule and that d} depends primarily on
(p) )

the changes of the effective stress
o= ti— o - (82)

The internal variables o, i represent the so-called back-stresses. Concerning the evolu-
tion laws of the internal variables we suppose that they reflect an interaction between

hardening or softening processes due to inelastic deformations d} and dj on the one hand
» )
and certain annealing processes (recrystallization, recovery) on the other hand. Therefore

we write

b= (imatyat+ L (i Bl dE—BO(sl, T b, B, A), (832)
e (s) @ w» 0
v
Bi = vdi—pLo(st, T, b, B), (83b)
(p) 85
%= Cdi—ab® (st, T, b, A). (®3)
() @h

2 Mech. Teoret. i Stos. 1—2/84
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Decomposing the specific work rate w into the immediately dissipated part w and the
@ Y (@

stored part w according to
)

WA == W (84)
®» ® 0 @ ®
(sce eq. (50)) and defining the entropy production 77 due to internal processes we obtain
from the balance equation (75) certain restrictions for the evolution laws (83a) to (83c)
for the internal variables. Putting the resulting expressions into the consistency condition
for the plastic deformations

F® =@ (85)

we can calculate the factor 4 in (80). ,
The requirement 4 > 0 leads to the so-called loading condition. For details see [1].
The theory simplifies when we assume coinciding yield conditions

F® = F® = F, (86)

Then the additional internal variable e} is dispensible. This case is treated fully in [1].
There also the extension of this approach to elastic-viscoplastic behaviour can be found.
The material functions and parameters entering this approach can not be determined
only from simple monotonic or cyclic experimental tests since the theoretical frame supposes
two independent yield mechanisms. Therefore additional experiments with non-propor-
tional loading pathes are needed as shown in [33].

4. Some additional remarks

The approach described in 3.4 introduces in common with Raniecki’s theory an ad-
ditional yield condition. In contradiction to Raniecki’s theory this second yield condition
contains also the stresses. Furthermore in the approach 3.4 the corresponding yield me-
chanism is not governed by the normality rule. This leads to the appearance of an addi-
tional term (81) in the evolution law for the inelastic deformations. A similar term appears
also in Hart’s theory as equation (64b) shows. Therefore the approach 3.4 combines some
features of Hart’s and Raniecki’s theory, whereas Krempl's and Vernocki’s theory follows
another concept.

Experimental investigations with regard to the constitutive law concern the determi-
nation of subsequent yield conditions after different pre-loading histories on the one
hand and inquiries on stress-strain-temperature relations (yield mechanisms) in different
loading processes on the other hand. The investigation of subsequent yield conditions
leads to different results depending on the method of determination [34 to 40).

Experiments with partial unloading [35 to 39] may result in definitions of yield con-
ditions which don’t enclose the stress origin as fig. 4 shows. On the other hand experiments
with total unloading [39 to 40] may lead to concave yield conditions (see fig. 5)

Yield conditions which do not enclose the stress origin cannot be associated with
deformation rates governed by the normality rule if the corresponding yield mechanism
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T=1b/in %10

G=lblin «10
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Fig. 4. Effect of proof strain on subscquent yield surface after partial unloading (IKEGAMI [39])

Egtrser = 00001
0

400

Fig. 5. Effect of proof strain on subsequent yield surface after total unloading (Gurta, LAUERT [40])

is considered to be essentially dissipative. This would contradict the second law of ther-
modynamics.

Therefore the experimental facts suggest an approach with two different yield mecha-
nisms as discussed in 3.4. One main aspect is scetched in fig 6. The inner yield condition

F®) belongs to (small) deformation rates di which are not governed by the normality
. (=
rule. These deformations are connected with certain rearrangements of the distribution

of lattice defects and represent essentially nondissipative processes. The outer yield con-
dition F® corresponds to the usual definition of plastic yielding. Within the stress space
between F and F® we obtain apart from the strictly reversible deformations repre-
sented by ((i,f only small additional deformations represented by (kg,i until also the yield
r f
condition FP is fulfilled. This cooperation between F® and F® can explain the hysteresis
loop in unloading — reloading and the difference in the behaviour at reloading and at
loading in the opposite direction after unloading. :
However, it may be emphasized once more that independent of the respective corre-
Iation of the two yield conditions, even if they coincide, an influence of the existence

2%
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Fig. 6. Yield surfaces F& gad FO™

of a second yield mechanism remains with respect to the stress-strain relations in complex
loading histories loading to certain (small) deviations from the normality rule.

The existence of a second yield mechanism is also suggested by the experiments of
Feigen [41] repeated and extended by Mazilu and Damm [42]. Fig. 7 shows that in the
immediate transition from pure tension to an additive torsion in stress-controlled expe-
riments with thin-walled tubes the shear modulus appears reduced (see also [43]). This
transition represents a neutral loading independent of the special shape of the plastic
yield condition supposed it is regular. According to the classical theory of plasticity the
response of the material should be purely elastic.

w5]*
40-
307 Ck 15
20
104
0 . r + . G.N_
Q 50 100 150 200 2500 300 350 400 mm
T | G* G* equivalent initiol
45 e G shear modulus
401
304
20+ [\
0 10 220 W & SO
10
evaluation: least error squares
0 . ' g °
0 35 4

Fig, 7. Stress-controlled tension-torsion experiment (see also FEIGEN [41]
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The difference between the material response in neutral loading and in unloading which
is obvious from the experimental facts shown in fig. 7 suggests immediately to suppose
the existence of an additional yield mechanism as assumed in the approach 3.4. Other
physical facts which support this approach are the better agreement between theoretical
and experimental results in bifurcation problems and other problems with complex load-
ing histories [33].

In bifurcation problems also the coupling between thermal and mechanical processes

becomes important. The beginning of localization of inelastic deformations leads also
to a certain concentration of heat production. This can influence the further development
of localization very strongly.
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Peswme

PACCYXIOEHIA O 3AKOHAX KOHCTHUTYTHBHBIX TEPMOIIJIACTHUIIOCTH

B paboTe ofCY:KAEHO (DEHOMEHONOIHUECKYIO TEOPHIO GOJBIUMK HEH30TEPMHUECKHX Aedopmaruit
TBEPALIX TN, KOTOPDIE MOMKHO PaCCMAaTPHBATH KAaK IUTACCHUECKHe cpednl. M1 npriusmaem, uto Tepmo-
JMHAMHYECKOE COCTOSHHE KaKAOTO OEMEHTa MaTeépHalia OJHOZHAYHO ONPEHENACTCA SHAYEHWAMM KO-
HEUHOTO MHOMECTBA TePEMEHHEIX COCTOSHMS, JaXKe B HeoOpaTmmbIX Ipoueccax. Takas denomMeHoso-
rryeckas Teopus KOHETHO OrpaHdyeHa OO YSKOIO KAcCi MaTepHaaoB H HO NPOLECCOB MpoGeraromprk
He CIIWIIKOM IaJIeKO OT TepMOJUHAMAUECKOI0 PABHOBECHM.

Streszczenie

ROZWAZANIA O PRAWACH KONSTYTUTYWNYCH W TERMOPLASTYCZNOSCI

W pracy rozpatrzono fenomenologiczna teori¢ duzych, nie-izotermiczoych odksztalcen ciat stalych,
ktore mozna uwazaé za o§rodki klasyczne. Zakladamy, Ze stan termodynamiczoy kazdego z materialnych
elementéw jest jednoznacznie zdefiniowany przez wartoSci skoficzonego zbioru zmiennych stanu, nawet
w procesach nieodwracalnych. Tego rodzaju teoria fenomenologiczna jest oczywifcic ograniczona do
waskiej klasy materiatow i do procesoéw przebiegajacych niezbyt daleko od réwnowagi termodynamiczne;.

Praca zostala zlozona w Redakcji dnia 25 sierpnia 1983 roku



