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Introduction

Constraints in mechanics are usually understood as the known restrictions imposed
on the class of motions of a certain material system; they are due either to internal pro-
perties of a system (internal constrains) or to the influence of certain exterior objects or
external fields (external constraints). Moreover, constraint imposed on motions is main-
tained by what are called reaction forces which can be internal (for internal constraints)
or external (in the case of external constraints). As a rule, kinematic constraints together
with the suitable reaction forces are analysed within the theory of constitutive relations
of mechanics, i.e., within relations which characterize either internal (material) properties of
the body under consideration or interactions between the body and its exterior.

So far, different special cases of constraints have been analysed independently in diffe-
rent problems of mechanics; the complete list of pertinent references is rather extensive
and will not be given here. For the discussion of constraints in Hamiltonian and Lagran-
gian mechanics the reader is referred to [l1] where the further references can be found.
Internal constraints have been studied within the theory of constitutive relations of con-
tinuum mechanics; for the basic assumptions of the theory cf. [2]. The concept of constraints
has been also applied in order to simplify the analytical form of problems in the elasticity
theory, [3], and to obtain relations of structural mechanics (cf. [4], where the list of suitable
references is given).

The main aim of the paper is to develop a general approach to the concept of constrains
in discrete and continuum mechanics and to obtain and analyse the general form of con-'
stitutive relations in which the constraints are involved. It must be stressed that constitu-
tive relations we are to deal with, describe not only material properties of bodies but also
interactions between a body and external fields. The main attention in the paper will be
given to these aspects of constitutive relations which are due to the constraints.

The concepts of constraint and that of the constitutive relations subject to constraints
will be introduced and analysed in their abstract form, i.e., independently of any special
class of problems in mechanics. Such approach, after suitable interpretations of the obta-
ined relations, enables to formulate problems in which constraints are imposed not only
on the kinematical fields but also on the internal and external forces as well as on any other
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field encountered in mechanics. Moreover, putting aside certain non physical situations,
no regularity of any kind will be imposed on the sets of fields which are admissible by
constraints. Hence different problems with involved form of constraints can be formulated
on the basis of the general results obtained in the paper. The method of constraints which
is developed here, constitutes the useful tool for the formation of new constitutive relations
by imposing constraints on the known constitutive relation. The proposed approach is
applied in order to obtain certain new classes of ideal materials within continuum mecha-
nics; for further applications the reader is referred to [5] where some examples of unilateral
internal constraints for strains and stress are discussed. Applications to structural mechanics
will be given in papers [6, 7]. .

1. Constraints and reactions

We start from a class of mappings which are assumed to describe within mechanics
all time evolutions of a quantity related to a certain material system. Throughout the
paper we shall confine ourselves to mappings which can be represented by finite systems
of real-valued functions defined on the time axis R and which are continuous and have
continuous time derivatives for a.e. £ € RV, To introduce the class of mappings under
consideration we shall assume that there is known the #-th dimensional manifold M of
the class C'. The tagent bundie to M will be denoted by TM, the cotangent bundle by
T*M; for every m € M the suitable tangent and cotangent spaces will be denoted by
T,. M, T, M, respectively. Moreover, 7, and 7,; will stand for the natural projections
of TM, T*M, respectively, onto M. The dual pairing between T,, M and T M (for an ar-
bitrary m € M) will be denoted by (T.M, -, -), TmM). Let all mappings describing
a time evolution of a certain quantity related to the material system under consideration
be represented by elements of the known (topological) space ®(R, M) of functions defined
a.c. on R and with values in M. Hence the mappings we are to deal with are

p:Rot— p(t)eM ‘ (1.1)

for some ¢ € (R, M). We shall also assume that the R.H.S. derivatives ¢’(¢) exist for
every t € R.

The intuitive concept of constraints is closely related to the fact that in many problems
under consideration not every ¢ € (R, M) describes certain physical situation and that
in different situations we have to deal with different subsets of @(R, M). Thus, from
‘a formal point of view, we are tempted to define constraints as certain proper subsets of
®D(R, M). However, such treatment of constraints is not based on the physical meaning
of this concept. Firstly, not every restriction of @(R, M) has the physical sense of const-
raints?’, Secondly, the choice of the space @(R, M) itself can be interpreted as introdu-
cing constraints in their intuitive meaning. To avoid any ambiguity, we shall introduce
the following definition of contraints.

1 Thus within continuum mechanics we confine ourselves to the situations in which there is involved
only sufficiently small neighborhood of an arbitrary but fixed material particle.

» Such restriction can be introduced, for example, by imposing extra smoothness conditions on the
space D(R, M) of mappings (1.1).
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Definition 1. By TM-constraint we shall mean the multifunction

“:Rat—> €)=« TM, (1.2)

such that, under the denotations

A(m, t) = €(ONnT .M, (m,t)e MxR,
DA(t) = imeM|A(m,t) # ¢} = 7,4(), teR,
the following conditions hold
(Vte R)(Vme DA(1)) (Vo e A(m, 1))(Afe C(—¢, &), e > 0)[m =
=f(0),v = f'(0),f' (D) e A(f(X), 1+4) for every 1€]0, &)], (1.9)
(Vte R)[DA() # ¢].

(1.3)

The multifunction

A:MxRs(m,t)—> Alm,t) =« TM, (1.5
such that

(V(m, 1) e Mx R)[A(m, 1) < T,,M] (1.6)

and satisfying Eqs. (1.4), will be called TM-constraint multifunction.
Corollary 1. Every TM-constraint multifunction defines TM-contraint and conversely.
TM-constraint determined by TM-constraint multifunction 4 will be denoted by ..
Corollary 2. Every TM-constraint multifunction (1.5) determines the subset @ 4,(R, M)
of @(R, M) defined by

PR, M) := {pe DR, M)|p(t) e DA(), ¢ ()eA(p(),1), teR}, (1.7)

where, by virtue of Eq. (1.4), the subset @ ,(R, M) is not empty.

Remark 1. If M is a differentiable submanifold of a certain C!'-manifold M,, then
TM-constraint can also be interpreted as TM,-constraint. Analogously, if M, is a differen-
tiable submanifold of M, then TM-constraint can be interpreted as TM,-constraint pro-
vided that €(r) «¢ TMj; for every ¢ € R. Thus the concept of constraint is strictly related
to the choice of the differentiable manifold M. This manifold in problems of mechanics,
as a rule, is introduced by the known class @(R, M) of mappings®. The TM-constraint
¢ we deal with will be called generalized since no regularity of any kind (apart from
conditions given by Eq. (1.4)) is imposed on the non-empty subsets €(z) of TM.

Remark 2. In many problems of mechanics we deal with situations in which TM-con-
straint ¢ (or TM-constraint multifunction 4) is not known a priori but depends on cer-
tain element of a non empty set =, ie., € = 4, £ 5. If Z > 1 then %, £ € 5, will be
referred to as the implicit TM-constraints and if £ is one element set then we return to
Definition 1 of (explicit) TM-constraint. For implicit constraints instead of TM-constraint
multifunction (1.5) we shall introduce implicit TM-constraint multifunction

A:MXRxE>(m,t,&) > Alm, 1,6 < TM, (1.8)
such that A(-, -, &) is, for every & € Z, the known constraint multifunction.

The concept of constraints in mechanics is related not only to the restrictions imposed
on the class of mappings (leading from @(R, M) to D ,(R, M)), but also to the existence

3 That is why TM-constraints ¢ will be identified neither with 7M,-constraint nor with TM,-con-
straint.
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of certain fields which are treated as ,,maintaining’’ the constraint and are said to be
,,reactions” to constraint. In order to introduce such ,,reactions” we shall firstly define
the sets

T pm,5(®) := {we T(T,M)lw = g'(0), v=¢g0), g ed(m,1)
for every A€ [0, &), ¢ > 0, and some g€ C'((—e, &), T, M)},

and then, taking into account the canonical isomorphisms A,:T, (T, M) — T, M, we
obtain the cones r

K gim,5(®) = 4 T agm, (0) (1.9)
of directions tangent to A(m, ¢t) in T,,M at the points v € A(m, t). Mind, that cones
K ym, n(®) are empty if v € T,, M\ A(m, t) or me M\ DA(t). Now we shall formulate
the following

Definition 2. By a reaction cone of TM-constraints ¥:R3 t — €(t) « TM at a time
instant ¢ € R, at a point m € DA(¢) and for an element v € A(m, t), we shall mean a cone
in TxM given by

K%m.n(@) := {o* e TEM|<w,v*) 2 0 for every w € K m,0(0)}, (1.10)
where, as usual, A(m, t) = €)NnT,M,me M, teR.

Remark 3. Elements of every non-empty reaction cone for TM-constraint will be
called reactions to constraint. It can be seen that every reaction cone K¥,,.,(v) is closed
in T*M and conjugate to the cone K .m, r)(v) of directions tangent to A(m, t) atv € A(m, t).
For an arbitrary time instant ¢ € R these cones are not empty if and only if m € DA(¢),
veAdA(@m,t).

Example of interpretation. Let M be a configuration space and ¢:R3t - ¢(t) eM
stands for a motion of a certain material system. For an arbitrary TM-constraint %4
we interpret DA(¢) as a set of all configurations which are ,,admissible” by constraint €,
at a time instant ¢ € R. At the same time A(m, ¢t) is a set of all velocities which are ,,admi-
ssible” by constraint €, at a configuration m € DA(¢). Every motion ¢ is ,,admissible”
by constrains if and only if ¢ € ®,(R, M); we can here assume that @(R, M) =
= D'(R, M). Elements of K4, () now play the role of what can be called ,,virthal
displacements”. The cones of ,,virtual displacements” have been introduced only in order
to define conjugate cones K&y, n(?) in TX M, m € M, which are called the reaction cones.
Elements of K%, 1 (%), for a certain motion~¢ € @,(R, M) and for m = @(2), v = ¢(2),
can be interpreted as reactions due to the constraints, which can act on the moving material
system under consideration at the time instant ¢ (at the configuration ¢(¢) and the gene-
ralized velocity v = ¢(¢)). Hence we see that now elements of T* M can be interpreted
as certain generalized forces which can act on the moving system in its configuration
m = ().

To complete the Section we discuss different cases of TM-constraints from the point
of view of reactions. TM-constraint ¥ = €, will be called taut or stretched at € R,
m € DA(t) and forv € A(m, ¢t), if and only if {0} is a proper subset of the reaction cone
K% m, n(v); otherwise the relation K%, () = {0} holds and €, will be called untaut
or unstretched at ¢t € R, m € DA(t) and for v € A(m, t). Define

K¥m, )= U )Kﬁ(m.n(v)-

veAd(m,t
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TM-constraint €4 will be termed reactive at te R, me DA®), if K¥(m,t) o> {0},
and will be termed unreactive if K*(m, t) = {0}. TM-constraint ¥, will be called non-
reactive if it is nonreactive for every ¢ € R and every m € DA(t); otherwise it will be called
reactive.

Corollary. TM-constraints are nonreactive if i (z,%(t)) = €(t) for every t eR or
if A(m, t) = T,,M for every me DA(t) and every t€ R.

It must be emphasized that the term ,,constraint” in the known terminology of me-
chanics is reserved, as a rule, for situations in'which TM-constraint is reactive.

Let TM-constraint €, at t€ R, me DA(t) and for v € A(m, t) be taut. Then the
constraint will be called:

1° bilateral if K%, ) (v) is a linear subspace of T*M and K¥%m,(v) # {0},

2° unilateral if K%, (v) does not contain any linear subspace of TxM different
from {0} and K4, (@) # {0,

3° combined if K¥m,(v) is not a linear subspace of T M but contains such a subs-
pace different from {0}.

This terminology is based on the terminology used in analytical mechanics. In mechanics
we also deal with what are called ,,ideal”” constraints, in which the total work of the reaction
of these constraints on any virtual displacement is equal to zero. This case in a general
approach given in the paper is represented by the condition: {w,v*)> =0 for every
W € K (m. (), where v* € K%, »(v) and v € A(m, t). Hence it follows that the ideal
constraint coincides with the bilateral constraint in the sense which was introduced above.
However, from the point of view of applications of the theory developed in the paper,
it is better to introduce the term ,,ideal constraints” as describing all situations in which
,,constraints” of the form: v € A(m, t), m € DA(t), are ,,maintained” by the reactions
v* € K%, n(®). Thus the theory we are to develop can be treated as the theory of ,,ideal”
constraints.

2. Constitutive ‘relations

Time evolutions of material systems in mechanics are described by what are called
dynamical processes; throughout the paper we shall confine ourselves to the processes
represented by pairs of functions (g, y) € (R, M) x P(R, T*M), such that p(¢) € T, M
for every t € R, where W(R, T*M) is the known functional (topological) space of functions
defined a.e. on R and with values in T*M. Thus every dynamical process under conside-
ration. will be represented by

Rat— (p@), p(t))e MxT*M, Q.1

where ¢ € D(R, M), vy € P(R, T*M) and y(t) € Tk, M for ae. t € R. Moreover, in
problems under consideration, every process (2.1) has to satisfy certain relation
o = (R, M) x¥(R, T*M) which, roughly speaking, characterizes properties of the phy-
sical object or phenomenon which is analysed in this problem. Thus we shall assume that

(p,p)ee = DR, M)x¥(R, T*M), 2.2)
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and refer o to as the constitutive relation. To be more exact, to every material system we
shall assign certain set # of constitutive relations of the form (2.2)# such that:

1° Every o € & is either the internal constitutive relation, i.e., it describes the ,,material”
properties of the system (i.e., all these properties which are independent of any external
field), or the external constitutive relation, describing the interaction between the system
and its exterior.

2° Every o € & satisfies the principle of determinism, i.e.. for every g € # there exist
relations

e C¢(§+’M)X.g/(ﬁ+’T*M)a tER;

such that (@, v) € ¢ if and only if (¢, pV) € 5, for almost every ¢ € R, where ¢"(s) =
= p(t—s), p¥(s) = p(t—s), s = 0. If g is an internal relation then, as a rule, %, is assumed
to be constant for every ¢ € R.

Remark 1. Constitutive relation, apart from ¢ € ®(R, M) and p € ¥(R, T*M), can
also involve elements § of a certain set 4 which is not specified here. To take this fact into
account we shall tacitly assume that ¢ = g4 for some d € 4. Thus the constitutive relation
involving d will be represented not by a single relation g but rather by a family g4, d € 4,
of such relations.

Remark 2. The term ,,constitutive relation’ is usually restricted to the description of
material properties only of the system under consideration. Throughout the paper the
constitutive relations are not restricted to relations describing internal properties of bo-
dies (as internal constitutive relations) but also describe interactions between the body
and external fields or objects (external constitutive relations).

In the sequel we shall deal only with what will be called TM-constrained constitutive
relations.

Definition 3. Constitutive relation ¢ < @(R, M)x W (R, T*M) will be termed TM-
constrained if and only if there exists TM-constraint € = €, (here 4 is a constraint
multifunction), such that dom ¢ = @,(R, M), where (DA(R M) is a nonempty subset
of (R, M) given by Eq. (1.7).

The foregoing definition yields an interrelation between the concept of a constraint
and that of a constitutive relation (interﬁal or external). From now on by a constitutive
relation we shall mean T'M-constrained constitutive relation, including also the trivial
case in which @,(R, M) = @®(R, M), i.e., in which A(m,t) = T, M for every me M,
teR. : .

Now the question arises what restrictions have to be imposed on the form of consti-
tutive relations due to the existence of constrains. To answer this question we shall formu-
late the following:

Principle of Constraints. Every TM-constrained constitutive relation ¢ < @(R, M) x
xY(R, T*M), domp = @,(R, M), has to satisfy the condition

(Vo e Du(R, M))(Vr € R4(@))[[(@, v) € 0] = [(p, p£r) €l], (2.8)
where we have denoted

Ru(p) := {re ¥ (R, T*M)|r(t) € Kiuw.o(9'(1)) for ae. teR}, 2.4

+ For different constitutive relations sets M, ®(R, M), ¥(R, T*M) can be different.
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and where the sign ,,+” (the sign ,,—") has to be used if g is an external (an internal)
constitutive relation.

The principle of constraints emphasizes the formal difference between external and
internal constitutive relations; rougly speaking, the external constitutive relation is ,,unsus-
ceptible” on the reaction r € R,(¢) to constraints ¢,, while the internal constitutive
relation is ,,unsusceptible’” on any ,,action” on constraints —r(z), ¢ € R, where r € R4(¢).
Hence, from a purely formal point of view, to every external constitutive relation (p, y) € o
we can uniquely assign the internal constitutive relation g, putting (¢, ) € ¢ iff (p, —9) € o,
i.e., replacing function y by a function 9.

To discuss the consequences of the principle of constraints let us introduce the multi-
perator

Mro: D(R, M) — 2¥R-T*M),
putting
Mro(p) := {y e P(R, T*M)|(p, ) €0}
It follows that for every r € R,(p) we obtain y+r € Mro(p) provided that y € Mro(g),
where the sign ,,+” (the sign ,,—”) is related to the external (the internal) constitutive
relation. Introducing now an arbitrary multifunction

E:D(R, M) - 2¥R.T*M), (2.5)
such that
domE := {p e DR, M) E(p) # ¢} = DR, M), (2.6)
we obtain Mro(p) = E(p)+ R(¢) and arrive at the following form of TM-constrained
constitutive relation
peE@1RAp, PR, M), 2.7)

where the sign ,,+”’ and ,,—" are related to the case in which we deal with an external or
internal constitutive relation, respectively. Mind, that relation (2.7), in which f(-) is
an arbitrary multifunction (2.5) satisfying Eq. (2.6), fulfils identically the principle of
constraints.

Using the principle of determinism, mentioned above, we assume that there exist the
multifunctions

(¢, ¢’ (1)) > E(p®, ¢'(t)) =« TEM, meM, teR, (2.8)
such that ¢(¢) = m and
p(t) e E (¢, ¢'(1))£r(t) for some reR p), teR.

Taking into account Eqs. (2.4), (1.7) we obtain finally the following general form of TM-
constrained external constitutive relation®

w(1) € E (9, ' (1)) + Ko, (9" (@),

(1) e DA(1), @'(t)eA(p(),t); teR.
Moreover, for internal constitutive relations, the subsets E (¢, ¢'(2)) of T, M, for an
arbitrary but fixed history ¢*, are time independent. For such relations we also assume that

(2.9)

® Mind, that E(¢°, ¢’(1)) is a subset of T M.
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the time does not enter the constraint: A(m, t) = A(m), t € R. Thus the general form of
TM-constrained internal constitutive relation is given by

(1) € E(¢©, ¢’ (1)) = K&y (9'(1),

p(t)e DA, ¢ ()eA(p(t)); teR, (2.10)

where
(@, @’ (1)) > E(¢, ¢'(1)) =« TEM, m = o(t),

constitutes a special case of a multioperator (2.8). Summing up, we formulate the following

Proposition. Every TM-constrained external constitutive relation (¢, ») € o = ®(R, M)
x ¥(R, T*M) has a form (2.9) in which A:Mx R> (m, t) > A(m, t) =« TM is TM-cons-
traint multifunction and E,(-) are multioperators such that E, (¢, ¢'(?)) # ¢ if ¢ e
eD(R,, M) and @(t—s)e DA(t—s), ¢’ (t—s) e A(p(t—s),t—s) for every teR and
s> 0. Every TM-constrained internal constitutive relation (¢, p)€p < (R, M)
x ¥(R, T*M) has a form (2.10), in which A:M 3 m — A(m) = TM is TM-constraint
(time independent) multifunction and E(-) is a multioperator such that E(¢‘?, ¢’(¢)) # ¢
if ¢ e®(R,, M) and @(t—s) € DA, ¢'(t—s) € A(p(t—s)) for every te R and s > 0.

Conclusion 1. If for a certain TM-constrained constitutive relation the suitable TM-
constraints are nonreactive, then the principle of constraints is satisfied identically. In
this case TM-constrained external constitutive relation is given by

p(1) € E (¢, @'(1)), (1) e DA(), ¢'(1) € A(p(2), 1),

for a.e. t € R, and TM-constrained internal constitutive relation has a form

v(t) e E(¢, ¢'(t)), @(t)eDA, ¢'(t)eA(p()),

for a.e. teR.

Conclusion 2. If TM-constrained constitutive relation p € D(R, M)x P(R, T*M) is
a functional relation (defined on the subset @,4(R, M) of (15(R M), ie., if p = op,
¢ € D4 (R, M), then TM-constraints ¥, are unreactive. _

Example of interpretation. To illustrate the foregoing analysis we can assume that M
is a space of all 3 x 3 symmetric matrices and that DA is a subset of all positive definite
matrices representing the values ¢(¢) of the Cauchy-Green deformation tensor at an ar-
bitrary time instant. Moreover, let every y(¢) be treated as the value of the second Piola-
Kirchhoff stress tensor. Then Eqs. (2.10) represent constraints for deformations and
Eq. (2.10), stands for a suitable stress-strain relations.

Remark 3. Conditions (2.9),, (2.10), are implied by conditions (2. 9)3, (2.10);, res-
pectively, since

DA(t) :={me M|A(m,t) # ¢},
— {m e MIA(m) # ).

Remark 4. The requirements formulated in the foregoing proposition represent only
necessary conditions imposed on constrained constitutive relations. The sufficient con-
ditions can be formulated only for some special classes of constitutive relations.
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At the end of the Section we shall formulate some alternative forms of TM-constrained
constitutive relations for the case in which

[E: (@, ¢'(2)) # ¢] = [E. (¢, ¢'())) = {F. (e, ¢’ (O)}],
[E(¢®, ¢'(1) # ¢l = [E(e®, ¢’ (1)) = {F (¢, ¢'(D)}],
for every t € R i.e., in which E, (¢, ¢'(1)), E(¢”, ¢'(t)) are singletons or empty sets only.
Combining together external and internal relations, we obtain from Egs. (2.9), 2.10)
p(t) = F (¢, ¢'(0))xr(t), (1) € Ko, n(9'())),
(1) e DA(r), @' (@®)eA(p(r),t); teR,
where for internal relations the sign ,,—” has to be taken into account and F,, DA(?),

A(p(?), t) have to be replaced by F, DA and A(p(t)), respectively. Analogously, we also
obtain

2.1D

w(1) = F (o, ¢'(1)—r(t),
_<w, r(t)) = 0, we KA(q!(l’).l’)(<p’(t)), (2.12)
@(t) e DA(1), ¢@'(t)e A(p(t),1); tER,
for an internal constitutive relation. If TM-constraints in constitutive relations (2.11) -
(2.14) are nonreactive then we obtain (t) = F,(¢®°, ¢'(t)) or (1) = F(®, ¢’(t)) for
the external or internal TM-constrained constitutive relation, respectively.

3. The method of constraints

The principle of constraints postulated in Sec. 2 makes it possible to formulate an
approach leading from the known constitutive relation ¢ =« @(R, M) x P(R, T*M), to
a new relation g = (R, M) xP(R, T*M), where B:MxR> (m,t) > B(m,t) =« TM
is a certain TM-constraint multifunction. The general idea of this approach is based,
rougly speaking, on the imposing TM-constraint ¥p on the relation g. The approach
outlined below will be referred to as the method of constraints and can be treated as a cer-
tain generalization of the method of internal constraints, [3].

We start from the known TM-constrained constitutive relation ¢ which will be given
by

ye M"Q(Q”), (31)

with domg = @,(R, M) and where A:Mx R>3 (m,t) - A(m,t) = TM is the known
TM-constraint multifunction. Putting
€)= U A(m,1), teR,
meM

we obtain T’M-constraint € = €.

Now assume that there is known the TM-constraint multifunction B: M x R> (m, t) —
— B(m, t) = TM. This multifunction, for every ¢t € R, determines the non-empty subset
% of TM:

és(t) = U B(m,t), teR.
meM
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Let us also assume that the conditions

Ca()NEp(t) # ¢,

€ A(1)NE5(1) is closed in € (1), (3.2)

hold for every te R, and ¥, (1)n¥s(t) =« =€ 4(¢) for some ¢t € R. Define the relation
ols © P(R, M)x ¥ (R, T*M), putting

(9, 9) eols = [(p, v) €0l [p € Dp(R, M)]. (3.3)

Relation ¢/p is not empty and may be not TM-constrained constitutive relation since
it may not satisfy the principle of constraints.

Taking into account Eq. (3.3) we shall define the new relation gz < @(R, M) x
x Y(R, T*M) by means of

(@, ) €0p <= (Ar € Rp(p)) (@, w£7) € 0lsl, (B4

where we use the sign ,,+ " if g is the internal relation and the sign,,—" if g is the external
relation. Introducing the multioperator

Mrolg(p) := {y e ¥(R, T*M)l(¢, p) € 0ls},
we obtain from Eq. (3.4) that
wxre Mrolg(p) for some re Ry(p)

with the same meaning of sign as in Eq. (3.4).
Thus we conclude that (¢, ) € op if and only if

p € Mro|p(9)+ Re(9), (3.5)

where now the sign ,,+” (the sign ,,—") is valid if ¢ is the external (the internal) consti-
tutive relation. By virtue of Egs. (2.7), (3.2)+(3.5) we can formulate now the following

Conclusion. Relation gg, obtained from TM-constrained constitutive relation p by
means of Egs. (3.3), (3.4), is TM-constrained (constitutive) relation with reacting TM-
constraint € = 459.

The procedure leading from TM-constrained constitutive relation o ¢ @(R, M) x
xW(R, T*M) to TM-constrainted constitutive relation gp = (R, M)x P(R, T*M)
will be called the method of constraints. Roughly speaking, the relation g has been ob-
tained by imposing TM-constraints 5 on the relation p.

Now taking into account Egs. (2.9) and applying to Eq. (3.5) the procedure analogous
to that leading from Eq. (2.7) to Eqgs. (2.9), we obtain

(1) € E (¢, @' (D) p+ KX iy, 0 (@' (D)) + K (o200 (@' (D)),
@(t) € DA()NDB(1), ¢'(t) € A(p), 1)nB(p(1), 1),

for 7€ R. Eqgs. (3.6) represent an external TM-constrained constitutive relation op; here
multioperator E,(*)/p is obtained from E,(-) by restricting its domain only to such

(3.6)

6 We can only assume that gy is the constitutive relation if g is such a relation. In fact gp satisfies only
sufficient conditions of being constitutive relation, formulated in Sec. 2.
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@ € D(R, M) which satisfy Egs. (3.6),,5. Analogously, taking into account Egs. (2.10),
(3.5) we arrive at

1/)(t) € E(<P(‘), (pl(t))h}_Kj(rp(r).U((pl(’))—K;(lp(l).I)((pl(’))’ (3 7)
¢(t) e DANDB,  ¢'(1) € A(p(1))nB(p(1)), :

for 1 € R. Eqs. (3.7) represent an internal TM-constrained constitutive relation op.

Summing up, we conclude that the method of constraints leads from constitutive re-
lations (2.9) and (2.10) to constitutive relations (3.6) and (3.7), respectively, Let us also
observe, that to TM-constrained relation pp are assigned TM-constraints % 4~5, given
by € ~5(t) = €.(t)n%Gp(t), t € R, where AnB stands here for TM-constraint multi-
function defined by

(AnBY(m, t) = A(m, t)nB(m,t), (m,t)e MxR.

The foregoing multifunction also enables to rewrite Egs. (3.6),, (3.7), to more compact
form corresponding to that of Egs. (2.9),, (2.10),, respectively.

4. Special cases of constraints

So far we have analysed TM-constraints € in which the subsets €(¢) of TM were res-
tricted exclusively by condition (1.4). In this Section we are to define and to discuss more
special cases of constraints which are often encountered in different problems of mechanics.

To begin with we shall introduce the important concept of what are called holonomic
constraints. Roughly speaking, by holonomic TM-constraint we shall mean the constraint
% in which for every ¢ € R all subsets A(m, t) = €(¢1)nT,. M are uniquely defined by means
of a certain non-empty subset H(t) of M, ¢ € R. To be more exact, let us assume that there
is known the multifunction

H:Rot—-> H)c M 4.1)
and define for every ¢ € R, m € M, the subsets Fy(m, t) of C'(R, M), given by

Fy(m,t) := {fe C'(R, M)If(t) = m, f(t+2)e H(1+7)
for A€[0,&) and some &> 0}.
For every m € M\ H there is Fy(m,t) # ¢, t € R.

Definition 4. TM-constraint € = €, will be called holonomic if and only if constraint
multifunction A(-) is defined by

Am,t) := {ve T, Mo =f'(t) for some feFy(m,?)}, 4.2)
where H:R> ¢t — H(t) = M is a multifunction satisfying the condition
(Vte R)(Vme H(t))[Fu(m, 1) # ¢]. “4.3)

TM-constraint ¥ will be called scleronomic if and only if €(¢) is constant for every t € R;
otherwise they will be called rheonomic. TM-constraint will be called holonomic — sclero-
nomic if it is both holonomic and scleronomic.

Conclusion. Holonomic — scleronomic TM-constraint is uniquely determined by an
arbitrary non-empty subset H of M.
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Proposition 1. The holonomic-scleronomic T'M-constraint multifunction is given by
A(m,t) = A(m) = Tyg(m), teR, meM, . 4.4
where H is an arbitrary non-empty subset of M and Tz(m) is a cone of all directions
tangent to H at m (empty if m e M\ H):
Tu(m) := veT,Mlv=¢g0), m=g0), gMeH
for every A€ [0, ), e >0, and some ge% ((—e¢, &), M)}.

Eq. (4.4) can be obtained from Eq. (4.2) and from a definition of a set Fy(m, 1), taking
into account that H(t) = H for every ¢ € R. It must be emphasized that in general no regu-
larity of any kind has to be imposed on the non-empty subset H of M, which uniquely
determines holonomic-scleronomic constraint.

Corollary 1. If H is a differentiable submanifold of M determining holonomic-sclero-
nomic constraint ¢ then € = TH and 75'(vy%) = 4.

From now on we are to deal exclusively with holonomic-scleronomic TM-constraints.

Proposition 2. If for some m € H the cone A(m) = Ty(m) is convex in T,, M, then
the reaction cones K*,)(2), v € A(m) = Ty(m), are determined by

Kim(0) = {o* € TEMKu, o*> > (0, 0% for every ueTu(m)}. (4.5
In order to prove the foregoing proposition let us observe that for every v € A(m) =
= Ty(m), where A(m) is convex in T,, M, we obtain (cf. Eq. (1.9)):
K 4imy(v) = con[Ty(m)—2],
where we have used the known denotation
conf2:= {xeV|x=2Ax,xe, 1> 0},

for an arbitrary subset £ in a vector space ¥. Now taking into account Eq. (1.10) we also
conclude that v* € K*,,,(v) if and only if

<w,v*> 2 0 for every wecon[Ty(m)—2v],
i.e., K%my(©) = con*[Ty(m)—v], A(m) = Ty(m), where con*2 stands for a closed cone

conjugate to con{2. The ultimate condition leads directly to Eq. (4.5).
Corollary 2. Under the assumptions of Proposition 2 the following equality

(v, v*> =0, o*eK¥um®) (4.6)
holds for every v € A(m). Hence
v* € K¥m®@) if <v,v*> =0 and <lu,2*> >0 for every ued(m), (4.7

holds for every v e A(m) = Ty(m).

Equality (4.6) can be obtained from Eq. (4.5) by substituting u = kv with k > 0.
Then (k—1) {w, v*> > 0 for every k > 0 and hence we arrive at Eq. (4.6).

Now assume that M is (finite dimensional) linear space and H is convex in M. Then

A(m) = Ty(m) = con(H—m)

for every m € H, where con(-) stands for a closure of con(:) in M. Taking into account
Eq. (4.7) we arriverat the following final
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Conclusion. If a non-empty set H is convex in a finite dimensional linear space M and
H determines holonomic-scleronomic TM-constraints, then

{u,v*> =2 {m,v*) for every ueH,
{v,v%¥) =0, (4.8)
: vecon(H—m), meH,
if and only if v* € K%, (v), where 4(m) = con(H —m).
From now on we shall confine ourselves to holonomic-scleronomic TM-constraints
in which M is a finite dimensional linear space, M = R", and TM-constraints are determi-
ned by a non-empty convex subset H of M. Let us take into account constitutive relations

given by Egs. (2.11) or (2.12). Combining together Egs. (2.11) and (4.8) we arrive at the
following TM-constrained constitutive relations

W(t) = Ft (‘P(l): <P'(t))ir(t),
u, r(t)) = Lp@), r(t)y for every u€eH,
g'(®), r(1)> =0,
(1) eH,
for 1€ R. Let us confine ourselves to the internal constitutive relations only, putting
F, = Fforevery t € R and taking into account the sign ,,—” in the first from the foregoing
relations. Let us also take into account Remark 1 of Sec. 2 and Remark 2 of Sec. 1, assu-
ming that F = F°, § € 4 and H = H;, & € E (implicit constraints). Then we finally arrive
at the following special form of TM-constrained constitutive relations(™
p(t) = F (¢, ¢'(1))-r(1), d€d,
u, r()) = Lp@), r(t)> for every u€H,
<<Pl(t)9 I‘(t)) == 09
.p(t)eH,, ¢Ee&,
which has to hold for ¢ € R and where 4, = are the known sets. If 4, = are singletons then
the indices 6, &, respectively, drop out from Egs. (4.9).
TM-constrained internal constitutive relations (4.9) will be the basis in Sec. 5 for
analysis of different special cases of internal constraints in different ideal materials.

(4.9)

5. Materials with constraints

Formulas (4.9) represent the abstract form of TM-constrained internal constitutive
relations (with holonomic-scleronomic implicit constraints in which H; is convexin M = R*
for every £ € 5), i.e., the form which is independent of any special class of ideal materials..
Interpretations of Egs. (4.9) in mechanics (as well as interpretations of any other relation
of Secs. 1 - 4) will be realized by assigning the physical meaning to elements of manifolds.
M and T*M and to elements of sets A and = (provided that they are not singletons).
At the same time we shall specify the families of mappings F® and sets H;.

D If s —» @(¢+5) is differentiable in (— ¢, &), then Eqs. (4.9); imply Eq. (4.9);. Mind, that Egs. (4.9).
hold only if H; is convex in M = R" for every & € 5.
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Let M = R® be interpreted as a space of all (symmetric) second Piola-Kirchhoff stress
tensors and let every T*M = R® be a space of all (symmetric) strain-rate tensors. Mo-

fond

reover, assume that A, = are singletons (i.e. F® = F, Hy = H) and

F(p®, ¢'(1)) = L)' (1), 6.1
where L(m): R® - R® is the linear continuous operator (known for every m € M). Intro-
ducing the denotations '

e(t) = y@), o) =9@1), o0)=9¢ @), &O)=-r@),
we shall rewrite Egs. (4.9) to the form
é(t) = L(o())a(1)+ (1),
T, e(t)) € (o(t), e(t)) for every 7tv€eH,
<o (1), &(1)y = 0,
a(t)e H.

(5.2)

Under the forementioned interpretation it can be observed that Egs. (5.2) may represents
constitutive relations of an arbitrary elastic-ideal® plastic material provided that oH is
the loading surface (yield surface) and L(0) = 9%y(a)/d0?, o € R®, where (- ) is a potential
characterizing a hyperelastic material. In this case Eq. (5.2), are the Prandtl-Reuss equ-
ations with &(?) as a plastic and L(o(2))o(2) as an elastic parts of the strain rate tensor,
respectively. At the same time formula (5.2), includes the yield condition and formula
(5.2), represents Hill’s principle of maximum plastic work®. Let us also observe that Eqs.
(5.2) can be obtained from the constitutive functional relation

é(t) = L(o(t))o(1), (5.3)
by the method of constraints. It can be seen that Eq. (5.3) is the constitutive relation of
a certain rate-type material. Thus we shall arrive at the conclusion that the convex explicit
constraints imposed on the constitutive relations of rate-type materials lead to the con-
stitutive relations of ideal plastic materials. The character of yielding is uniquely determi-
ned by the subset H, i.e., it is due entirely to the effect of constraints.

Now let M = R® as above, but M be interpreted as a space of all (symmetric) strain
tensors of the linear elasticity. Let every T, M = R® be a space of all (symmetric)stress
tensors. Let us also assume that

F(e®, ¢'(1)) = Lo(1), (5.3)

where L:R® —» R? is the tensor of elastic moduli of the linear elasticity. Introducing the
denotations

o) = (), e()=g¢), ()= -r@),
we rewrite Eqs. (4.9) (in the sequel we shall neglect Eq. (4.9);, cf. Footnotes 7) and 8)
to the form
a(t) = Le()+ (1),
(e, (1)) < Le(t), (1)) for every ee€H, (5.4)
e(t)e H.

® This principle implies also Eq. (5.2); provided that ¢ — o(z) is differentiable, cf. Footnote (7).
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If int H # ¢ and O € int H, then Eqgs. (5.4) can be interpreted as the constitutive relations
of Prager’s locking materials. Eqs. (5.4) can be also obtained from the linear stress-strain
relation

a(t) = Le(?) (5.5)

by the method of constraints. Hence it follows that the constitutive relations of ideal loc-
king materials can be obtained by imposing suitable constraints on stress-strain relations
(5.5) of the linear elasticity theory.

Let M = R® be interpreted now as the space of all (symmetric) strain rate tensors and
T*M = R be a space of all (symmetric) stress tensors. Let us also assume that = is a non
empty subset in a space 4 of all right Cauchy-Green deformation tensors (strain tensors)
Introducing the denotation

o) =), e@)=e@), e@®=90d, ()= -r),
and assuming that
F(g®, ¢'()) = F* (9, ¢'(®)) = E(9), (5.6)
where E:R° — R® is the known function ),we obtain from Egs. (4.9)

o(t) = E(e(®))+ (1),
(g, T(2)) < Le(1), ©(¢t)) for every &€ H,y, (5.7
e(t) e Hyyy, e(t)eX.

The foregoing constitutive relations can be treated as obtained by the method of constraints
from the constitutive relations

o(t) = E(e(r)), e(®)ed, (5.8)

which can be postulated as stress relations of the non-linear elasticity; here 4 is the set
of all symmetric strain tensors in the space R’. A set £ in Egs. (5.7) can be not convex
but has to be closed in 4 (but not in R%(*°). We shall also assume that

Hyy = T=(e(?)), e()eZ, (5.9)

—
=

where T's(e) is a convex cone of all directions tangent to = at e, e € £ (cf. Sec. 1). Hence
we see that Eqgs. (5.7), (5.9) represent the constitutive relations of elastic materials with
an arbitrary holonomic (scleronomic) internal constraints for the strain measures e(?).
Mind, that the form of these implicit constraints (cf. Remark 2 of Sec. 1) is rather general
since no regularity conditions are imposed on the set £ apart from those that T's(e) are
convex for every e € & and that = is closed in the set 4 of all strain tensors.

If £ is a differentiable manifold embedded in R? then, by virtue of Eq. (5.8), every H,q)

is a linear subspace of R°. In this case we obtain

o(t) = E(e())+(2),

(e, t(t)) =0 for every e€ T, =, (5.10)
e(t)e =,

9 We have assumed here that E(- ) is independent of the history ¢t*? and the velocity ¢(?).
19 ¢f. the basic assumptions of the method of constraints in Sec. 3.

2

2 Mech. Teoret. i Stos. 3-4/84
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where
ToyZ = T=(e(1))
is the space tangent to = at e(?), e(?) € 5. Thus we have obtained the case of smooth bi-
lateral internal constraints well known in the present literature.
Returning to the general case of holonomic constraints imposed on the stress relation of
nonlinear elasticity (5.8), let us observe that the ,,maximum” principle (5.7), can be re-
presented by the formula (cf. Sec. 4)

(e, (1)) €0 for every eecon[T=(e(r))—é(1)], (5.11)

and hence
E(e(1))—a(t) € con*[T=(e(r))—é(1)],
e(t)eZ, é(1)eT=(e(r)),

where con*[ - ] is a cone conjugate to the conc con[ - ]. Egs. (5.12) constitute an alternative
form of Egs. (5.7). From Eq. (5.12), it follows that the elastic materials by imposing the
constraints for deformations, in the general case, have lost their elastic properties; this
is due to the fact that the ,,reaction” part () of the stress tensor can depend not only
on the strain tensor e(r) but also on the strain rate tensor e(¢). Such situation does not
take place for the smooth bilateral constraints since the strain rate tensor &(¢) does not
enter Eqs. (5.10).

Egs. (5.6), (5.7), (5.10), (5.12) can be easily generalized. To this aid the assumption
that 4 is a set of all strain tensors has to be replaced by the assumption that A is a set
of all strain histories. In this case instead of Egs. (5.7), (5.9) we obtain

o(t) = E(e®)+ (),
(e, 7)) < <é(), T(t)y for every &€ Tz(e(r)), (5.13)
e()eE, e(t)e T=(e(r)).
Hence we conclude that Eqgs. (5.13) can bz treated as. a result of imposing constraints

(determined by the TM-constraint multifunction Tz(e), e € =) on the constitutive relation
of simple materials

(5.12)

o(t) = E(e), ePed, teR. (5.14)

The alternative form of Eqs. (5.13) will be obtained by substituting response functional
E(e™) in Egs. (5.12) on the place of response function E(e(r))'!’. Moreover, if = is a
differentiable manifold we obtain the generalization of Egs. (5.10) to the form
a(t) = E(e®)+ (1),
(e, (1)) =0 for every g€ Typy=,
e()e &,
which represents the well known constitutive relations of simple materials with smooth

internal constraints.
To conclude the Section let us discuss the case in which M = R° be interpreted as a space

D) Symbol E(-) in Egs. (5.13) stands for a response functional and in Egs. (5.12) for a response
function.
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of all (symm etric) stress rate tensors. and T*M = R® as the space of all (symetric) strain
rate tensores. Moreover, let £ be the closed (but in general not convex) subset of R’
Then from Egs. (4.9), under notation

ey =y(1), o) =oe@), &)= -r@),

we obtain!?
é(t) = L(o(1))5(t)+e(t),
(T, e()) <€ <b(t), e(t)y for every 7€ Hyy,
a(t)eX, 6(t) € Hyy.

Taking into account that every H,, is a convex cone and putting

Hyiy = T=(0(2)),

we arrive finally at the constitutive relations

é(t) = L(o(t))o(2)+ (1),
(T, (1)) < 6(t), e(t)) for every 7€ Te(o(t)), (5.15)
o(t) e T=(o(r)), o(t)eZ,

which can be also written down in a form

E(o())o(t)—é(t) € con*[T=(a(t))—6(1)],

o(t)eE, (1) e T=(o(t)). (5.16)

We deal here with the rate-type materials with the holonomic constraints (£ is closed in
R but not convex in general) for stresses. Assuming that & = H, where H is convex, we
arrive again at Eqs. (5.2) .Assuming that £ is a differentiable manifold in R’ we obtain

e(t) = L(o(0))o(t)+e(t),
(z,e(t)) =0 for every rteT,,=, (5.17)
o(t)eZ, o) eTyn=,
where

TowyE = T=(o(1))

’1s a space tangent to £ at o(t) € 5. Thus Egs. (5.2) and (5.17) constitute two different
special cases of the constitutive relations (5.15) of the rate-type materials (of the hyper-
elastic materials if L(o) = 9%y(0)/d0?) with holonomic (scleronomic) constraints for
stresses.

Conclusions and final remarks.

Summing up we conclude that the abstract form (4.9) of TM-constrained internal
constitutive relations (with convex implicit constraints) is an appropriate basis for obtaining
constitutive internal relations for a large class of ideal materials. In this way we have
oObtained the known relations (5.13) for simple materials with internal constraints for
deformations, the known relations (5.2) for elastic-ideal plastic materials and relations

'3 Here L(o(t)) has the same meaning as in Eq. (5.3).
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(5.4) for ideal locking materials. Thus we have shown that the elastic-ideal plastic materials
and ideal locking materials can be treated as the rate type materials with constraints for
stresses and as the linear elastic materials with constraints for strains, respectively. We have
also derived, using the method of constraints, new classes of ideal materials. They are
simple materials with convex implicit constraints, defined by Eqgs. (5.13), and rate type
materials with convex implicit constraints, defined by Egs. (5.15) or (5.16). The new classes
of ideal materials, which have been obtained by the method of constraints, are also given
by Egs. (5.12) and Eqgs. (5.17) (they are the subclasses of materials with internal constraints
defined by Egs. (5.13) and Eqgs. (5.15), respectively).

Examples of applications of the general approach to the problem of constraints in
constitutive relations of mechanics- have been restricted here only to problems of ideal
materials with internal constraints. However, it can be observed that the method of con-
traints is a useful tool of the formation of new constitutive relations of mechanics on the
basis of the known constitutive relations. This method can be applied not only to the
theory of ideal materials, i.e., to internal constitutive relations, but also to the problems
of interactions between a body and its exterior, i.e., to the formation of external consti-
tutive relations. The form of constraints which are described within an approach outlined
in the paper is very general; as a matter of fact no restrictions of any kind are imposed on
the sets of states'3’ which are admissible by constraints. Due to this fact certain new classes
of constitutive internal relations have been obtained. More special classes of materials
with internal constraints, obtained by the method of constraints, are discussed in [5].
Some applications of this method to the problems in structural mechanics will be given
in forthcoming papers [6, 7].
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Pesome

CBsI3H B OIIPENEAIONIMX YPABHEHUAX MEXAHHWKH

B crathe npepcrasnerHbli o0loMif NOAX0A K HOHATHIO CBA3¢H B ONPEHCNSIONIMX YDAaBHEHUAX Me-
XaHHKHK JUCKPETHBIX COIOUIHBIX cucTeM. IlonyueHo obuuit Bua onpee/IsTIolUX YPaBHEHHI X CBA3AMHK
H IIPOBEACHO METOX (hopMYIHPOBaHMA HOBBLIX ONpPEREAIONIMK YPaBHEHMI Npu nomouM cBsa3eit. Taxum
CTIOCOOOM ITOJIYYUEHO HEKOTOPbIE HOBbIE KJIACChl MATEPHANIOB C BHYTPEHHHUMH CBSA3AMH.

Streszczenie

WIEZY W POROWNANIACH KONSTYTUTYWNYCH MECHANIKI

W pracy przedstawiono ogoélne podejécie do pojecia wigzdéw w relacjach mechaniki ukladéw dyskret-
nych i o§rodkéw ciaglych. Uzyskano ogblng postaé rownan konstytutywnych z wi¢zami oraz zapropono-
wano metode formulowania nowych relacji konstytutywnych za pomoca nakladania wigzéw na znane

relacje konstytutywne. Na tej drodze otrzymano pewne nowe klasy materialéw idealnych z wigzami wew-
netrznymi
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