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1. Introduction

The subject of the considerations are plane-stress statical problems of dense, elastic,
hexagonal grid plates, constructed from bars, Fig. 1. The structures of this type are widey
used in civil engineering, cf. [1] as well as in aerospace technology. Diffuculties occuring,
when exact solutions of statical problems of lattice-type plates are being sought, justify
attempts endeavouring to formulate approximate continuum approaches.

The most simple, asymptotic (in Wozniak’s meaning, [2]) model has been established
by Horvay, cf. [3, 4]. In these papers effective Young modulus and Poisson’s ratio for
honeycomb plates have been obtained and exhibited by means of the appropriate diagrams.

The aim of the present paper is to discuss continuum descriptions of the analysed plate
response by means of the two-dimensional Cosserat’s media with fibrous structure, uti-
lized by. Wozniak in his lattice-type shell theory, [2]. In the most general among many of
Wozniak’s concepts, the deformation of the grid surface structure consisted of nodes
(,;elements™) and rods (,,]ligaments™) is approximated by means of a model of a regular
system of bodies, cf. [2], part I. The ,,elements™ of the structure act as the bodies of the
System. The interactions between the bodies are transmitted by the ,,ligaments”. One
of the basic assumptions of the theory is the existence of the potential of binary interac-
tions. This assumption (see (3.4), p. 39, [2]) restricts the applications of the theory to a cer-
tain class of surface structures, that will be further called the structures of simple layout,
in which any two directly interacting elements, being joined by one ligament only (cf. [2],
p. 50). :

The behaviour of a complementary class of structures, which will be called the struc-
tures of complex layout, cannot be examined (without additional justifications) by means
of the regular system of bodies theory. Continuum approach to the lattice-type plates of
complex layout has been presented in the paper [5] of Klemm and Wozniak. The authors
assume, that also in the case of complex structure the Wozniak’s theory of grid shells and

> By means of this term, grid structures constructed from bars connected in rigid nodes are under-
Stood in the paper.
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plates (based on the regular system of bodies theory) can be applied. The complex geometry
implies modifications of constitutive equations only.

Constitutive equations of the theory of complex layout grid plates are not uniquely
definite. Several topics resulting from this fact are discussed in the paper. An analysis is
exemplified by the case of honeycomb grids which belong to the complex ones.

Thus the internal forces, i.e. stress p* and couple stress m* tensors are not uniquely
determined, because of the arbitrariness of the definitions of elastic plate potential o.
Two ways of computing this function will be presented. The first one has been proposed
by Klemm and Wozniak, [6]. It is thought appropriate to recall, to correct (an isotropy
of the model has not been revealed) and to generalise Klemm and WozZniak’s results by
taking into account transverse shear deformations of the lattice rods.

In Sec. 4 a new method of defining the plate potential o leading to the new version
of constitutive equations is presented.

Some of effective elastic moduli (so called micropolar moduli) can not be uniquely
defined. This has been noted by Wozniak, Pietras and Konieczny in the papers [7-9]
pertaining to the discrete elasticity theory. This lack of uniqueness follows from an ina-
dequacy of the relatively simple continuum Cosserat’s model when deformations of dis-
crete two-dimensional structure are being analysed. Nevertheless such a model is undoub-
tedly more accurate than Horvay’s asymptotic theory.

2. Formulation of the problem

2.1 Basic assumptions. The grid is assumed to be composed of straight bars whose axes
constitute a plane, regular, equilateral honeycomb (hexagonal) layout, the internode spa-
cings being equal to /, see Fig. 1. Allthough the lattice bars need not to be prismatic
they are required to possess two symmetry axes. The structure is made of an elastic, iso-
tropic and homogeneous material elastic properties of which being characterized by
Young modulus E and Poisson’s ratio ». Considerations are confined to the grids
constructed by bars sufficiently slender so as to the conventional, improved (by taking
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into account transverse shear deformations of bars) theory of elastic rods can be applied.
Moreover the thickness of the grid is assumed to be of unit depth. The loads consi-
dered: in-plane tangent forces and moments normal to the mid-surface are concentrated
in nodes. '

Consider a bar i-k, cf. Fig. 2. Generalized forces and displacements at both nodes
i and k are given in Fig. 3; slope deflection equations, cf. [10], read

EJ EJ [s—r
My = —T[“Pa'*"'%-(s'i")lpzk], M, =—1—('2—)(<Pk—¢’i),
EJ 1
T“‘ = ——T‘ = 2(S+r)1—2 [le—7(¢l+(pk)]7 (2.])
EJ - EJ
Nu=N; = 127717’72—')’11: = 2(s+")77—17')’1k,
where n = AlI*/12J, % = 6 p/(s+r), 2.2)
s = @uld, = —gu/d, 4= q)lzl_q’izk’
1 1
Py = 2¢,+ ‘2—024‘ x—(s‘%p—cs,
! (1+) 2.3)
x-(1+
Qi = 20, — —2‘02+ _W_vc:“
112 _ 1/2 - 12 3
e AT Jd& 1 Adé
¢ = ‘ _—rdf, Cy, = " C3 = —5“ *p = e )
76 7® 5

Functions A(&) and .7(&“_) express cross section area and moment of inertia whereas A and
J denote auxiliary effectiye quantities. In the considered case of rectangular cross sections

¢ 5 K&,

1.

Fig. 3
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of the rods, the coefficient # is equal to 1.2, cf. [10]. The slope deflection w;; and the ex-
tension y;; of the member i-k are defined as follows

oo = wm—w)ll, yu= (—uw)l. (2.4)
Setting the effective quantities 4 and J so as to
p=205=1, ¢ =1]2, 2.5)

the simplified versions of the relations (2.1)

EJ

M, = __—-[(317+')<p.+(317 77)%—6773[’1;‘],
EJ
M, = — T(‘Pk“%), Ny=N,= 129 12 " Viks (2.6)
EJ
le — —Ti = 12%1_ l:![/ik_— (¢i+¢k)]
are found, where the formulae
s+r=6nn, s—r=2, 2.7

are used L ¥E oy
In the case of A(§) = 1-h = const, J(&) = 1-h3/12 = const (where A stands for
a height of bars) we have
=1/24, ¢, =12, ¢3=p2=1/2, (2.8)
hence
12 EJ /8,

= A Ly W (2.9)

If the lattice bars are sufficiently slender (hl < 1/6, say) and influence of shear deforma-
tions of the bars can be neglected thus

7=n+120, &= (1+9)5, n=

n=1n, s=4, r=2. " (2.10)

In the course of the procedure one more ratio ¢ (defined as a quotient of the diameter of
the circle inscribed in the hexagonal opening to the spacing of the centres of neighbouring
openings) is employed. We have

=(V3n-1)/Y/3n, 7= %(l—e)‘z- @.11)

The ratio ¢ varies from zero to one.

2.2 Foundations of Woinlak’s continuum approach. Continuum description of a response of
the considered grid structure is based on the WozZniak’s concept [5, 6]. It is worth recalling
here the basic ideas of the approach, exemplifying the methods by the specific case ot
hexagonal plate.

Proceeding in this way as in [4], the nodes of the lattice are divided into two families
of main and intermediate nodes, Fig. 4. The division depends on the observation, i.e.
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on the fixed coordinate system. Displacements of main nodes are assumed to be appro-
ximated by functions: x* — v%, ¢, « = 1,2, which are supposed to be regular and suffi-

ciently smooth, so as to in the vicinities r < /})/3 of the nodes linear approximation can
be applied. The grid plate can be devided (by various ways) into repeated segments. Fig. 4
shows two types of hexagonal segments: with the centres in the intermediate joints (type
I) or in the main ones (type II). Assuming the function u* ¢ to be linear in the segments’
areas, displacements of the main nodes (adjoining the centre of the segment) can be ex-
pressed by means of the values of functions #*, ¢ and their first derivatives J,u?, ¢,
referred to the segments’centre. Then an energy of the segment (i.e. the energy due to de-

segment of I type segment of 11 type

x2 )
1-moin nodes
2-intermediote
nodes
0 i

Fig. 4

formations of the rods belonging to the segment) can be found. Dividing this energy
by the area P of the segment ,,i”’, i = I, II, an energy density o(i) is obtained. The function
a(i) can be expressed (as it will be shown further) in terms of components of strain mea-
sures

yaﬂ‘= 3¢up—eaﬂ<p, Ha = Og@, aa = a/axu (212)

(e, denote Ricci tensor) and external loads subjected to intermediate nodes. Internal
forces pff) and m{, i.e. stresses and stress couples, which are defined as follows

= 30'( ) e 30'( )
Hh= G 0= T, o
satisfy (see [2]) the equations of equilibrium
oubih+ply =0,  Oumly+euwpH+Y5, =0, (2.14)

where pf},, Y3, denote densities of external forces and couples. The equations of equili-
brium (2.14), constitutive Eqs. (2.13) and strain — displacements relations (2.12) con-
stitute the system of equations of the lattice-type plate theory. By adding appropriate
boundary conditions, (see [2] Ch. IV) the theory is completed and well-established; thus
the boundary value problems for finite domains can be examined.

The topics of the present paper are concerned with the constitutive equations (2.13).
In the subsequent sections two versions of these equations, resulting from two methods
of defining the density of strain energy of the lattice, will be presented.
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3. Constitutive equations due to Wozniak and Klemm (variant I)

The derivation presented in [5] will be recalled here; considerations are generalised
to the case of deep bars, for which the slope deflection equations (2.6) hold true. The
starting point of the procedure is a division of the plate into repeated segments of the
type I, the intermediate nodes ,,a” being the centres of them, Fig. 5. Three main nodes
S;, i = I, II, III lie on the vertices of the hexagon. With the each bar a—S; a local base

Loy, 1~<,-) is associated, cf. Fig. 5. We have

~ 3 ~ I
oy =to = 1/5 &2, oy = —1lhh= 7(1—3‘61'2), (3.D

where Kronecker delta and the difference (i-) are denoted by é;; and ¢;;, respectively.

Z<

Fig. 5

By using of the assumption of the segment-wise linear behaviour of displacement
functions, the displacements of S; points can be determined by means of the values of
* and @ functions and their first derivatives computed in the point ,,a”

Wy = W+ %l ew = Plw+ %uPlw 18, - L.

In order to simplify notations the values of a certain function fin a point ,,a”" will be de-
noted by the sign,,v”, i.e. f|, = /. Thus the above relations can be rewritten to the form

ufy = W4 thl, @ = P+ 0PIyl

Quantities #* and ¢ ought not to be misinterpreted as displacements of the ,,e’’ node; the
latters are denoted by~uZ, ®.. By means of appropriate projections of u{;, and % on the
directions of t(;, and 7(;, vectors the displacements of the ends of the bar a—§;, referred
to the local base ¢;, t.,, can be calculated as follows

Uy = 101 Onpy Uy = 1511 Onps

Wai = t(al)ulzaaﬂ9 Wig = t(ai)u‘(gi) (Saﬂ'
Then the slope deflection y;, and the extension y;, of the bar a—S;, defined by

Yy = (wla_wal)/l’ 7Y = (ula_“al)/l,
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can be casily rearranged to the form

Pay = O Oup+ 1%, 10 Vpu + P,
Yy = Ut Bug+ 1810, Vaps
and, similarly,
Apay = Qa— 1 = Sp—atlly - I,
where
ou* = (@ —u)/l, Op = p.—p,
and, the components of the state of strain referred to the point ,,a” read
Vap = Oalig—expP, %y = 0up.
If one inserts the quantities ¥, Y, and d¢g;, into slope-deflection equations, the internal

forces My, Ty, Ny (referred to the middles of bars a—.S;, cf. Fig. 3.1), expressed in
terms of strain components y,5 and #%,, and with the aid of dp, du*

¥ F—nS EJ v
M(l') = ) "T[(S(P_t?i)xa. I]a

v EJ =
N(l)!= 2(r+S)T2‘ [t(a[)(suﬂ(saﬂ‘i't(‘i)t(ﬂl)yaﬁ], (3.2)

. =il PR e
Ty = =2r+s) 53 [’5)5"ﬁ5aﬂ—75¢’+’fnf<°‘n7aﬂ— 7’5)%/]

are obtained. The quantities du®, ¢ can be expressed in terms of strain components and

* * 2
the loads F*, M*, subjected to the node ,,a”. To this end, consider the equations of equili-
brium of the node ,,a”, sec Fig. 5

HI

SRY] B v = X
D) Nty — Ty i)+ F = 0,
i=I

I i

v I v *
ZM(I)—E" ZT(,)‘{'M = 0

By substituting the formulae (3.2) into above equations and by making use of (3.1), we
arrive at the diagonal set of algebraic equations, the solutions of which read

*
ou' ) =1+ (=9 (¥ y21)]— - - F{IZ
= 201+ a U Wi e = S b 2

*
F212

|
ou? = —— [+ (=) By =)=
200+ 7) [fe; + (1 —=2)* (P11 —722)] SA45) - (r+)ES 3.3)

*
r+s o ;L Ml
2 TR U T

o
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By inserting the above equations into (3.2), the internal forces M,, Ty, and ]\\'/(k) as fun-
ctions of strain measures

. - EJ = - " v v r— %
Mg, = 4s 'T[—ls V3 ek +ls(3(§k2_1)x2+(s+r)(y12—721)]+ 6-: i

%(u) Ly —(r;f-zs)EJ{_ l/2§ ! 1_721 R 8k2'331+7(1ﬁ+—1—7)'1'(35k2—1)322—
T Gt |~ 5~ 0 |t
+[s;sr = 1iﬁ —30 1Eﬁ]’v’2‘}+ 23662;717; 4
e 1iﬁ P L j‘;{ 3.4)
Neo» = o ’f{{ %(35,‘2-'1)1%1—1-V—fek2%2+ [+ =380 +

/g—

— v ' v v *
+ M +30c2) Y22+ l’/3 3k2(712+721)} 3(1+—) k2F1+ 3(1+—) B —DF

are finally found. Strain energy of the rods a—Sj, i = L, II, III, belonging to the segment
can be calculated as follows

I
Eq = ZEI’ E, = EM+ET+EY, where
i

12 2

EM = f (M(l) X- T(t))zd— i (M(1)+XT(:)) dx (3.5)
) 2- EI() . 2ET()
2y s o 7oy
I RN UL E TS f e = G=—2(1E*.
¢ 2EA(X) ¢ 2GAR) +7)
The potential o; = 0y = E¢y/P, P = 1.5 /312
Carrying out the integration we obtain
v v v = v v 1 &7 v
i = G?+G;‘" 0'? -y %‘Aaﬂvd)’aﬂ)’yd"'Baﬂy'yaﬂ;‘y"' Tcaﬂxaxﬂ’ (3 6)
% v*aﬂv v*av
Or = D Yupt+mx,.
Tensors A, B, G, J, in take the form
AoBr% — 26“ﬁ67°+(ﬁ+&)6“76""+(ﬁ—&)- 8§%06°7,
élll et Rtar . —_medl sl nbiy o B, the others B = : (3.7

v v % *
C = Co*, P =0, m=0 VF,M),
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where moduli 4, & o, B and C are defined as follows

pob 2y3.q(—1) EI _ _4yY3-n EJ

Bl 1 M A S e o] (3.8)
5 _ 2y/3.y EJ Pl 2y3.q EJ T V3-Gnti+l) EJ

T 43 3 T ThT i S T 3(1+7) -

The quantities 4 and J are fixed acc. to (2.5). The parameters » and % are defined by
(2.9) provided the bars are prismatic. Moreover, if the grid members are slender one can
substitute n = 7 into (3.8), cf. (2.10), to obtain effective moduli independent of /3’

iE= V3e-1 4E = ¢3S %/E = _V3_ (3.9)

)/
6w7(n+l) 3Vn-(+n)’ 240y n
and ,,micropolar” constants

IO GO O o I 1k 1 M (3.10)
617 (1+n) 360 V7 - (1+7)
proportional to /! and /? respectively.

Thus the elastic properties of the hexagonal plate in the plane-stress state are descri-
bed by the tensors ;i, lv?, and C. The tensors 4 and C are isotropic because the geometry
of the lattice (observing, say, a rotation of it around the fixed main node) is invariant
under the rotation at the angles 2/3wn, n = 1, 2, .... Tensors of the second and the fourth
orders, which are invariant under such transformations, have isotropic forms, invariant
under arbitrary change of the coordinate system. Thus the components of the tensors
A and C do not vary provided the main nodes are defined as intermediate and vice versa.
One can say that these tensors do not depend of the choice of main nodes.

The B tensor is characterised by different properties. It can be shown that the compo-

nents of IVZ, referred to the cartesian coordinate system x* rotated at an angle ¢ (cf. Fig. 5),
can be written as follows

B¥Fv — B. L 3.11)
where components of the tensor y read
Zl’l’l’ = _x1'2’2' = _x2’2’1’ = _x2’1’2' = 00531/), (3 12)
Z2’2’2’ s _21’1’2‘ = _21’2'1' - _x2’1’1’ s Sin31p. 3

Components of the tensor B depend on the choice of the coordinate system as well
as on the choice of main nodes; namely, an interchanging of main and intermediate no-
nodes imply changes of signs of all components B, The tensor B couples consti-
tutive equations. Its existence results from the lack of centrosymmetry of the lattice,
Le. from the noncentrosymmetry of the vicinity of the each lattice node. Thus the conti-

nuum description of the honeycomb plate requires to apply the uncentrosymmetrical
models, cf. [11].

2) Horvay’s results [3, 4] yield the same definitions of the effective moduli 0 and Ji.
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The tensors Vp* and m are identically equal to zero for the fixed (cf. Fig. 1) coordi-
nate system x* Thus the mentioned tensors vanish in an arbitrary coordinate system.

The following factors have inclined the author to recall the Klemm-Wozniak, [6],
derivation of constitutive equations:

a) some of the components of the tensor A obtained in [6] are incorrect, so that an
isotropy of this tensor as well as its relation to Horvay’s results could not be revealed

b) considerations have been generalised by taking into account the transverse shear
deformations of the lattice (not necessarily prismatic) rods

) tensors v[; and M vanish. This fact has not been shown in [6].

4, The second version of constitutive equations (variant II)

New procedure, based on the second (II) method (see Sec. 2.2), of defining the strain
energy density o, is proposed here. A starting point is a division of the grid plate into
repeated segments of the II type, their centres being in main nodes. Consider the circular
vicinity (r < //3) of the main node ,,i”, Fig. 6. Six main nodes A,, A = LIL k = 1, 2,3
lie on the circumference r = 11/32 The functions ¥* @ are assumed to be linear in the circle
r < 1|/3: Displacements of main nodes adjoining the node ,,i”” can be expressed by means

2k

NII

Tu Axf%
My /k T
/’G( \,\\é\”m
N My

Fig. 6

of the values of functions u* @ and their first derivatives in this point. Displacements of
the intermediate nodes Ry, k& = 1, II, III, can be found with the aid of the conditions
of their equilibrium, analogously to the derivation outlined in Sec. 3. Tiresome rearran-
gements prove that also the latter displacements can be expressed in terms of the functions |
i, @, dgu® and @ referred to the point ,,i”. Then on substituting these expressions into

slope-deflection Eqs. (2.6) the internal forces A?(k,,ﬁ(k, and f'(k, in the middles of the |
rods i— R, (see Fig. 6) I |

A m==5 EJ = A ] A A A F—s *
May = ow l/3"[€kz”1+"[(l—301:2)"2—("4'5)(721"'712)]+ ¥ My, @41 |
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. —(r+s)EJ 1 r = A
T(k) = ’[2 =i [ ~1*+_7} — —s' . 7(30;‘2 == 1)7{2 + Exa ¥y EIE
Uit PRI e 55
+l7 _Tﬁ+(3ok2_2) 1+ﬁ]yIZ+[T+
1 7 |- 23 &) . 3
+ ~(——1 =) +36k2*1 Zﬁ ]721 = yﬁﬁy—ekz(}l“ _}'22)}4-
r+s 1 * 3 A
i ( 531) &)~ ~ 3(1 i ) (36k2 l)F(lk)+ T(II/TT;YE"ZF&)‘ (41)
- [cont.]
r+s)yn EJ . .
N(’\) ( l +1)717 = 1 {.;(l 36'(2)[”1 + 2 EkZ [}¢2+

+ M+ Q=30 )71+ (M +382) V22— 1/38k2(5:'12+5:’21)}+

3l + ) (30— I)F(k)+ 3 ’_I_T_—ﬁ“ekZF(lk)
are obtained. For details the reader is referred to [12]. The components of the state of
strain computed in the point ,,i"” are denoted by ¥,; and #,.

Compare Eqs. (3.4) and (4.1). Neglecting differences in signs, which depend on the
numbering of the nodes, we have

M(k)(’;'aﬂ9 ;éa) = M(k)(;)\"aﬁ! ;‘a)’ T(k)(‘;'aﬂy ’?a) - T(k)(f"aﬁ: ;‘an)w

provided there is inserted Y3 = Vup, % = %, = 0; and

) N(k)()""aﬁ’ ;‘éa) i N(k)(f'aﬂ, ’A‘oz)’
provided one substitutes y,5 = p,5 and %, = %,. Thercfore, Egs. (3.4) and (4.1) have
different right hand sides, if x, exist. This fact implies, what will be shown further, that
the second version analysed herein leads to the different tensors of elastic moduli from
those obtained via Wozniak-Klemm’s method.
Proceeding similarly as in Sec. 3 an energy E(;;, accumulated in the rods i— R, belonging
to the segment of the type II (cf. Fig. 4), can be evaluated. The energy density a;; = 6,)

is defined as a quotient E,;/P, P = 1.5}/3/2. After appropriate rearrangements we fi-
nally obtain

a * A*a/\
0y = 0py+ofy, of = P 7aﬂ+m Heos

i 1 Aaﬂ"é"' Ay Aaﬂ A A Aaﬂ'\v A (4'2)
01 = '?A "VapVys+ B yyaﬁ”‘r"i":'j_—c Ko ¥ -
Tensors A, B and C have the forms
A = fapvs psbr o Bawr  Cub = C o, 4.3)
where
A ar e a _— 2
B o 2V3nGn—w) ET . _ Y3[Gu-m)’+CGn+l E (4.4)

(1+n)(3n+n) e T30+ @+3y
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Quantities 4, J and 7 are fixed according to Egs. (2.5) and (2.9). The tensors A\ and y
are defined in Sec. 3. In the case of the grid constructed from slender rods (77 & %), we
have
E A v A l + v 1
B = 7B C = e ——C 7
where B and C are defined by Eqs 3. 8)4 S '
The components of tensors p and M depend, in a complicated way, on the external

G, 4.5)

loads F",‘), M(k,, k = L, II, I11, subjected to intermediate nodes. For the sake of brevity,
these formulae (obtained in [12]) will not be reported here. However, it is worth mentio-

ning that * # 0 and m* # 0, provided the loads in the intermediate joints exist.

5. Estimations of elastic moduli (resulting from the positive
determination of the strain energy)

Obtained in the preceding sections the sets of elastic moduli (4, u, «, l}, 6‘) and
(2, u, o, é, 6‘) satisfy the conditions which yield from the positive definition of the qua-
dratic forms &; = G¢yy, 011 = 0(,) defined by

1®, @@ @O @@ 1@.mo
b = 5 A Yap Vyo+ P B0 5 CP%atty, T =V, A, (CRY)

This fact follows from the dsrivation of 6, : e.g., whzn 7 = I, the RHS of thz Eq. (3.5),,
which defines an energy E;, accumulated in the rods bzlonging to a segm:nt, is expressed
by means of integrals with positive integrand functions; thus the energy E,, is positive

definite for all arbitrary values of components 52,)4, andl'xz . Nevertheless, the explicit form
of energy estimations, which impose certain restrictions on the values of effective elastic
moduli, is worth considering.

Let us transform the function & (an index 7 is neglected now), to the convenient form
for the further analysis

1

b=y, @B =1,2,..,6, (52)

where 7y, = Y11, M2 = Y22, M3 = V12, Na = Y21, s = %1, N = #2. A coordinate system
is fixed as in Fig. 1. The matrix £ can be written in the form

pITE A B
= A 2u+ 4 —-B
] i B uta p—a - -B
I p—c p—a -B
i B W—B C B
i -B -B 6
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By applying Sylvester theorem the following necessary and sufficient conditions for the
matrix = to be positive definite

u>0, a>0, u+i>0, C>0, B?<Cu (5.3)

are obtained. Positive definition of the quadratic form (5.2) does not depend of the choice
of a coordinate system. Therefore, the inequalities (5.3) are sufficient for ¢ to be positive
determined. Note yet that the sign B (which depends on the choice of main nodes) does
not affect in (5.3). The inequality (5.3)s shows that the moduli B and C are not arbltrary,
this estimation can be treated as an upper bound for B or a lower one for C.

6. Effective Young moduli and Poisson’s ratios

The tensor A (symmetrised in respect to both pairs of indices) can be written in the
form
E,

AEB )
14+,

- [1 i I (6“”’6""+ 6“"6‘57)] 6.1)
—,
similar to that known from a classical theory of a plane-stress state.
Moduli E, and »,, being effective Young and Poisson constants, can be expressed by
means of Horvay’s [3] formulae

du(u+1) 4
El =
ML T Ya@+3)
6.2)
" o® el
T u+il T 43
Energy inequalities (5.3) imply estimations
B EN, =L il (6.3)

weaker, than those known from a classical three-dimensional theory of elasticity: E > 0,
—1 < v < 1/2. Effective Young and Poisson’s moduli can be defined in different way,
taking as a starting point the reverse form of the constitutive equations (2.13)
-1
Yap = Amﬂrt’p +Baﬂvm +7aﬂ’
-1 (6.4)
% =Bty 7 +C am® + s

Displaying the symmetrized part of the tensor A in the form

Al(arﬂ)(/&) =5 vz éaﬂ Ot =i l+v2 (5 Ops+ s gy,

We obtain

4(A+p) (u—B2*[C) A+ B2/C

2u+i—B%C * T 2u¥i-B*[C" (63
It is not diffucult to prove that constants E,, »,, « = 1,2, satisfy inequalities

Er < B yse > W) (6.6)

E, =

o Mech. Teoret. i Stos. 3-4/84
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and
E,>0, —-1l<9wv <], (6.7

the latter of which are identical with (6.3). Note that moduli E, and v, do not depend
of a constant. In the case of B = 0, we have E, = E,,», = v,, of course.

Moduli E, and v, depend on the choice of the version (I or II) of constitutive relations;
this dependence is weak in the case of slender lattice rods (cf. Figs. 7, 8) since then, accor-
ding to (4.5) one obtains El/é P~ vBZ/CV'. The patterns of variation of effective moduli
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E,,vl,Evz,I:z,Ez,f:z and o depending on the ratio ¢ are shown in Figs. 7,8. The
diagrams were made under the the assumption n = 7. It is readily seen that

IimE, (o) =0, limy(e)=1, a=1,2.
o—1

0—0

An analysis of variation of moduli B and C will be presented in a separate paper.

7. Governing equations in terms of displacements. Boundary value problems

Consider a lattice-type honeycomb plate, Fig. 9, whose mid-surface is referred to
cartesian coordinate system x® Assume the family of main nodes according to Fig. 9-
A part I", of the boundary is loaded by forces and couples: p* and m. On I', — displa-
cements #* and @ are known. The loads subjected to internal main nodes are approximated
by functions p% Y?*. The loads in intermediate nodes are characterized by tensors p*
and m*.

xZ

1-main nodes

Substituting constitutive Eqs. (2.13) into equations of equilibrium (2.14) (where g,
has the form (3.6), provided i = I or (4.2), provided i/ = II), and taking into account
strain-displacement relations (2.12), the governing set of equilibrium equations in terms
of displacements

[Qu+ 1) &+ (u+ ) 8311, + [(A+p— 2) &, 3,]u? + [B(8} — 83) +208,] 9+ p* = 0,
[(A+u—a)d, 0;]ut + [Qu+2) 03+ (u+a) 23]+ [—2B&, 9, —20d,]p+'p? = 0, (7.1)
[B(0? — 83)~200,]u' + [—2B0, &, + 203, u? + [C(8% + 03) —4a]p+ W3 = 0,
Where .
e p“+a,,5f’°', (o= Y3+aar’;z+eaﬂ1';“ﬂ 12
are obtained. The mixed boundary value problems are formulated due to Wozniak [2]:
find the functions u* and ¢ satisfying Eqs. (7.1) and boundary conditions
e Uy =»ﬁa, p=q — r, 13)
g =p* wm'ng,=m on I,
where n* denote components of a unit vector normal to the boundary.

6
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8. Final remarks

Two versions of the lattice-type hexagonal plate theory (in plane-stress state) based
on the various ways of defining density of strain energy of the structure have been derived.
It is worth distinguishing between similarities and differences of the presented variants
by Wozniak-Klemm and by the present author.

i) stress tensors (p,m ) and (p, m), and strain measures (3, %), (y, %) as well as displa-
cements u% ¢ are referred to intermediate (version I) or to main nodes (version II). This
is not in contradiction with the fact, that in both cases, functions 1%, ¢ approximate displa-
cements of main nodes

ii) in both versions constitutive equations have similar form; specifically, tensors A
and A are identical. The components of A are expressed by moduli A, 4 and « which do
not depend of the length ,,/”” of the bars, but depend on the slenderness ratio %, only.
The qualitative differences occur between the tensors B and C, dependent explicitly on
»I” and ,,I*”, respectively. The mentioned moduli describe a ,,microstructure” of the
grid plate and determine a scale effect

iii) The physical meaning of equilibrium Eqs. (2.14) is different in both versions. In
Klemm-Wozniak’s approach, Egs. (2.14) can be understood as approximate conditions of
equilibrium of all of the repeated segments of the I type (cf. Fig. 4); thus the equilibrium
of intermediate nodes is satisfied. It is worth emphasising, that the latter conditions have
been utilised in the course of derivation of the stress-strain relations. Equilibrium of the
segments (I) does not imply the equilibrium of main nodes. Therefore, only the necessary
equilibrium conditions are satisfied. In the second version, Eqs. (2.14) express equilibrium
conditions of segments of (II)(type, hence the equilibrium equations of main nodes are
fulfilled. The equilibrium equations of intermediate nodes have been satisfied in the course
of the derivation of stress-strain relations. Therefore both sufficient and necessary conditions
are fulfilled Tl

iv) the essential quantitative difference between two analysed approches results from
the fact, that in the II (second) version tensors *lf an m do not vanish, whereas in the
first one these tensors are equal to zero. Therefore, in II variant, constitutive equations
depend on the loads subjected to intermediate nodes of the lattice, whereas the loads
in main nodes occur in the RHS of equilibrium equations. In the governing equations
(7.1) all of the loads have effect.

In version I diffuculties occur, when loads in main nodes are taken into account,
because in the RHS of (2.14) only these loads, which are subjected within the segment
(I), can be included. Therefore, perhaps, in the first variant the loads in main nodes cannot
be considered.

In the subsequent papers an attempt will be made to evaluate the range of applicability
of the considered versions of Wozniak’s lattice-type, honeycomb plate theory. It will
. be shown that valuable results can be obtained using the methods of solid state physics
cf. [13].
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W N =

o

Peswome

JBE KOHTHHYAJIbHBIE MOJIEJY (ITO BO3HJKY) 'EKCATOHAJIBHBIX CETUATBIX
IJIACTHHOK

B pabore BLIBOAATCS [ABE KOHLENMIMH KOHTHHYQJIBHOH OIMMCH IyCThIX, YNPYTHX, FE€KCAIOHAJBHBIX
CeTuarhix mnacruHoK. O6e BepcHM 6asupyIOTCA Ha TeopHH BosHsKa, B KOTOPOii MMOBeAECHHE CETYATbIX
NIOBEPXHOCTHBIX KOHCTPYKHMI omMchIBaeTcs npu momouy moaemH Koccepa ¢ BOMOKHHCTOH CTPYKTYpPOJi.
IlepBas Bepcnsa ABnseTca obobleHem 1 pasBuTHeM Tpyaos Kitemma 11 BosHsiKa NMOCBAIIEHHBIX CeTya-
ThIM [UTACTHHKAM CO CTPYKTYpPOH coToB mena. Bo BTopoif BepCHHM NMPHHATHI HHbIE NMPETIONOMKEHH Ka~
caronyecss METOAA ONpedesieHHsi YIPYroro NOTEHIMaNa IIACTHHKH. [ToyaeHHble MofeM AaloT pasHble
ssMHKponossipHele’’ KoHcTanThl (B, C), BhI3bIBawliHe MaciiTtabHble 3dhdeKThbl.

YcenenoBanbl OrpaHHUeHHs BhITEKAKOLIHE H3 TOJOMUTEIBHOCTH 3HEPriHH ReOopMaliH H [TOKA33HO,
uTo momend B u C CBA3AaHHBIE HepaBeHCTBOM B2 < Cu, rae p — addextuBHbIA Moayns Jlsve.

B paGoTe BBIBOASTCA YPAaBHEHHSI B CMELUEHHSIX M COOTBETCTBYIOIIME KPaeBhble YCJIOBHSA.

Streszczenie

DWA KONTYNUALNE MODELE (TYPU WOZNIAKA) HEKSAGONALNYCH TARCZ
SIATKOWYCH

W pracy przedstawiono dwie koncepcje opisu kontynualnego ggstych, sprezystych, heksagonalnych
tarcz siatkowych. Obie wersje bazuja na teorii Wozniaka — aproksymacji zachowania si¢ dzwigaréow
Siatkowych za pomoca modelu matematycznego dwuwymiarowego osrodka Cosseratéow o widknistej
Strukturze. Pierwsza wersja stanowi uogolnienie i rozwinigcie wynikow pracy Klemma i Wozniaka doty-
Czycej siatek o strukturze plastra miodu. W drugiej wersji przyjeto nieco inne zatozenia dotyczace sposo-
bu definiowania potencjatu sprezystego tarczy. Otrzymane wersje prowadza do innych zestawoéw statych
»Mikropolarnych” (B, C) odpowiadajacych za efekt skali. Zbadano ograniczenia wynikajace z warunku
dodatniej okrc§lonoéci energii odksztalcenia i wykazano, ze stale B i C powinny spelniaé nierdwnos¢
B2 < Cu, gdzie u — zastepczy modul Lamégo. Wyprowadzono réwnania ,,przemieszczeniowe” i sformu-
Owano dopuszczalne warunki brzegowe.

Praca zostala zlozona w Redakcji 26 kwietnia 1983 roku



