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1. Introduction

The equations of a one-dimensional continuous model of lattice-type structures with
densely packed and regularly spaced lattice of elements are discussed in the paper. The
equations are obtained by applying the concept of a continuum with internal constraints
f1] to the equations of surface-type fibrous medium of Cosserats’ type [2] which is a con-
tinuous, two-dimensional model of a structure [3].

Considerable costs of the numerical computations of the discret and discretized systems
and the known difficulties with founding the solutions to the boundary-value problems
are related to the partial equations in two dimensions. Therefore the construction of the
one-dimensional model seems to be justified.

The aim of this paper is formulate the equations describing the one-dimensional model
of a static problem of the linear (infinitesimal) theory of elastic structures with kinematic-
type ideal constraints in their integrable form and with the regular basic surface of the
medium. An example of a grid on a cylindrical surface with a circular cross-section and
axial-circumferencial lattice-type prismatic bars is also presented.

The proposed constraint equations represent certain generalization of the hyphotesis
of flat cross-sections. We assume that the cross-sections perpendicular to the axis of the
medium surface independently of the translations and rotations. can be subjected also
to the homogeneus deformations in their plane.

The generalization of the forementioned approach which includes the cases of vibra-
tions and stability as well as more general kinematic and kinetic constraints imposed on
structures was also developed by the author, however exceeds the scope of this paper

2. Equations of a surface-type fibrous medium with kinematic internal constraints

The equilibrium equations and the static boundary conditions for linear surface-type
fibrous medium of Cosserats’ type with internal constraints can be presented as [1] - [3]:

P*la—bEp" +4%+1r* = 0. pUlatbugpP+q+r = 0,

2.1) ) ; ¥ 2 .
(21 mP s —bgm’ + &5 pP +h* +s5* = 0, m*| 4 byam™ + ey p™ +h+s = 0,
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and
* * *
2.2 pPng = p*+0%  Png=p+o, mPng = m*+o*,  mPn, = m+o,
where p*?, p* and m*, m® are components of the cross-sectional forces and moments,

q% q, h*, h and 7)“,;, ;1“1"‘,‘171 are components of external surface and boundary load, r*, r,
s% s and ¢°% g, 0% o are surface and boundary reactions of constraints, g,5, b.s. €xs denote
components of the metric and curvature tensors as well as those of Ricci’s pseudotensor
of the medium surface 7, n; are components of the unit vector normal to a boundary
¢ and tangent to sz, (...)| stends for the surface covariant derivative («, # = 1, 2).

It 1s assumed that the constraints are ideal, i.e.

{2.3) f(r“éva+)'5v+s°‘519g+s619)d7z+ f(Qaéva+gév+o“§ﬂm+(ré??)d((')n) =0,
n dn

for any variations dv,, ..., 62 of components of the displacement vector v, v and those
of the rotation vector #,, ¥ compatible with constraints in their integrable form
N
i \_1 2 1

24 [V, ¥, By A1(WF) = 2 [Vak, Vi, Pk, B () pe(u’),

X=1
where v,x, vk, Bk, O are known, sufficiently regular functions of coordinates (#*) én
the surface 7, while g are the unknown generalized displacements. It is also assumed
that surface is generated by one-parameter family of any contours, provided that these
contours have no common points and are piecewise smooth I'(x!) (u' € <ul, uld) and
can by defined by means of u? coordinate. Another assumption is, that if I'(u') is an open
contour (2I'(u') # @) then for the part 9= different from I'(u}) the static boundary con-
ditions are given. The boundary conditions on dz = I'(uy) (I'(u}) # I'(u3)) can be static
or kinematic compatible with constraints (2.4). Eqs. (2.4) can be relatively easily genera-
lized to the case in which the components of the state of displacements are the functions
of the derivatives of px with respect to #*. In such a case the form of the relevant equa-
tions and formulae becomes more complex. &

The geometric relations can be formulated as follows [3]:

Yap = ‘Uﬂfcz —Dgp?— t",‘,;’ﬁ. Hod== ‘Ui“ + bg‘vﬂ + e”‘ﬂ’ﬂ': i
e 29;‘1!a—baﬂ"9v Ha = "9’a+‘bﬂ{)ﬁ’

while the constitutive equations can be defined from the formulae

2.5

) ; )
(2.6) Paﬁ = ..Le - P = ffd’ ik = ‘{e. ‘ Figae A.(e' )
CYap CYa Jitoy A3,
where e is the elastic potential defined as follows
1 a, E. £
2.7) e = 5 (A"‘P“t”yaﬂye,, +A"‘E}'a~/:- +B°"”"‘z,,ﬁ Hey+ BT x,z),

where 4%F1, .| B* are elastic rigidity tensors.
If there is known a continuous lattice of A family of fibres on the surface then the
coordinates of the state of strain of the fibres are defined as follows [3].

(f) 8) 7/] = ’}’aﬂtz ﬂ‘{la ?.1 - yaﬁ tS t‘j, ‘}V'rl = "/'utﬁ,
— s = i .1%8 %= x 1% ;!7 A
2y = Haplaly, K = Zaglyla. X == Hela,
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where 7%, 1% are the components of a field of versors which are tangent and perpendicular
to the curves from the A4 family (4 =1,11, ...).

The internal stress densities in the 4 fibres can be described using the following for-
mulae

(2.9) Pa = RaVa, Pa = }:"Ai’m 1‘5.4 = Ruy ,
y my = S,%y, My= S%y, My=3S 2,

where Ry, ..., S, are measures of the elastic rigidity, and

p"“e = Z (pAtjt",+ﬁAij;g). Pa = ZﬁAtgv
4 4
(2.10) .
b = 3 (i 5l),  me = 3,
A 4

Substituting (2.8) to (2.9) and then to (2.10) and combining the obtained result with
(2.6), (2.7) we arrive at [3]

atn = 3 50 R +BR), A% = N bR
4 4
@.11) .
~a~ A > L Y v
Bobtn — Z (P S +181Sy), B¥ = L 151554,
4 pa )

When the fibrous medium is a continuous model of a surface grid (4 =1,1L or
A = 1,11, 1) then

Q2 p, =24, “F, DEs gl B0 LM Pt e g It
11_1 IA a4 A4 A4 ]A

where P,, ﬁ s ﬁ_,, are respectively longitudinal forces and shear tangent and normal to
w, M,, M el M 4 are respectively torques and couples tangent and normal to = in the

middle cross-sections of the bars of 4 family, and 7A is a distance between adjacent curves
of a discret lattice of bars axes of the structure. Moreover

- J . 2
= »E,}Ad - J%‘EI%]“_’ Byt E[ s
(2.13) 2 2 dL
s, = Sada & Eads g Eals
1.4 IA lA

where EA,GA,IA,AL,,JA,L,}A are the Young moduls, the torsional modulus, the
length, the cross-section surface area, the polar and principal moments respectively of
the cross-sections of bars from the A family [3].

3. Equations of the one-dimensional continuous model

Eliminating from (2.1) - (2.3) the components of the constraint reactions and using
(2.4) a generalized equilibrium equations and boundary conditions, i.e. Lagrange-type
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equations of the second kind [1] are obtained
3.1 l,[/;(+(bK+FK =0, w'eui,uy) ((..)=d(.)/du),
Vi = Gy OF Wy =g, w=u{Kk=1,2,..N),
where Wy, @y are the generalized internal forces, Fx, Gk, the external forces, wg, the
generalized boundary displacements

Ve = f (P *vux + D o + M"Yy + mBy) } &
I'(uty V&2

Dy = f (Paﬂﬁ/a,-:x +Pa7ax+maﬂ”a sk + M ¥yk) —l—g dar,
It Vg2

(3.2) Fy = f (g zza,\+q7)K+h°‘19aK+ln9,\) > —dl'+
@Y ]/g”

+ Z‘ (;avm!\' +;::n)l\' +;;7a"9'al( +n*;19!\) L :

/,
Gkp = (=D? f (p vd,(+pvx+m ) K+nn9,() — > drI',
(') V822
while
! Vapk = Upkla—bupPk —€apVx,  Yax = vl\’!a'*'bﬂ'z"ﬂK'*'egﬁK;
(3.3)
Hapx = 'ﬁf}l\’so‘"baﬂ#l\'y Hag = 19Ar\|o¢ a pl\
and Ldu' = d(8x) on the part of é¢n which different then I'(ul)

du

B O Al
(3.9 L(ut) = —E,/é’n‘*'z@’lz'(m—l‘*'g:: (_‘ 1‘) .

Substituting RHS of Eqs (2.4) to Eqs (2.5) and then to the constitutive equations derived
from Eqs (2.6), (2.7) we obtain the components of the strain and stress states as the func-
tions of the generalized displacements ¢, and their derivatives yy. After substituting these
functions in formulae (3.2), , we arrive at the constitutive equations of onc-dimensional

model

Al - 2
(5-5) Py = l (1 l\L“L+(l kL), Px = 2, (P +Prryr),

L L=1

where ]“_, QD,\,_ (z=1,2; K,L=1,2,...,N) are generalized elastic rigidities

tj/l\'L = l (Alp. 7,; L‘pd+A157~;’Lvl{+Blﬂeqz£rﬂ,0}7!\’+BI$ZEI.0K)~} ] == ([IY,

rwy V &22
23 / ’
(.6 YWy, = ] (AP 0, L Oput A I‘Z)LU,\'FB”“”l() e+ BN D) —=—dl,
: ) 1/ o

5 a Vg
(l).'(L =3 J (Aa/""%;u ﬂ/cv.ﬂl\ o A VrLV K .t Ba & /Ey,L ’{affl\ +B H‘I /ocl\) “—’ — dF,
') l/gzz

i
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) 2
(3.6) [cont.] Py = f (AamuT'uLVa;’ix'f' AaleVax'f'Bam"‘l?’nL”aﬁx+Bal‘l91,”ax) —l/l/g —dI’.
I'tu')

822

Substituting' RHS of Egs (3.5) into Eqs (3.1) a system of the governing equations
describing the model is obtained. This is a system of the ordinary linear differential equa-
tions and the boundary conditions. After solving the problem the components of the
states of displacement, strain and stress in the medium can be obtained from Eqs (2.4) - (2.7).
The constraint reactions, which can characterise the accuracy of the one-dimensional
model [4] may be obtained from Egs (2.1), (2.2). Using Egs (2.4), (2.8), (2.9), (2.12) the
displacements and rotations of structural nodes as well as the forces, couples and torques
in the cross-sections of bars can be determined.

4. Cylindrical grid

A surface-type grid designed on a cylindrical surface and made of the two families

of prismatic bars which represent a regular and dense axially-circumferential lattice will
be considered in this section (see Fig. 1).

L
¥y -
i b
/ [-"I
In this case
(4.1) f=t1=th=—ty=1, tf=1t=t=1t=0.

Using Eqs (4.1), (2.8), (2.10), (2.11) the governing relations of the cylindrical grid can
be obtained easily.

Let us take into account the following form of the constraint equations (2.4) (see
Fig. 1) :
2, = w, + R(O,sinu—O;cos ),

. i .-
v, = —wzsma+w3cosa+R[@1+slcos2a—5»(ez—s3)sm2a],

v = —Ww,C08%—wssina— R(x,sin2¢ + %, cos2o+ x5 sin2a),

4.2
(&:2) Dy = @1—@+£10032a——:,12— Esin2o,

=
I

—@,sino+0O;cos o — R(¢, sin 2+ x, cos?a + %5 sin %),

; R 1
9 = —Gzcosa+03sma——-§— [7~+%1 cos2o— —Z—(xz—x3)sin2a] )
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where p” = [w, ws, ..., A] are the generalized displacements, which are unknown func-
tions the argument #! = x (1> = «), while ] = [w,] is the parameter of extension,
pT = [w,y, O3] and % = [w;, O,] the bending parameters, y; = [O,, @, 4] the parame-
ters of torsion, wi = [e,, ;, »,] the parameters of homogeneous shape deformation
of the cross-section x = const, y§ = [e,, €3, %2, %3, £] the parameters of homogeneous
linear deformation of this cross-section. Tt is assumed that the cross-section of the struc-
ture is subjected to a rigid displacement and rotation defined by displacements w; and
rotations @; and to a homogeneous deformation in its plane described by ¢;(i = 1, 2, 3).
The remaining parameters describe the “free” rotations #,, # [3]. The conditions v, = 0,
y12—7y21 = 0lead to the classical of the Kirchhoff-Love’s theory of shells with-continuous
structure and to the Bernoulli-Timoshenko’s flat cross-section hipotheses with adequate
constraints imposed on parameters &,,05, 0, A, (,, £, %, %3, %3.
Applying the procedure described in Sec. 3 we obtain a system of equations

(43) L¥+F. =0, xe(x,%); ¥ =G,lub¥ =%, x=0x,,

with the matrices of the ordinary differential operators L, and &, with derivatives at most
of the second and first order, respectively, and with the rigidity dependent coefficients
Ra, Ry, ..., Sy (see (2.13)).

Egs (4.3) for k = 1, 4, 6 are reduced to exact equations of the rotationally-symmetrical
extension, torsion and bending [5], for £ = 2,3 are the equations describing bending
of a Timoshenko-type beam. If k = 6 then equations are separated into two system

(4.49) Lsy¥Psu+Feu =0

for the unknown functions

(4.5) YI, = [e2+e;5, %2+ %3], vi, = [e2—e5, %, —2;, &].
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‘Peswome

YPABHEHISI OJHOPA3SMEPHO! CIUJIOIIHOM MOIIENM CETYATBIX
TTOBEPXHOCTHBIX KOHCTPVYKIIHIA

B pannoit paGore BbiBeAeHbl YPABHEHHA ORHOPA3MEPHOIl M CIUIOIIHON MORENM MIIOTHBIX M Peryifap-
HBIX CCTUATBIX MOBEPXHOCTHLIX KOHCTPYKIMil. DTH YPABHEHUS MOJNYUYEHO, NMPHMEHAA HIEW KOHTMHYYM
C BHYTPCHHMMH CDA3SAMH M YpaBHEHH#A BOJIOKHHCTOIl MOBEPXHOCTHOIl cpemnt Tuma Koccepar. Paccmor-
PEHO ClyJail CTATHKH IO JIMHEHHON TEOPHH, MHTErPHPOBAHHBLIE CBA3M KHHEMATHYECKOrO THUTA U CTEp-
YKHEBLIE KOHCTPYKUMH. PacCMOTPEHO Taroie NPHMEP LMITHHAPHYECKONR CHCTeMBI THIIA POCTBEPKA.
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Streszczenie
JEDNOWYMIAROWY MODEL CIAGLY SIATKOWYCH DZWIGAROW POWIERZCHNIOWYCH.

Przedmiotem referatu sa rownania jednowymiarowego modelu ciaglego sprgzystych siatkowych
dzwigarbw powierzchniowych o gestej regularnej siatce elementéw. Rownania te uzyskano stosujac kon-
cepcj¢ kontinuum z wigzami wewnetrznymi do roéwnan powierzchniowego o$rodka wldknistego typu
Cosseratdéw, bedacego ciaglym dwuwymiarowym modelem dZwigara. W komunikacie ograniczono roz-
wazania do przypadku statyki, teorii liniowej, idealnych wigzéw calkowalnych typu kinematycznego dla
konstrukcji o powierzehni podstawowej w postaci jednoparametrowej rodziny konturéw. Przykladowo
rozpatrzono ruszt cylindryczny.

Praca zostala zloiona w Redakcji dnia 5 stycznia 1983 roku



