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1. Introduction

The classical theory of thin elastic shells often referred as the Kirchhoff-Love (KL)
theory may be unsatisfactory in some problems of practical importance such as mode-
rately thick shells, shells with short wave length of the deformation pattern of the middle
surface, shells with a high degree of anisotropy, etc. In this paper, limited to the statics
of shells, such problems are considered within the framework of a theory engaging six
unknown kinematical parameters defined on the midsurface. The theory called in the
sequel the six parameter (SP) theory is based on the assumption of linear distribution of
the displacement vector across the thickness, previously used in [l - 4]. To a similar theory
lead the supposition that the deformation in a vicinity of the middle surface is homooenou:
{5] and the concept of a Cosserat surface [6]. In the present paper the basic equatlons of
SP are derived from the equations of three-dimensional elasticity via variational approach.
Then the range of applicability and the accuracy of SP are investigated by evaluation
of the strain cnergy density. Since SP proves not to be generally consistent with respect
to the strain energy approximation it may only be useful in specific problems or in a limited
region of a shell. As an illustration to this conclusion a numerical example is given con-

cerning the rotationally-symmetric bending of an isotropic circular cylindrical shell loaded
by an abruptly changing normal pressure.

2. Basic equations

Let us consider a shcll of constant thickness 4 parametrized by usual normal coordinate
system {x*} = {x% x3 = z) with the z axis pémendicular to the middle surface coordinate
lines {x*} = {x!, »*}. In above and in the sequel the Latin and the Greek indices range
over the integers {1, 2,3} and {1, 2}, respectively. Components of tensors related to
the local basis on the middle surface (z = 0) and on an arbitrary surfacg (z = const.)
are accordingly distinguished by the indices {i,j, k, 1, p,q; «, B, 4, %} and {a,b,¢,d;
®, p}. Indices preceded by a comma and by a vertical stroke denote partial and surface
covariant derivatives in the middle surface metrix. The Kronecker symbols are denoted
by &%, o8, etc., bf stands for the mixed components of the second metric tensor of the
midsurface, # and K are the mean and Gaussian curvatures of that surface. The translators
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ul, ut we define as composed of the above listed midsurface tensors

)l wy = =269, pg = (1) SRLO+2(bf~2H D),
2.1) wm=1, ps=p=0, p=I1-2zH+z°K.

The basic equations of SP can be easily derived from the three-dimensional equations
of elasticity. Starting from the HU-WasHizU [7] variational theorem one only has to assume
a distribution of the displacement U;(x*) and the deformation e, (x*) across the shell
thickness. Let us adopt for these quantities the following power series expansions

Ui(x*) = wi+zf,+2°6,+ ...,
2.2) 2e,,(x*) = (u5 ‘55+/‘353)(7aa+3%aﬁ+2_’2.14aﬂ+ )
2e55(x*) = Op(ysatzitsatZipaat ), €33(3%) = 33 +z¥#33+ ...,

involving six generalized middle surface displacements w; and fi and thirteen middle
surface and its vicinity Strains Y., %es» Ya«»> #3« 20d ya3; the underlined terms in (2.2)
should be omitted throughout as far as SP is concerned.

Introduction of the hypotheses (2.2) into the three-dimensional Hu-Washizu functional
[7] results in the following two-dimensional Hu-Washizu functional of SP

J = f {—Nijyjt—lwaj”ja+(]/2)OBUHVUVM+xBijka7U”ka

+(1 /2)2Balﬁj2at Xpjy +Nﬂa(Wa;f3 = baﬁ w3)+ Naa(ﬂa T Wi o+ bi wy)

(2.3 : |
) +N*36,+ Mﬂa(ﬂa!ﬂ _baﬂﬂs) +A’1a3ﬂ3,a_‘1'wl —m'B,}dr

i . el - . . * ; #*
—~ | NS wit MEB s — | IN*(wi=w)+ M (B~ B)lrads,
ér &t
defined on the middle surface = with the edge o r and », — the outward unit vector normal
to 0 r; the starred quantities are prescribed on d r. Appearing in (2.3) the stress resultants

N and couples M, the stiffness tensors ,B¥* and the reduced loadings ¢f and m’ are
defined as follows

+h{2

(2.4) {NV, MU} = f uo®8i {1, z}dz,
—hj2
+hi2 A !
(2 5) nBijkl = Cipkq(sé' (5,', J ,u,u;,uz?-'"dl', nBaﬁi.s = "8333“ i 0’
: 7))
"Bijkl =t "Bkh’f’ n=20,1, g
+ k2

N @om'y = [ puiFe{l,z}dz+[upio™ {1, 2 )12,

- hi2

where g**(x*) is the stress tensor, C'?*4(x%) the elasticity tensor valid for shells having
symmetry of elastic properties relative to the surfaces z = const. (e.g. orthotropic shejls),
Fe(x¥) denotes the density of the mass forces.
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By requiring the functional (2.3) to be stationary under arbitrary variations of wy,
Bis Vijs #iws N¥ and M one obtains the basic equations of SP, to wit:
the geometric egs.
Vap = Waip—DbugW3, Va3 = Butwa,a+biws, i3 =P,

%ap = Bup—bupBss  #u3 = P3.a
the equations of equilibrum

Nﬁ“,ﬂ-—bj'{N"S-l-q“ == 0, - N“3|a+baﬂNﬁa+q3 = 0?
Meal-p_Na3+ma = 0, Ma3;¢+b¢pMﬂ“—N33+m3 =0,

the constitutive egs.

2.7)

(2.8)

Nﬁa = OBaﬂlnyh]'i'lBaﬂb]Hh]'*' OBaﬁ33y35 ’
MP* = | By, 4, B3, + | B33y,

N3 = oBaslayM _}_IBm:U.:i%;(3 3 M* = 1Ba313}’1+ 230:3).3%13 .
N33 e 033333733+oBaﬂ33}’aﬂ+lB“p33”aﬂ

and the natural boundary conditions

2.9

* g * * *
(210) Nal'Va =5 Naiva, M™y, = M%,, Wy = Wy, Bi= Bi.

Six equations of equilibrum (2.8) can be readily expressed in terms of six generalized
displacements w; and f; by subsequent usage of (2.9) and (2.7). The total order of the
resulting differential equations amounts twelve in accordance with the number of boundary
conditions (2.10).

Having solved the two-dimensional equations (2.7) - (2.10) one may seek an appro-
ximation to the exact distributions of the displacement and stress across the shell thickness.
This problem cannot, of course, be answered uniquely. For example, displacements can
be calculated from our original hypothesis (2.2),. This linear distribution is undoubtely
the simplest possible but as shown in [8] not the most adequate. It is natural, that the
stress distribution should from practical point of view be similar to that occuring in rods
and plates. Furthermore, it ought to satisfy [6] the definition (2.4) of the stress resultants
and couples, and the static boundary conditions at the shell faces z = +//2. The following -
distributions

pob ko (x*) = NP jh+ (122 /h3) MP,
po%a?3(x*) = (N*33/2h+M**30z/h*) [I — (2z/h)?]

— (1/4) {67383 (1 + 3(22/h) — 3(2z/h) — 522 /h)’]
+ 10?3821 = 3(2z/h) = 3(2z/h)* + 5(2z/h)*]},
1o (¥ = (3/2h) [1 — Rz/h)2IN>3 — (1/4) {12 6*°[1 — 32z /h) — 3(2z/h) + (22 /h)*]
+ 2 033 [1 +3(22/h) —3(2z/h)? — (2z/h)*]},

possess the expected propertics, where

(2.11)

+ + +
= u(z = hJ2), = 1(z = —h/2), 6" ="z = h/2),
@12) #= p / bt
0“

3= ¢%(z = —h[2).
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Expressions similar to (2.11) were proposed in [6, 9, 10]. They, however, violate some
of the requirements mentioned above.

For completness of our derivation the integrals (2.5), should be calculated. We omit
here this simple procedure (see e.g. [13]) assuming only that all the terms up to the order
h/R are preserved in the resulting formulae, which is important in the case of not-so-thin
shells.

3. Evaluation of the strain energy

In order to establish whether SP furnishes a consistent approximation to the three-
-dimensional elasticity we shall examine the strain energy density integrated with respect
to the thickness coordinate z. Such a global evaluation of the strain energy has been pro-
posed by KoITER [11] who proved the Kirchhoff-Love type theory to form the first appro-
ximation, and then used by PIETRASZKIEWICZ [4] for construction of an energy functional
of the second approximation. For the purpose of the present analysis let us consider the
following twodimensional strain energy expression

'—\—" = (l/2)0Baﬁbl‘}}aﬁ‘y}.q+1Baﬂ)'1}‘y‘xﬂz).r]+(1/2)2Ba{uqza.’721n+(l/z)oBaans)’aS}’qS
3.1 +1B% Y3 7,5 + (1/2)2 B¥3 35,3 22,3 4 (1/2)0B>*%3y 33733
+oBa’933}/aﬁ)’33+2Ba[}33%ab%33+f“ﬂ'.'"yaﬁf‘iﬂ-*' ~afs
where the underlined error terms should be neglected as for as SP is concerned.

The evaluation of (3.1) we start from observing, that for shells having symmetry of
elastic properties with respect to the surfaces z = const. (which was assumed in deriving
(2.3) and (3.1)) two groups of elastic moduli can be distinguished (e.g. {G, E,»} and
{G’, E',v'}), where the non-primed and the primed quantities are accordingly related to
the planes tangential and normal to the surfaces z = const, G denotes the shear modulus,
E stands for the Young modulus and » — the Poisson number. For a transversely

isotropic material with its axis of isotropy coinciding with the z axis of the shell the com-
ponents of the elasticity tensor C*/* (see e.g. [12]) have the following estimates

(3.2) C¥ ~ G'~E, C¥3 0 yG, “CHBE~E, (C¥R G,

shoving that only four elastic moduli (e.g. G, G, E’, ¥') are of conscqﬁence in our appro-
ximate analysis (at this level of generality the estimates (3.2) remain valid for orthotropic
shells).

Before estimating the strains occuring in (3.1) let us define a dimensionless coefficient &
(33) Yeap. " (Shza,‘la Has r 61’”33) 67’0(3 o hza.}a
allowing for the specification of the bending theory é ~ 1, the membrane theory 6 > 1
and the inextensional bending theory ¢ < 1. Defining by y ~ y,4 a typical value of the
shell deformation the strain components can be estimated as below r
Yag ~ Vs Yaa ~ "+ F)NG/EV Yy Va3 ~AGIG) (R{L)y,

hugg ~ [H/R+(G/G)Y(h/L)* + (' + D) (G/ENH*]y,
where R is the typical radius of curvature of the middle surface, L — the characteristic
wavelength of the deformation pattern of that surface and ¢ — the small parameter, given

3.4



POWLOK1 ANIZOTROPOWE 151

as follows
(3.5) b~ 1/R, O~ )L, &~ (/h[R+h/L)

The estimation (3.4); results from (2.8); and (2.9),,5 with the help of (2.5), (3.2), (3.4),
and (3.5). The relation (3.4), follows from (2.9)s with N33 ~ Ghy$#? — implied by (2.8)s.
Having (3.4),_ the estimation (3.4) can be deduced using the three-dimensional compa-
tibility equations as done in [11] for isotropic shells.

Introduction of (2.5), (3.2), (3.4) and (3.3) into (3.1) yields

X/(Ghy?) ~ L+(h/R)6~"+ 0=*+(G/G") (h/L)*6~% +
(3.6)  +(G/G)(h/L)*(h/R) 6~ +(GJG") (h/L)? + (v’ +92) (G[E") +v'(+' +9%)(G/E") +

which with the sequence of terms correspoding to that of (3.1) expresses an approximation
to the strain energy in terms of the nondimensional parameters: geometric i/R, h/L, &, 6
and elastic G/G’, G/E’ and »'. Inspecting in (3.6) possible rates of the above listed para-
meters one can establish global energetical cosistency of shell theories. It turns out that
the KL theory forms (as well known [11]) within the relative error #* the first approxi-
mation in the case of bending of isotropic thin shells subjected to uniform loads; accor-
dingly the first and third term in (3.6) are of primary importance. The Reissner-Naghdi
(RN) theory [9] and the Timoshenko-type (T) theory [3] (each including the transverse
shear strain y,3) prove energetically consistent with regard to the inextensional bending
of thin anisotropic shells, with a large (G/G’ > 1) transversc shearing deformability;
here only the third and fourth term in (3.6) should be retained. The SP theory owing to
the absence in (3.6) of the two underlined terms cannot be consistent in general, i.e.
when the analysis is solely based on the rather rough parameters involved in (3.6). Yet in
some specific problems SP may, perhaps, yield a cosistent approximation to the strain
energy which conjecture, however, we are not able to prove rigorously. Instead of that
observe that an inconsistent theory can still be expected to furnish with a desired accuracy
selected components of the stress and displacement. We shall elaborate on that point
of view and show by a physical argument and ensuing numerical example that SP compa-
red with more elementary theories (e.g. RN, T, KL) offers a distinctly improved appro-
ximation of the transverse shear o”* and normal o3 stress in certain shell regions such
as the vicinity of the load discontinuity.

To this end let us focus attention on the equation of equilibrium (2.8),, the transverse
shear couple M*3 (also called [1] the splitting force) and the transverse normal stress
resultant N33, Since in planes normal to the middle surface N33 does not occur and M*
is self-equilibrated (to be exact, M*? tends to be self-equilibrated as /R approaches zero)
thus neither N33 nor M*® can affect significantly the global equilibrum of a shell element
cut out across the thickness. Therefore in passing from SP to the more elementary theories
which may be reached by the assumption M*3 = 0, the ensuing simplification of (2.8),
to the form

3.7 b MP*—N334+m3 = 0
and direct determination of N?2 from (3.7), one cannot expect a noticeable disturbation

3%
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of the global shell behaviour (characterized for example by the normal deflection of the
middle surface). Yet, as regards N>* and M** (and consequently the stresses o** and ¢%3)
the foregoing simplifications may obviously lead to a considerable change. In fact, it is
readily verified that all the elements in (2.8), have in general the same order of magnitude
(see [4]), with the M**, contribution increasing in proportion with (1/6) and (1/L). Thus
in regions characterized by a large index (1/L) of variation of the deformation (such as
the vicinity of the load discontinuity) we cannot expect the theories (e.g. RN) utilising
(3.7) to approximate ¢** and o3 with sufficient accuracy, whereas SP using the exact
equation (2.8), seems here far more promising.

Return to the first underlined term in (3.6). In most elementary theories (e.g. KL,
RN, T) this term is implicitely taken into account by a simple algebraic elimination (see
[12, 13]) of the transverse normal strain e,3;. Such a procedure undoubtely improving
the strain energy approximation in those theories makes, however, the variational deri-
vation of SP extremely awkward and precludes the possibility of improved approximation
of 0% and ¢3? because of destruction of the crucial equation (2.8),. Thus we omit the
relevant underlined term in (3.6) assuming that (»')*> <€ |, which holds for numerous
elastic media.

It should be stressed that the foregoing equations of SP and their analysis refer to the
interior shell problem, i.e. they lose their meaning in the boundary layer zone.

4, Numerical example

Let us consider (Fig. 1) an infinitely long circular cylindrical shell of constant thickness
h, the outer surface radius r, made from an isotropic material characterized by the Poisson
number » and the Young’s modulus E.
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The internal surface of the cylinder is subjected to a rotationally-symmetric band pressure
p spaced in the longitudinal direction with the period 2/ and having the band width 24.
The normal force N,, directed along the generator is assumed to vanish throughout the
shell and the longitudinal displacement U, to be zero in the plane x' = 0. The solution
of the relevant equations of SP can be readily found in terms of the Fourier series expan-
sions but we omit it here for the sake of brevity (the details are analogous to that given
in [14, 15]). Computations have been carried out with the following data: A/r = 0.3,
dil = 0.2, Ifr = 0.2 and » = 0.3 which describe a nonthin shell under a local load (d/h =
= 0.13). The results depicted in Fig. 2 - 6 (withdistributions EL, RN and KL taken from
[14]. where EL denotes the three-dimensional elasticity solution) evidently confirm our
expectations (sec. 3). To wit, in a vicinity (the cross-section A-A in Fig. 1, having the
coordinate x!'/l = 0.6) of the load discontinuity (having the coordinate x!'// = 0.8) SP
approximates the transverse shear (Fig. 5) and normal (Fig. 6) stress distinctly more accu-
rately than RN. At the same time, SP is only slightly more adequate than RN (or KL) in
the case of the displacements (Fig. 2 and 3) and the normal stress along the generator
(Fig. 4); the surprisingly poor approximation of the cross section rotation by RN (Fig. 3),
disclosed in [14], does not occur virtually [15], i.e. is caused by some errors in [14].
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Peszwme

O JIMHEMHOW TEOPUM AHM3OTPOITHBIX OBOJIOUEK CPENHEI TONIMHBI

PaccemaTpuBaeTcs B JmMHEHHOH NMOCTAHOBKE CTAaTHKA OTHOCHTCNIBHO TOJICTBIX, YIIPYTIX, aHH3OTPON-
HBIX 000JIOUEK IO AeHCTBHEM OBICTPOM3MEHSIONIUXCS HArpy3oK. Bapnaunonnsie u auddepenuansanie
YPaBHEHHs ABYMEDHOI TeopHM 000JIOUEeK BbIBEACHbl H3 TPEXMEDHBIX YDaBHEHHIl yIIPYLOCTU HA OCHOBE
NPEROJIOMCHUA O JINHEHHOM pachpee/leHHH BEKTOPA IepeMeliieHuid no Tonumne odonouxku. Hecnemo-
BaHa TOYHOCTH AIMIPOKCHMALY YOPYroif SHePruM MJIA IIPHHATOM MOAEMM 00O0JIOUKH H OnpeaencHa of-
JIaCTh NPHMEHEHHUS ypaBHeHuH aTolt momenu. IaH npumep pacuera.

Streszczenie

O LINIOWEJ TEORII ANIZOTROPOWYCH POWLOK O SREDNIEJ GRUBOSCI

W pracy rozwazono statyczne zagadnienie wewnetrzne liniowej teorii niezbyt cienkich, sprezystych
powlok anizotropowych, poddanych szybkozmiennym obcigzeniom. Réwnania wariacyjne i rézniczkowe
teorii dwuwymiarowej wyprowadzono z réwnan teorii sprgzystosci na podstawie zalozenia liniowego
rozkladu wektora przemieszczenia na grubosci powloki. Zbadano dokladno$¢ aproksymacji energii spre-
zystej w przyjetym modelu powloki i okreslono zakres stosowalnoscei rownan tego modelu. Podano przy-
klad liczbowy.

Praca zostala zloZona w Redakcji dnia 11 stycznia 1983 roku



