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1. Introductory remarks and assumptions

Plastic deformations are admitted in many cases in order to exploit maximally the
load carrying capacity of structures. Collapse of thin shells often occurs as a result of
the instability before the farge yiclding zones are developed. This fact motivates the inte-
rest in analysis of the elastic-plastic behaviour of shell structures. A limit load of shells
at which the snap-through phenomenon occurs, is investigated. This kind of critical load
is typical for shallow ideal shells; in high shells such an instability occurs due to the initial
imperfections.

Analysis of the lost of stability in the sense of snap-through and the post-critical beha-
viour is possible only on the basis of nonlinear formulation. Simultaneous considerations
of the physical and geometrical nonlinearities complicate the probiem, therefore the only
way to achieve a solution is the application of numerical methods. -

A number of papers on large deflections of elastic and efastic-plastic shells have been
written. With respect to elastic-plastic shells different methods were applied. The multi-
-segment method of numerical integration was used in [1], finite differences were explored
in 2] and finite element method was used in [3].

The presented paper is a generalization of the paper [4], where the shooting method
was applied to the ideal sandwich cross-section.. Comparing with the mentioned paper
[4] a modyfication of the algorithm and improved subroutines have been given.

The following assumptions have been introduced:

1. The shell is thin (Kirchhoff-Love hypotheses are valid); constant thichness and
ideal sandwich or full-walled cross-section, approximated by an equivalent multipoint
cross-section are assumed.

2. The displacement field is -rotationally symmetric.

3. The theory of small strains and large displacements is assumed.

4. The material of shall is isotropic, compressible, homogeneous, elastic-plastic of
a general type of strain-hardening (yield surface can translate and/ or extend at the same
time).

5. The load is quasi-static.

In the present paper the semi-inverse. method of numerical forward integration is
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applied for solving differential equations. This method (shooting- method) changes the
two-point boundary value problem (BVP) into an initial value problem (IVP).

Assuming rotational symmetry one can confine the considerations to a geometric
onc-dimensional problem with independent variable 4 measured along the meridian of
the shell (Fig. ta). Application of the plastic flow theory requires introduction of quasi.
~Linwe variable t. '
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From of a comprehensive numerical analysis only these examples will be mentioned
in which the upper and lower critical loads for shallow spherical caps with various boun-
dary conditions will be calculated.

2. Basic equations

Dimensionless quantities are used according to the notations in [4, 5]; components
of the state vector y are shown in Fig. la. _
Axisymmetric equilibrium state of elastic-plastic shell is described by the nonlinear

set of partial differential equations;

y, ‘=f(yvpa A..),

! : ;
e ¢'= D@, )
and algebraic relations:

(D 7= h(w, %),

where the following vectors are used: the state vector y, the vector of generalized stresses
@ and generalized strains q:

(.‘) y ={u’v’¢)”1’t’ml}!

Jd
Q={n,n,m,m}, ¢q=1{3,3,k,k}.
Additionally the vector displacement w and strains z are introduced:
(4) w={u’¢}’ z={32’k2}’

which are not related to each other by differential relations.
The basic set of equations consists of the equilibrium equations, the geometrical and
the physical relations. Detailed description of these equations for elastic-plastic shells
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of revolution is given in Appendix A2 in [5]. The initial boundary value problem must
be supplemented with appropriate boundary and initial conditions.

The set of equations is separated with respect to the spatial ( )’ = d( )/d4 and quasi-
-time derivatives ( )’ = d( )/dv. Incremental physical relations require inversion of
physical equations at each step of numerical integration at nodes/ =1, ..., L.

In elastic-plastic shells the main problem lies in calculation of generalized stresses by
numerical integration along the shell thickness. One of the possibilities to overcome diffi-
culties is the application of the numerical integration concentrating shell properties at
integration nodes. In this way we obtain full-walled cross-section, which will be called
multipoint cross-section. Application of the Simpson quadrature formulae can correspond
to the assumption of R-equally spaced points along thickness. As a special case we shell
consider an ideal sandwich cross-section, when R = 2.

The cross-section stiffness matrices in terms of the physical relations

(5 ":U = Dojkék+Dljk ] kk’ ”"J == Dljk:;k+D2jk' ll'ka Jok=1,2,
assume the form
12 R
tef J5 A i
6) Din= [ Eplldt = > Z.+ (Ex- )
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are calculated by using quadrature formulae, taking into account a current state of stresses
and strains, history of the loading process and type of cross-section. :

Incremental physical relations, given in detail in [4, 5] are referred to a material with
the combined kinematic-isotropic strain hardening, where A4 and C stend for the coeffi-
cients of isotropic and kinematic strain-hardening. Thus, the equations enable us 1o describe
the instantaneous motion of the centre of the yield locus (the interaction curve F) as well
as the development of the locus. Let us assume that £y, are elements of the local stiffness
matrices, occurring in incremental physical equations. These matrices are definite at each
point of the shell under assumption of the plane stress state. Elements E;; can be compu-
ted on the ground of information on the type of process [4, 5].

3. Algorithm of the shooting method in elastic-plastic shells of revolution

Due to the separation of spatial ( )’ = 9/d2 and quasi-time ( )’ = &/dr derivatives
in the basic cquations and to the approximation:

(7) Qm ~ (Qm_Qm—l)/Atnn q. ~ (qm—QIn—l)/Atm,

the two-point symmetric BVP of range r = 3 can be computed at each time = 7,. For
the following values 7 > 7, we can find points on the path of equilibrium states in the
load-displacement space. As a quasi-time independent variable 7 one of the monotonically
increasing parameter of the BVP can be adopted. Dependence on the shape of the path,
the load parameter or one of the components of the input vector y, is applied as the
time 7.

5 Mech. Teoret i Stos. 2—3/83
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The BVP can be solved iteratively using the shooting method by means of the multiple
numerical forward integration and choice of free initial values X, at point / = |, in order
to satisfy the boundary conditions Y at the other boundary point / = L, (X,, Y € R3).

The incremental formulation needs storing in the computer memory vector Q,,_, =
= 0% qn_, = q* and information about the history of the loading process (development
of elastic-plastic zones) for the whole structures.

With respect to the convergence and accuracy of the Newton-Raphson method as well
as the time consumption and computer storage the choice of spatial 44 and time A<z
steps is essential. In many numerical experiments the density of spatial step near the
shell ends is fixed. The step 47 is automatically computed on the basis of the criterion,
that the value of Odquist’s parameter increment is within defined limit at each point of
the structures [6, 7].

4. Inversion of physical equations

Considering elastic-plastic properties of the material the problem of inversion of
physical relations appears at each step of the numerical integration 4,/ =1, ..., L at
each time 7,, m = 1, ..., M. The knowledge of values n,, m,, 2,, k, at each point A,
results from the form the canonic set of equations. Appropriate procedure makes it pos-
sible to calculate the values of generalized strains 2,(n,, m,, 25, k;) and k,(n,, m,, 35, k,)
beside generalized stresses n,(g) and m,(q). Apart from the type of cross-section, material
properties, actual type or process should be taken into account in every quasi-time incre-
ment 47, Information stored in the computer memory concerning the values 23, k¥,
n¥, m% permits to calculate suitable increments of these quantities.

The passage from increments of strains 3, léj(j = 1, 2) at a point of the mid-surface
to increments of strains (¢;), for each point r = 1, ..., R along the thickness is possible
under the assumption of Kirchhoff-Love hypotheses:

(8) e = 3+ K8, &= z/ho,  Le[—1/2,1/2].

In this way increments (/e;), are obtained, and thus the calculation of increments stresses
(ds;), is feasible. The local cross-section stiffness matrices require knowledge of the most
actual valu.q’s (E;;), for every point r = 1, ..., R. Unlike the sandwich in the full-walled
cross-section case we cannot easily pass from the increments of generalized quantities
{dn;, Am;, Aa;, Ak;} to the increments of stresses (4s;),. In the case of full-walled cross-
-section approximated by the multipoint section, the stresses cannot be analysed separately
for each point #, as it is possible for two layers of the sandwich cross-section. Only in
an ideal sandwich there is an immediate passage from increments of generalized stresses

An;, Am; to increments stresses 4s; in the particular layer (+, —):
Any = (Ast+4s7)[2,  ny = n;/(h°o,),
Amy = (Asp—A4sp)[2,  my = m/(d*Ha,).

)

Values n,, m,; are known in the numerical integration nodes in the mid-surface on the
basis of the solution of the basic set of equations. Therefore in full-walled cross-section
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the increments of stresses (dsy),, ¥ = 1, ..., R, calculated iteratively, added to stresses
(s7), stored in the computer memory must agree with values n, i m, in point 4;:

12 R
Ry = o [ (sT+ds)d = o b D) Z(s3+ds).,
—1/2 r=1

(10)

12 R
iy = (6]~ [ (st+4s)2dE = 0 [(B)2/6]+ Y Zu(st+4s)),¢,.
—-172 r=1
Increments (/s;), sre computed currently for each point ¢, and 4; and they depend both
on the type of process and on attained yielding [4, 5].

For each point r along the shell thickness and for each node / of numerical integration
the following four cases must be considered:

i). If the elastic material properties at the point » are noted in the computer, the incre-
ment of the effective stress As; < 0 indicates, that the elastic process remains. This is
shown in Fig 2a, where the state for time 7%+ A7 is represented by the vector s} + As,
the end of which is at point P inside yield curve F,. In this case only s/ and e}“ are cor-
rected, coordinates of centre of yield sufrace aJ and Odqvist’s parameter remain unchanged.

ii). The curve F, is crossed by the vector As, and the vector 4s, leads to point P
inside F,. Then an approximate procedure must be applied. It translates point P, into
P’ along the path of proportional loading and a further increment As” is calculated, as
for an active process (Fig. 2b).
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iii). In the plastic zone an active process developes (Fig. 2¢). Quantities sj ; ej ay. ey
are corrected.

iv). The passive process occurs in the initial plastic zone if 4s; < 0 (Fig. 2d).

If the yield curve F, is crossed at a single point ¢, in a cross-section, it must be brought
down again to the level of full cross-section. The same step A is divided into subincre-
ments to take into account at first the elastic and later the plastic properties at point r.

When the yield surface is crossed at several points, the most intensive point is looked
for. It determines the way of division A7 into subincrements. The number of iterations
grows up when in the second stage it occurs, that curve F is crossed at the next point or
simultaneously unloading can take place at another point » in the same cross-section.

If the boundary-value problem has been solved for time 7,, the information stored in
the computer is repesated for the next time 7,,; = Tn+dTny,.

5. Numerical analysis

The displacement field in a shell depends strongly on various parameters. Geometric
c<hell parameters, boundary conditions, material properties have to be taken into account.
A series of numerical examples for shells differing from one another in values of the men-
tioned parameters should be made with respect to the analysis of response of shells under
applied load in the elastic-plastic range. .

Elastic full-walled circular plate and spherical cap have been tested. A good agreement
with results published in [8] has benn obtained.

First series of calculation have been made for a shell with sandwich cross-section
considering essential simplifications in the subroutine containing inversion of physical
equations, The influence of various parameters is presented in Fig. 3, which demonstrates
different shape of the load-displacement curve.

Further examples serve as a comparison of the results obtained for sandwich (S)
and full-walled cross-section approximated by multipoint cross-section (F). Parameters
of shells with (S) and (F) cross-section have been suitably choosen in order to have an
equivalent extension and bending stiffness of shells in elastic range:

(1) FS=23°=FF =0, JS=dh*2=J° = (hF)*/12.
From the above relations the thickness of the face d¥ and the height hS can be calculated:
(12) d5=hF2, I =h'y3.

For the gecometrical parameters and the boundary conditions described in Fig. 4.
the equilibrium path in the load-displacement space exhibits maximum, i.e. the limit
point with coordinates p,, 7,. The load p, indicates the upper critical load opposite to
the lower load p,.

On the basis of the obtained results for the shells with sandwich and full-walled Cross-
-section (approximated by 3-, 5-, 7- points) it can be stated that instantaneous reducing
of the shell stiffness at point (p,, 7,) is the consequence of vanishing of the total elastic
cross-section. Passive processes appear between p, and p; loads. Secondary yielding zones



| ==
| BKS1Z=BKSIZ /e

3 /s/ /F/
Ne hs [
d al —
h 0.1155 020
9=5/h,| 100 57.75
BKSIZ 20 11.55
BKSIW 10 5.77
BLAMZ | 20.136 11628
BLAMYY 10.017 0854
pF=P /(A" sp)
00t L e i A=00
- 7
et i i
R=7: L —
Q010 t=1 |
L 5% B &
R=3 5{2’:",5 808
® M \d v=f &IZ°- S;«..‘,z.o
Q006 03 06 l 09 12 a=uF
Fig. 4




186 M. RADWANSKA

have been developed in equilibrium states on the rising part of the path for every cross-
-section type. The Fig. 4 shows, that the cross-section type does not influence values of
the upper critical load p,. Considerable diversions in the shape of the p(z) curve begin
for deflections v & f (f— height of the shell). The lower critical load is found in the deflec-
tion interval /' < v < 2f. Values of p; are limited between p{* = 0.007 and p{® = 0.0115,
i.e. calculated for 3-point approximation of full-walled cross-section and ideal sand-
wich. The loads pf*?> and p{™ occur in interval [p{®, pf>’] and mutually differ slightly.

The spherical caps without a hole around the axis of symmetry are very sensitive to
changes of material, geometrical parameters, boundary conditions and the character of
loading. Fig. 5 shows that the value of the upper critical load p, and difference between
P. and p; depend on changes of values of the meridian radius.

The load-displacement curve for shell 4 (Fig. 5) with R = 5 is supplemented with
the equilibrium path calculated for 2, 3, 7— point approximation of full-walled cross-
-section. The next diagram shows that the limit points are obtained for the same displa-
cement but there is a greater distance between p, loads in comparison with the cxample
from Fig. 6 (about 10%). The lower critical pressure occurs in shells with displacements
of the order of the shell height.

p'= P7(1Fep)
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5. Final remarks

On the basis of the shooting method and the incremental approach the algorithm and
the computer program have been carried out. The program enables us to compute either
idealized sandwich shells or shells with a full-walled cross-section with different boundary
conditions.

The appropriate program has been written in FORTRAN-EXTENDED and imple-
mented on the CDC-Computer CYBER-72. The program is efficient since only CPU
memory is used, this shortens the computational time significantly.

Compared with the FEM the method applied in this program (semi-inverse method
of numerical forward integration) is especially suitable for analysis of axisymmetric pro-
blems.

Numerical examples verify the 5-point equivalent cross-section as a good approxima-
tion of the full-walled cross-section.
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Peawme

HYMEPUUYECKITI AHAJIM3 BOJBIIUX ITPOTMBOB VIIPYTO-IVIACTHUYECKHUX
OBOJIOUEK BPAINEHHMA

Ypaepnennst Gompinx nporudon u mamnbix pedopmanuii NPHMEHSIOTCS K aHAJIH3Y YIPYTo IUIACTH-
ueckux ofonouer. IpeanonaraeTea MABYXCIOHNOE MONCPEUHOE CEUEHHE THIIA ,,COHABHY’’ MJIH aNPOKCH-
MaLHIO CIIJIOLIHOrO CEYEeHHSI SKBHBANCHTHLIM MHOTOTOUEUIILIM CEUEHIEM.

IpusmensoTes ypaeHeHMsT TCOPHH IUIACTHUYCCKOrO TCUCHWSA K Mareplany ¢ KOMOHHHPOBAHNBIM
KHHEMaTHYECKO-HZOTPONHBIM YIIPOUHCHHCM.

K surterpuposanmio ypagHeHHil 3aNiCAHHLIX B KBACH-JINHCIHOI GopMe H PASHAENLHBIX K OTHOICHHIO
K NpPOCTPRHCTBEHHLIM H BPEMCHHBIM IIPOH3BO/IIbLM, MPHMEHSCTCA TOJyoOPATHBIII MeToj HyMmepiuec-
KOro muTerpHpoBanuA.



188 M. RADWANSKA

Jnsa nonorux oGoJIoUeK IIOTEPST YCTOMUYMBOCTH CBA3aHa ¢ MOJYYEHHEM BEPXHEro PaHHUYHOro NaB-
nennsa. Hymepnueckue BbIMMCICHUA ANA chepUUECKUX OBOJIOUEK HArPY>KEHHBIX BHEUIHHUM NaBJICHHCM
YKa3bIBaIOT, UTO B 3aBMCHMOCTH OT JI2paMeTpPOB OBOJIOUKH M YIIPOYHEHHA MaTepHala BO3MOXKHBIH XJI0-
nok. IlocnexpuTiyecKkne NPOruObl 3aBUCAT CHJIBHO OT PACLUMPEHHs IUIACTHYECKUX 30H, BHYTPEHHHX
yNPYFHX Pasrpy3oK H BTOPHYHBIX JUIACTHYECKUX Aedopmaimii,

Streszczenie

NUMERYCZNA ANALIZA DUZYCH PRZEMIESZCZEN SPREZYSTO-PLASTYCZNYCH
POWLOK OBROTOWO-SYMETRYCZNYCH

Roéwnania duzych ugieé 1 malych odksztalcen s przyjete do analizy sprezysto-plastycznych powlok
obrotowo-symetrycznych. Zaklada sie dwuwarstwowy przekréj typu ,,sandwich™ lub aproksymacje pel-
nofciennego przekroju réwnowaznym wielopunktowym przekrojem.

Przyj¢to réwnania teorii plyniecia plastycznego dla materialu z mieszanym kinematyczno-izotropo-
wym wzmocnieniem. Do calkowania réwnan, zapisanych w postaci quasi-liniowej i rozdzielonych wzgle-
dem przestrzennej i czasowej zmiennej przyjeto potodwrotna metode numerycznego calkowania.

Dla malowyniostych powlok utrata stateczno$ci jest zwiazana z osiagnigciem goérnego obciazenia
granicznego. Przyklady liczbowe dia powlok sferycznych obcigzonych cisnieniem zewnetrznym wskazuja,
ze w zalezno$ci od parametrow powloki i wzmocnienia materialu mozliwy jest przeskok. Pozakrytyczne
ugi¢cia silnie zalezg od rozwoju stref plastycznych, lokalnych obcigzen i wtérnych uplastycznien.

Praca zostala zlozona w Redakcji dnia 25 stycznia 1983 roku



