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1. Introduction

In the present paper a continuum approach for analysing clastic shells with lattice-type
reinforcement is proposed.

The shell structures are widely used in engineering practice. In many cases (especially
in the civil engineering) these structures require to be reinforced. Thus, from the theoretical
point of view material of the shell ought to be treated as nonhomogeneous mixture of
two components: reinforcement and matrix. Even if additional, simplifing assumptions
of homogenity and isotropy of both components are being utilised, the known composite
and mixture theories lead to the complex mathematical models, which cannot be recom-
mended for engineering practice (analysis). That is why in the majority of papers, authors
<lo not apply the theories mentioned above and assume stronger simplifications: in' most
cases material of the shell is'supposed to be homogeneus and anisotropic (or even iso-
tropic); the crucial point is to determine effective moduli for the hipothetic material of
the shell,

The purpose of this work is to generalize the energy functional for continuum sheli
by adding a term conceraing elastic reinforcement energy and then deriving the equations
of equilibrium as well as appropriate (in particular: natural) boundray conditions.

In the course of the paper, materials of both components are supposed to be linear-
-elastic, homogeneus and isotropic. Considerations are confined to the case of small
strains and displacements. The state of strain of the reinforcement is described according
to Wozniak’s lattice-type shell theory [1]. The state of strain of the matrix is assumed
according to generalised Reissner’s hypothesis. Thus, both models belong to the six-
-parameter classes of surface structures theories and no additional constraints on the rein-
forcement are imposed.

Considerations concern the lattice reinforcement constructed of two or three families
of intersecting bars, lying on a surface parallel to the middle surface of the shell. Com-
patibility conditions of matrix displacements and approximated displacements of lattice
nodes are supposed to be satisfied. !
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2. Geometry of shell

The region of the shell is parametrised by two convected normal coordinate systems
{x }and {x'}. At every point xZ of the fundamental surface 7, x*> = 0 a natural reference
triplet (g,) is fixed. Similarly, at all points x' in the shell region marks (g;) can be determi-
ned. Particularly, the surface 7, x* = ¥* = const, which includes the axes of the rein-
forcement bars. The bases (g;) refere to the point of this surface.

Base vectors ¢; can be expressed by means of ¢, vectors; the same can be stated about
the reciprocal bases ¢ and ¢°. The mentioned relations have the forms

2.1 & =Vig., g =4.g"
Egs (2.1) yield from Weingarten formulae and make it possible to shift an arbitrary tensor
object from the point x* on 7 along the normal to the point x* on the reference funda-
mental surface.

The shifters V7, Al (cf. eg [2] [3]) are defined as follows

(2.2) Vi =81+ gix  ViAL= 0, WVidi= o,
hence

(2.3) A% = AS[(1 —2Hx®) 68+ x gt + (x2)205 62 K],

where

@2H)eons A=V, V=det(Vh) = 1-2x*H+(x*)K,
and

2.5) ‘8= —gap8° = gsgfb,‘

1 o 2 1
H=— tr(g), K= det(gp).

It is easy to prove, that the relation
(2.6) dn = V=,
hold true.

3. Tensor fields and their derivatives

Values of any vector field v are elements of linear spaces. Thus they can be represented
by their components either in the basis g; or in the basis g, as follows:
(31) v = vlgi = 'U‘gi - vagn = ‘vaga'

From (2.1) it yields that different components of the same object are related by the
formulae
.2 v, = Viv,, v = Alo°,
Per analogiam one can obtain similar relation for any tensor of (p, ) valency. The ap-
propriate formula takes the form
3.3) thije= Al .. AV Vil

Ji-oJg
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Applying spatial gradient operation to the tensor field ¢, and taking into account (2.1)
one arrives at the following formulae for the components of tensor derivatives:

fomione = OfAL .. ARV . Vistgge,
i odpn : ; i . d
(3.4) l_’i;_”:“k = éf(S':A:,i e .1:141 ijl] sen V,b: (lb ”Cd_ é"A VCHlltg:g:“E))
where

Ve = 6L,

4. Displacements

The state of displacements in the shell region is assumed to be compatible with the
generalised Reissner’s kinematic hipothesis

4.n u(x*, x%) = u(x*)+ 'u(x*)x>

Additionally vector functions (cf. [1]) approximating displacements # = #(x*) and rota-
tions § = §(x*) of reinforcement lattice nodes are introduced. The meaning of i, compo-
nents is the same as in the continuum surface structure theory, wheras 5,‘ components
describe the node rotations in the planes perpendicular to parametric lines x* = const

and &, — its rotation in the plane tangent to sr. The vector functions # and 3 are supposed
to be of C! — class of continuuity. Obviously they can be interpreted as displacements
only in the lattice nodes.

It is assumed, that interactions between the reinforcement and the material of the
matrix (in which it is embedded) are caused by the ideal adherence; and therefore the
Compatibility displacement conditions are supposed to be valid. Moreover the latter
relations are assumed to be weakened by substituting into them the approximated lattice
displacements, instead of the real ones. Such procedure leads to the following formulae

(4.2) i=ulyz and 9= 8.z,
where 9 denotes an infinitesimal rotation vector. Hence

(4.3) 9= Ll—lotu—L
= ) 2

ekimy, mii18k
Where g¥!™ _ Ricci tensor on 7.
By virtue of (2.1) (3.3) (3.4) and (4.1) the components of lattice displacements can

be referred to the basis on the fundamental, reference surface
(4.4) iy = VeCug+'u,x%) = Veil,.

F= L sk sl Ay,
(4.5)

1

¢ .abelsd Amw~
= ngaéme VkAb uc\]c-
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5. The state of strain

The state of strain of the lattice can be determined by means of the functions e,;(x*),
‘e.q(x*) as follows

(5]) Exl = ﬁl‘:'z'*'elxmﬂm’ e = V-

By virtue of (4.2) and (4.3) we have

emnz,

€1 UnfTmx -

R —

2 gy v, -
(5.2) € = > (W17 Flsyn) 5 €y =

Taking into account (3.4) and (2.1) and making some simple rearrangements the following
formulae expressing the strains (5.2) can be obtained:

5 car ab ~
€1 = (Dxlua\:b)

=
(5.3) |
e = _2 (YI:fcﬁuiibc-Q:?aaHb),
with the denotations
Di = Vidi+ 8Vt
(5.4) Pobe — dcedaVE AL,

0% = War AWy,

6. Potential energy of shell

The total potential energy of the shell is expressed by the'formulu

j (Gmi)dﬂ— f’cd(é’m,

R [ea1

(6.1) J= [&di+

where ¢ and & denotes surface densities of the strain energy of the matrix and reinforce-
ment, respectively: ¢ and = denotes densities of potential energy due to external surface
and boundary loads. :
Methods of determining the quantities o, ¢, and v can be found in papers devoted
to so called six-parameter shell theories (cf. [4] [5])
In this paper attention is confined to the method of the derivation of the function
(6.2) J= [az = [Vn,

T

and — the stationary condition dJ = 0 of the variational theorem coupled with (6.1),
The density of reinforcement strain energy can be written in the form

(()3) 6’ = i ‘Ax’l"lzzlé[l!l+Cxl!”"‘éulléﬂn)-

o —
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Where, for the lattices under consideration

A s ..\_/ 1 ta (e n REB + niayne (,,+ 93 03 RZ),
4
(6.4)
Gt o Lty (1 Uiy SEB + 1y iy Sad + 03 03 S(2)).
.4
The vectors t., and n, are referred to the plane 7 and are tangent and normal to the
axis of the bar (belonged to the A — family of bars), respectively.
The quantities R(T), S{T), T =0, 1,2 are stiffneses of reinforcement rods.

Applying the Gauss-Stokes theorem in the form
(6.5) f'vﬁad:rz = - f2H7)3dn+'f %l d(dm),

when stationary condition dJ = 0 is being examined, we arrive to the following set of
€quillibrium equations

Ouy: c+"Ht“+°s" f"—
dug: X3% 4+ (2HZ? —l)t"3+’e" f" = 0.

with boundary conditions

(6.6)

éﬂd“;d: rdaﬂlﬁ = 0,
(67) (Y’u,,: —(1‘1[3—0&‘”)1[3 = O’d
Sug: (ri*F =219 47290y = '
Underlined terms in (6.6) and (6.7) appear. when variation of appropiate terms in
(6.1) is considered.
The vector I, is tangent to 7 and is exteriorly normal to the boundary line 8.
Moreover following auxlliary quantities are introduced

(68) fab o '111;1 sab Sl pab.

and

pd(‘ = i !/4,‘“‘"(])'“’@(” ll,, ‘h-

“n

pden Cxluugjdt’u(wxl / ”a by — @:?ﬂa;;b) )

l -
de =\ T ch“m@/m( /“a 'b',’_@"“?ll”“b')'
7. Conclusions

In the present paper the energy functional for the shells with lattice-type reinforcement
is obtained. Tn the variational way equilibrium equations as well as natural boundary
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conditions are derived. The assumed mathematical model makes it possible to consider
an influence of reinforcement stiffness on resultant shell response in more systematic
way then in the hitherto used approaches in which homogenity of the structure is postula-
ted. In the proposed model a geometry, directions, and full set of elastic features of the
fibrous is taken into account.

In the case of slender reinforcement rods a formal resemblance of the proposed theory
to the anisotropic model of Reissner’s shell is worth mentioning.

Equations obtained in the paper can be applied in several other special cases.

Presented variational approach, in particular the energy functional (6.1) can be used
for the finite element formulation of the problem considered.
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Peawme

O TEOPHH OBOJIOUEK APMHPOBAHHBIX CETKAMH

B paGore ncrions3ya BapHallMOHHBIH METOH, [IOCTPOEHO YPABHEHHSI TEOPHM: yIIPYTIIX 00O0JIOUEK ap-
MHPOBaHHBIX CETKAMH. !

Harud® cunoursoi ofosiouxn (MaTpHi{bl) ORMCAHO, NPHHIMAast obylo rumoredy Peiicchepa. edop-
MauMa CeTyaTol apMaTyphbl COrJIACHO TEOPHH CETYaThIX odosiouek BoswHsika.

IIpesicranner B pabore NMpHeM ONpefesieHUA BIIMAHMSA apMaTypnl Ha Acdopmandio oGonouxu mo
XapaKTePY ,,TEXHHUECKUH” . DTO CIIEAYCT M3 NPHHATON MACAIM3AlUH CTPYKTYPBI CETYATO} apMaTyphbl

KaK H ¢€ HENPEPLIBHOTO OIIHCAHHA.

Streszczenie

O TEORII POWLOK ZBROJONYCH SIATKAMI

W pracy na drodze wariacyjnej uzyskano rownania teorii powlok sprezystych zbrojonych siatkami.

Zginanie Rontynualnej powloki (matrycy) opisano przyjmujac uogélniong hipoteze¢ Reissnera, a detor-
magje zbrojenia okre$lono zgodnie z réwnaniami teorii powlok siatkowych Wozniaka [1].

Przedstawiona w pracy proba uwzglednienia zbrojenia na stan deformacji dZwigara ma charakter
.techniczny™ co wynika zaréwno z zalozen odnosnie struktury zbrojenia jak i z zastosowanego konty-
nualnego opisu siatki.

Praca zostala zlozona w Redakcji dnia 14 kwietnia 1983 roku



