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1. Introduction

In this paper we treat the initial boundary-value problem of elastic-plastic plates sub-
jected to arbitrary dead-loadtype loading histories. This problem differs from analogous
purely elastic problems by the fact that even under the assumption of certain shape of
strain-distribution over the thickness of the plate, such as Kirchhoff-Love-hypothesis[1], no

_ prediction about stress-distribution over the thickness of the plate can be made as no
one-to-one correspondance between strains and stresses holds. So here we treat this problem
genuinely as three-dimensional problem constrained by certain geometrical and statical
conditions which have a distinct meaning in theory of plates and in theory of plasticity,
respectively. We show, that well known Kirchhoff plate-theory is a special case of the
herein presented concept. For the construction of a minimum-principle for the state of
stress in the plate we make use of a recently derived minimum-principle for general three-
dimensional body [2], based on the formulation of constitutive relations by means of convex
analysis [3, 4] and internal parameters [5] in order to describe elastic-perfectly plastic
and elastic-linear hardening material behaviour by the same mathematical model.

In the last chapter a numerical illustration of the presented method is given for the
case of a proportionally loaded elastic-perfectly plastic square platc.

2. The three-dimensional initial boundary-value problem. Local formulation of the problem

A body of volume &£ as subregion of product-space of three-dimensional Euclidean
space R*® and space T of time ¢, defined on the intervall T = [0, c0), with sufficiently
regular boundary 982, is subjected to external agencies a = a(x), described by the set
[F*(x) € 2, P*(x) € 092,, u*(x) € 982, where f(x), u(x) and p(x) denote three-dimensional
vectors of volume-forces, displacements and surface-forces, respectively. 362, and 80,
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denote disjoint paris of 92 where kinematical and statical boundary conditions are pres-
cribed, resp., Considering quasi-static deformation processes in the range of small defor-
mations for conservative external agencies a(x), statical and kinematical field-equations
are given by: '

X Dive+f*=0 in £, 2.
n-o—P*=0 on &Q,,
e—Gradyu =0 in 2 (2.2)

u=u*=0 on 00,

Div and Grad, denote divergence-operator and symmetric part of gradient-operator,
o(x), (x) are elements of space T2 of symmetric, two-dimensional tensors with 6 inde-
pendent components, n denotes outer normal unit-vector on J£2. Prescribed quantities
are indicated by upper star. The problem consists of determining oe and u for the entire
deformation-process. Constitutive relations are described by use of internal parameters
[5], such that elastic-perfectly plastic and elastic-linear hardening material behaviour
can be treated by the same mathematical methods. Assuming, that entire strain e(x) can
be additively decomposed into purely elastic part £°(x) and purely plastic part £°(x),
generalized stress-, generalized elastic strain- and generalized plastic strain-tensors are
defined, respectively, by the sets s(x) = [0, n], €°(x) = [&°, w], e"(x) = [, k], where
internal statical, elastic and plastic parameters z(x), w(x) and k(x) are elements of vector-
space 1} with r independent components. It can be shown [2], that for vanishing w(xx)
and k(x) at time 7 = 0, entire generalized strain e is given by e = [¢°+¢P, 0], defined
on £2. Assuming the existence of a convex, lower semi-continuous elastic strain energy-
density w(e®) and introducing bilinear form (s, ¢°) as inner product s.. e¢° defined by

2.3) s..e® = o e +mm, i,je[l,2,3],nell,2,...,r]

where y and (., .) are mappings of product-space =2 x T, onto R', defined on £, the
following three relations are equivalent conditions for s and ¢° to satisfy elastic. material
behaviour: :

(2.4) e®’e Qp*(s),

(2.5) s € dp(ef), in @

(2.6) w(e)+p*(s)— (s, ¢) = 0,

with polar elastic energy-density 1*(s) defined by:

Q7 w¥(s) = sup [(s, e")—p(e)] in 2,
eCrergd

,,0(.)"" denotes subdifferential of the considered quantity. In the herein treated case of linear-
elastic material behaviour (2.4 - 2.6) degenerate to

(2‘8) ee = G"S -A= [Efi’ CO,,] = [leLlels n:uz'nm)a isj> k1 l € [] bl 2’ 3]’
(2'9) S = G_l'-ee = [GU’ nll] = [glilLl_jll([: a)mzallr] m, ne [1 ] 27 T r]7

]
2.10) 7e"’..G*‘..e”+-%»S..G..s—s..e“= 0.
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L and Z denote here positive definit matrices with known constant coefficients of elastic
and hardening-coefficients, respectively, G is defined as the set [Z, Z], upper index ,,— 17
" denotes inverse of the considered matrix.

Analogously plastic part of constitutive relations is formulated: If p(s) denotes plastic
potential, defined as convex and lower semi-continuous indicator-function of convex
closed region E, in space t¢ x v, of generalized stresses s, normality-rule for rate of gene-
ralized plastic strain é?, used in this paper as plastic flow-law, may be expressed by the
following relations, each equivalent to the other:

Q.11 &P € 0p(s)
(2.12) 5 € Bp*(e) in ©
©.13) P(s) + ") — (€7, 5) = 0

where in (2.13) equality holds if plastic flow-law and yield-condition, demanding that
every admissible state of stress s is in the interior or on the boundary of E,, are fulfilled.
Here, superposed dot denotes time-derivative, (e”,s) denotes according to elastic part

of constitutive relations, bilinear form &fjo;;+4,7,, {,j€ [1,2,3L, ne[l, 2, ..., r]. p*(é?)
is polar plastic potential, defined by:
(2.14) p*(e") = sup [(¢",s")—@(s¥)] in Q

s"e‘ré

Reformulation of the problem, minimum principle for stresses. Assumption: External
agencies a(x) are represented by the given lield-quantities ¢°, £° and ©° such that:

Dive® +/* =0 in 2,
n.e®—p* =0 on o8,

&% — Gradsu® = 0 in 2,
WwW—u* =0 on 28,

@17 O—L.®=0 in .

Physically, 0® and u° represeat the solution of an analogous purely elastic problem. Defining
statically and kinematically admissible generalized stresses s* and s¥, resp., by the definitions

st = [0%, 0] := {s€xifo = LT'Gradsu in 2, u=0 on o2}

$* = [o%, 7] := {se¢/Divo=0 in 2, n.c =0 on 2,}

(2.15)

(2.16)

(2.18)

the entire problem is reformulated by: Determine s, e and e? such that:
§ = §0—s°

(2.19) e = G..(s°+5%) in 2

' e = G..(5°+ 5 € dgp(s® ~5%)
This, however, is equivalent [2] to the minimization of the functional A(s®, s%), defined
by
(2.20) Ms°, 55 = (s —s)+*(G.. (5 +5)—(G.. (5 +5Y), s°\—s’) =0
according to ((2.11) - (2.13), (2.20)). ' -
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By completion of space ¢, of smooth tensorfields of generalized stresses s with
respect to the scalar-product

2.21) (s, 56 = J s G..sPe~tdx, st 5% ec®,,
F ‘

in [2] Hilbert-space H of generalized stress-fields s is constructed. Global formulation
of plastic part of constitutive relations is then given by

(2.22) : D(s)+ PG 'e")— (G 1éP, s)¢ = 0,

where global plastic potential @ and polar potential ®* are defined by

(2.23) @) = lim [ pHe~'dx, seH
€™ o
[ 3
[0 ifseE EcH,
\+¢c ifs¢E ceR, ¢>0

(2.24) G*(G ey = sup [G=1e?, s*)o—D(s*)] in Q
s*eH

lPC(S) =

As G is a constant positiv multiplier, here and in the following space of generalized strains
is identified with Hilbert-space of generalized stress by use of the isomorphism e = G . .s.
Analogously to (2.11) - (2.13), (2.22) is equivalent to:

G™!..eP = &4 e D(s) } )
in £2

(2.25) 5 € 0DH( +34)

Making use of the assumption of given purely elastic solution 69, #° and of orthogonality
of kinematically and statically admissible stresses s*, s° with respect to scalar-product
(2.21), stated by .

(2.26) (k5% =0 inQ2; sceH,«cH»>H,eS; H | H,
minimum-principle (2.20) is now stated globally: The convex functional A defined by
(2.27)  A(s*, %) = D(s° — s5)+ P*(55+5%) (50 =5, 5+ 5)g  in L2

assumes the minimum equal to zero for the solution [s*, §. However, as A(s*, s°) is not
strictly convex, solution may be not unique. If we resign from determination of 5, such
that rate of plastic strain eéf = G..(5°+5*) and as consequence entire state of strain
cannot be determined, strictly convex functional A,(s®), defined by

(2.28) Ao(s%) = D(s®—5)+PEGE)—(s%~55, 5D = 0 in 2

can be constructed [2]. Lower index ,,,”’ denotes restriction of the domains of A and ®*
to elements of H,. Solation §° of the problem is then uniquely obtained by minimization
of sy, if any solution exists. As in case of elastic-linear hardening material behaviour
region E, of admissible generalized stresses is constant, (2.28) can be reduced to the mini-
mization of

(2.29) Aoy = sup  (s—5", 53,

st esC—E,nH,
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3. The initial boundary-value problem of elastic-plastic plates. Systematié‘al generation of
plate-models from three-dimensional theory

A three-dimensional body of volume Q, given by midsurface I” as subregion in R* x T,
parametrized by rectangular coordinates x,,x, and time-coordinate e 7 = [0, c0),
with sufficciently regular boundary oI' and constant extension in xj;-direction with
x5 € [—h, +4], is called ,,plate”, if 2/ is much smaller than characteristic length L as
measure of extension of I'in x, — x,-plane, 41" consists of parts 417, and 91, where kine-
matical and statical boundary-conditions are prescribed. For the moment we assume
oI'smol’, = @, though in the sequel of the paper we shall weaken this assumption. Forces
aéting on upper and lower planes I'*, I"~, resp., parallel to I” at distance A, will be treated
as forces acting on I, kinematical conditions will only be prescribed on 97, not on I

Fig. 1

In order to obtain a two-dimensional minimum-principle for state of stress in the plate
according to (2.29), we define two-dimensional representatives of all three-dimensional
quantities used in chapter 2. In general, they may be introduced in several manners: By
use of multilayer-model, where the three-dimensional body is represented by a finite number
of layers, such that to each three-dimensional fieldéquantity in the body for each layer
a two-dimensional representative of the considered quantity is assigned [6, 7]. Here we
use polynomial representatives defined in the following way: Be f(x) an arbitrary smooth
scalar-, vector- or tensorvalued function defined on 2. We expand f(x) into a Taylor-
series with respect to midsurface I” up to order ¢ such that two-dimensional coefficients
F(x,, x,, 1) of Taylor-expansion are defined by:

1 o f(x)
3.1 F®(x, x5, 1) = — o 202 kell,2, ..,
(3.1) (%1, X2, 1) T @y o [ 9)]
This represents a mapping of the domain «5(f) = C¥, where C§ denotes the space of
smooth three-dimensional functions f onto the domain &/,(F) = (C%)?, where (C%)" de-

notes the product-space of smooth two-dimensional functions of power g. The inverse
relation, given by '

q

32 J0) = D F®x,, %y, x50 kell,2,..,4q),
k=1
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however maps &,(F) only onto a subdomain &3 < &/;. In our approach we take only
elements of .75 into account and interprete this restriction as an imposure of constraints
according to [6] on the three-dimensional body. This restriction is the starting-point for
the construction of plate-theories characterized by the parameter g.

Here we introduce namely two-dimensional representatives n, ¢, n of three-dimensional
generalized stresses s, generalized strains e and displacements u, defined by the sets:

n=[N,a% ¢ =007 q¢"=I[P,K], U= [u

with the definitions:
N1 =[NP, ND, . N(rn) I = [T, [T, . T

= (O, 0, ..., Q1,01 =[O, 0, ..., 0]
P‘l =[PP, PP, ..., P,-‘J’-’ 1,  K?'= [K{", K&, ..., K;"D)
U9 = (i, ul®, ... ul®]
with i,je[l,2,3], ne 1,2, ..., rl]; g: order of Taylor-expansion.

The two-dimensional minimum-principle. Inserting so dzfined two-dimensional quantities -
into scalar-product (2.21) and using the multiplier® G such that G=! #(q") € H, we obtain:

(3.3)

(34) ’ <<") ;l>>(i = <<n’ Q» = f”n? qe—ldx_l dedl)

I
with the definitions

nmgq

I

a a
Z 2 (NiPm, OF +IT$0 my, 640,
=1

k=

(3.5)

+h

m = my = f xk+i-2gy
~h

Splitting up (3.4) ihto parts containing solely vector- and tensor-components in x; —x, —
direction and those containing components in x;-direction, we obtain:

(36) ((Il, ‘I)) = «”aﬁ qaﬂ»'}'z«nod qa3>>+<<"33, q33>)+<<7'5,,, 011)): tX, ﬂ € [I
defined by:

q q
GD L e g = [ D) D NEma0]edx, dxdt,
r k=1 1=1 .
TR
(3.8) {ngas Gua}) = f [Z > N(k)muQU)] e fdx, dx,d1,
r k=11]=1
q _tl1 ’
39 (msss gz = [ D) N NGmu 0B ]etd, dx,dt,
r k=li=t
111 Q_‘ )
(3.10) W, @, = f [ ) ]Y"‘)mk,@(’)] ~tdx, dx,d!.
k=1 I=

In accordance with the physical definition of »plates”, given in the beginning of this
chapter, we now precise that plates in general are characterized by the vanishing of (3.9)
and thin plate by additionally vanishing of (3.8). In the following we shall deal exclusively
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with so defined thin plates. In minimum-principle (2.29) statically admissible generalized
stresses were used for the construction of the solution of the problem. If now we use two-
dimensional representatives for the stresses we also need a criterion for statical admiss-
ibility of these quantities. Here we use condition of orthogonality with respect to scalar-
product (3.4), analoguous to orthogonality-condition (2.26). Statically admissible stress-
representatives are then defined by:

(3.11) n = {nf(n, ¢ =0 on I}

with kinematically admissible generalized strain-representatives ¢* = [Q*?, 0] defined by
the set

(3.12) = {Q”/Q(“ = Q¢ = Grad, u"’ in I, u) =0 on oI}

with o, f [1,2 ;1e(1,2,...,q); g: order of Taylor-expansion. In order to identify

Kirchhoff plate-theory lateron directly as special case of the herein presented generalized
theory we impose on 'u? the constraint

(3.13) P = —u®, P =u® k=1,3,.., g, k#2
By twice application of divergence-theorem (3.11) delivers immediately conditions for
statical admissible two-dimensional representatives of generalized stresses.

Example for ¢ = 4. If we insert into (3.11) two-dimensional representatives of order
. q = 4, we obtain:

G0 @ = | lzhfv“m“ 2R NG NPUS N u)+

P
2 SN 3 (2),,(4) _ N (2) T NS | ot
5 WP (NP u§ +Na,; uth—N§ u]aﬂ)+ h NEPu$ b dx,dx,dt =

2 2 2 2 2
= hNLD SN [ — Zp3N 2 RSN LT a3 N L T RS MDD
f”21Nm +311N )( 3hNa,; 5h Naﬂ),<3h Naﬁ+5h Naﬁ),

r

2 R 2
(-g RPN + 5 h7N§j,))] [ulty, 2}, ul), us i\ e~ tdx dx,dt = 0.

Where square brackets denote supervectors and superposed ,,T” indicates transported
supervector. Twice application of divergence-theorem then delivers:

‘ 2 2
«n: qk» = - f [(2]‘11\,&;3?54— —3- I‘lsNé?]?ﬁ), (—3- hsN&f})ﬂa h Nal? ﬁa) s

r

(% NG+ 2 hSNa%?ﬁ) : (% BN+ 2 KNG f,)J L, 4, 1, u)T

(3| 5) ' e"dxl dxde— f ‘\(leN&},)ﬁ}——%haN&?,)), (7)+Mns,s), Mnn"

or

(‘%hSN&f,)+—§h5Néﬁ)),( PENG+ - /17N(4’” [, u‘z) ul®, ul®, ul1m.

e~ "dsdr + f[M,,sc uPe~tdr = 0,
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where last term indicates difference of lefthand and righthand limit of the square bracket
at a certain point ¢ € 8I". Here we use the definitions:

0 0

% = Ny g —hg s n = cos(x,, n) a#p,
2 2 2 5 4 (i) ) .

Vo= n, 3«—/13N§, )+—5— W3NS 5 NG = Nng,

(3‘16) I\

My = Expha 1;5( - NS+ IzsNg‘f,)) o, B,6€e(l,2]

5() 0()

9 .
M, = 1 (% h3N(u%5) + § hSNg:;)): (‘)\n = 3 (. )ls = A

1 and s denote coordinates of normal and tangent direction to oI, resp., n denotes outer
normal-vector on 81" and €, is permutation-symbol: €,, = —&,, =1, €, = €,, = 0.

Coﬁclusion from (3.15) is, that for the chosen model all (vector-or scalarvalued) ele-
ments of supervector containing statical quantities have to be equal to zero for arbitrary
admissible conjugate displacement-representatives in the integral over I". On oI" conditions
of statical admissibility depend on the support of the plate. Necessary for the vanishing
of the integral over &1 is, that the product of conjugate statical and kinematical quan-
tities vanishes, what permits, as weaking of the introductory assumptions, mixed boundary-
conditions.

Imposure of constraints to deformations is quite arbitrary as long as physically moti-
vated. For example, in order to obtain from (3.14) a plate-model fulfilling Kirchhoff-
Love-hypothesis, we impose on deformation-representative »? the constraint:

(3.17) B = a0 = —u®, @D =u, 1=2,3,..q; [#1.

Then, after performing the same calculation as prevnously, we obtain instead of (3.15)
the expression:

2
((", qk» = — f[(2,1Ng ﬂ+-—h3N&%) ) (%hsN&g ﬂa ~§ hsN;?})ﬂa)]

T

(3.18) [, ut®)Te~"dx, dx,dt + f[(zhzv;;w -32-/13N53,>),

(V+m,.), M,,,,] g, ), U e dsdr + ’ [M,J¢ru®e~"dt = 0,
7

with definitions according to (3.16). _

Inserting statically admissible stress-tensors determined in this way according to the
chosen plate-model into the two-dimensional functional
(3.19) /]0(71“) = sup (n°—n*, G. .71 n'€e n°— E,nH,

"l En°»-~§,mH.‘ .

where E, denotes convex region of admissible generalized stresses s, expressed by two-
dimensional representatives and n° denotes given purely elastic solution of the problem.
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Stress-representative r of the researched state of stress in the elastic-plastic plate is then
given by the superposition

(3.20) n=n—-n onl,

where functional /I(n") attains uniquely the minimum of value zero for the function 7'
If such function does not exist, also the solution of the problem does not exist.

4. Numerical example

A quadratic, homogeneous, on entire boundary 91" simply supported, elastic-perfectly
plastic plate is proportionally loaded by a distributed force § acting orthogonally on the
midspan of the plate. Load is given by the function

o iy T 7o
(4.2) G(xX;, X2, 1) =!f10(t)'005('2; xl)COSz xz),

where ¢, is the controlling parameter of the loading.

Fig. 2
In the following we use dimensionless quantities
X 523

Xo = *2-52 *3 = 2p

g a\* G N. a \*
= —| = . =—v :——lﬁ— — .
q“E(zh)’ 9= N Ea2(2h)

For this probleh purely elastic solution is given by [1]:

; a’*q inl in|
Ngﬁz) _ _;Z_Zg(l+v)81n[-2_(X1+ 1)] Sin [“2‘(x2+ l)] o = /3

4.2)

o]

%(x2+ 1)] wsp

with » as Poissons ratio. Here we use stress-representatives N up to order g = 2k_and
choose as test-functions:
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P = c,(1-x}) (1 =x3)+c(1=x}) (1 —x3),
(4.3) N2 = ¢3(1=x3) (1 =xD)+es(1 =x3) (1 =x7),
i ! 1
NP = NF = c; lle X2 — ~3—(x?x2+x1 xi)]‘*’ Cs [le X2— 3 (x7x +x1x§)].

with the set [c,, ¢;, ..., ¢s] as free parameters. After fulfilling conditions of symmetry
and condition (3.11) of statical admissibility (4.3) reduces to:

NG = e (l=x)(I=xp—c(1=x)(1-xF) a=Pp

I I ] !
Cl(xm——s,— xi) (xﬂ —3 xﬁ) +C2(x°‘— 5 x"s‘) (xﬂ_ 5 xf}) “#p

with only two free parameters ¢, and ¢,, which are subjected to the minimization-process

(4.4)

I

NP

of functional /4, which reduces now to a function of parameters ¢, and c,:
Agley, ) = sup [(ci—cic})- 4,01468+(c3—c %) 6,01351 +
ns (cfc,’z')en"-—l’::,r\H,\-

(4.5) ) .
+ ¢, e5—ce5—cy ) 521133}, w¥(cy, ¢;) € n°~ EinH,

Here » was chosen» = 0.3.
We describe region EnH by Tresca-and von-Mises-yield conditions:
Tresca-yield-condition.:

C@46) (NP =NEPY +ANTD? < NP2 if - NYPNTD < NP2

1)2
—-(Ns‘2)+N§‘22))i [%(Nf‘f’-—Nz‘f’)z+N“,‘22)2] KNG if NIPNID > Ny@»2

von-Mises-yield-condition:
(4.7) NIP2+NIP2 —NYPNFP+3INED? < N2

2

. . . 2h . . . . .
where N is defined by ~3" T with oy as stress-limit of uniaxial tension-test. Practically

this means, that limit for two-dimensional stress-represeéntative is reachéd (in uniaxial
case), when yieldings in upper and lower planes I'*, I'~ starts. From the minimization
of function 4, we obtain numerically results for different loading-parameters g,, namely:

qo Ca

o U —

15 0.1933 | —0.2708 | V. Mises
|
i
S

2 5 —~0.3327 0.1234

13

1.5 0.1575 | —0.2351 Tresca

~0.3673 oisgo | .,

Fig. 3
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In figure 5 the shape of regions of admissible parameters ¢;, ¢, are drawn in ¢,~-¢,-plane
for two values of loading-parameter g,. The inner domain is in both cases related to
Tresca yield-criterion and the outer domain to von Mises-yield-criterion. The vectors C
indicate the position of minimizing parameters ¢,, ¢,. For increasing load-parameter
qo the region of admissible parameters ¢, and ¢, becomes smaller and vanishes beyond
a critical value g3 such that no solution of the problem in the chosen space o\f test-functions

0, =3.792-10° N/ cm?
E =2.017-107 N/cm?
V=03

&

cz. A
0.45F
0.30}~
015
0 | | ! L
o &bo/ Region of admissible parameters cy,c,
(48> load q,=1.5, 0,=0.72
-0.15- L inner region:Tresca's yield-condition ]
’ outer region: von Mises’ yield~condition
G:solution -vectors.
-0.30 l | i | L l
T . T I : I T
c
2 B
0.45- - >
030 - -
015l - -
Cryresc® —
»,,/
= Crnises ’
0 L | — 1 [ | — 1
Region of admissible parameters c,,c;
Load parameter q,=25, 0,=0.72
: ‘inner region:Tresca's yield -condition !
015~ B outer region: von Mises’ yield-condition 7
C=solution-vectors
|

| I | | |
¢, 015 0 ~-0415 -030 -045 ~-060 -0.75%

Fig. 5§
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exists for qo = ¢9. In figure 6 the distribution of purely elastic SO]UthIl N°, of the mini-
mizing statical admissible stress-representative N and of solution N of the problem as
superposition of N° and N* are sketched yualitatively in x, — x,-plane.
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Pesmome

3AKOH MUHUMVYM 17151 HEITPAJKEHHOT'O COCTOMHIIA B VIIPYIO-IITACTAYECKHMX
IUIMTAX YU COOTBETCTBVIOIUN MOIENL IIJINTEI

HanpshieHHoe COCTOSHHE B IINTAX I0L MedCTBHEM HMCTOPHM HAMPY3KH OXIPeeINIAETCH IIPUMEHSISA
IKCIIEPHMEHTABHBIE TEOPEMBI K 3a[a4yaM B DaMKaxX IEOMETPMUECKM JuHeiHo# Teopmu. Ilpemnaraercs,
YTO TUIATHI TpEXMEPHbIE C IEOMETPUYECKIMHA CBA3SMUE 000CHOBaHMbIMKU (usuyecky. Pabora miymocrpu-
pOBaHA WYHMCIIEHHBIM TIPHMEDOM.

Streszczenie

ZASADA MINIMUM DLA STANU NAPREZENIA W PLYTACH SPREZYSTO-PLASTYCZNYCH
ORAZ DYSKUSJA STOSOWNEGO MODELU PLYT

Stan naprezenia w plycie pod dzialaniem dowolnych historii obciazZenia wyznaczono przez zastosowanie
twierdzen ekstremalnych do zagadnie w ramach teorii geometrycznej liniowej. Przyjgto, Ze plyty sa tréj-
wymiarowe z nalozonymi fizycznie uzasadnionymi wigzami geometrycznymi. Pracg¢ uzupelnia przyklad
liczbowy.

Praca zostala zloiona w Redakcji dnia 15 patdziernika 1981 roku
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