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This paper presents a study of non-linear normal contact vibrations excited by an external
harmonic force in a system containing two bodies being in planar contact. The system
models, for instance, the slide unit of machine tools or positioning systems. The presented
results, which are obtained both with numerical and perturbation methods, show clearly
the evolution of resonance phenomena under various excitation amplitudes. Apart from
the primary resonance, a number of super-harmonic resonances has been excited in the non-
linear single-degree-of-freedom system. Hence, a resonance graph contains a number of peaks
being below the natural frequency. The contact vibrations are associated with strongly non-
linear phenomena like: asymmetry of vibrations, loss of contact, bending resonance peak,
multi-stability, period-doubling bifurcations, chaotic vibrations, which are far from linear
dynamics. These phenomena are presented and described in this article.
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1. Introduction

Dynamical contact problems play an important role in structural mechanics and machine tools
vibrations to name but a few. Hence, certain models of contact are applied, for instance: finite
element method (FEM), discrete element method (DEM) and multibody systems (MBS). The
characteristic of the planar contact of rough surfaces is progressiveness, thus the contact is the
most flexible under low contact pressure. Therefore, the contact deflection affect the behaviour
of machines, which refers in particular to precision machines (Chlebus and Dybala, 1999; Fan
et al., 2012; Gutowski, 2003; Kaminskaya et al., 1960; Levina and Reshetov, 1971; Marchelek,
1974; Shi and Polycarpou, 2005; Thomas, 1999). The contact deflections can be even larger than
the distortion of machine parts (Chlebus and Dybala, 1999; Gutowski, 2003; Kaminskaya et
al., 1960; Levina and Reshetov, 1971; Marchelek, 1974). That leads to conclusions that certain
parts of the machines can be modelled as rigid bodies, and contact characteristics significantly
affect dynamical properties of the machines, for instance vibrations of machine tools (Gutowski,
2003; Marchelek, 1974). Chatter is a type of vibrations observed during machining, which makes
machining unstable, less efficient and the machined surface rough (Dhupia et al., 2007; Fan et
al., 2012; Gutowski, 2003; Huo et al., 2010; Marchelek, 1974; Moradi et al., 2010; Neugebauer
et al., 2007). Therefore, chatter can be reduced when excitation frequencies of the cutting force
are far from the natural frequencies, while the natural frequencies of a machine tool depend on
its contact interfaces.

Most of the articles deal with the primary contact resonance (Chajkin et al., 1939; Grigo-
rova and Tolstoi, 1966; Hess and Soom, 1991a,b; Kligerman, 2003; Rigaud and Perret-Liaudet,
2003; Tolstoi, 1967), while still a few describe the superharmonic contact resonances (Grudziń-
ski and Kostek, 2007; Kostek, 2004; Kostek, 2013a,b; Moradi et al., 2010; Perret-Liaudet, 1998;
Perret-Liaudet and Rigad, 2007); hence this paper presents a study of superharmonic contact
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resonances. The superharmonic resonances appear below the natural frequency, which is an inte-
resting phenomenon. And similarly to the primary resonance, they affect the dynamic properties
of machine tools and chatter (Moradi et al., 2010). These are the reasons why the evolutions of
the superharmonic contact resonances due to various excitation amplitudes are investigated in
this article. The vibrations are studied both with numerical and perturbation methods for vario-
us excitations, which provides valid information. Summarising, the contact vibrations have been
found important in the context of the dynamics of precise machine tools, where low amplitudes
of vibrations are required.

2. Theoretical fundamentals

The studied system has been formulated in the first part of this publication, thus certain infor-
mation is repeated briefly (Kostek, 2013a). The system consisting of two bodies being in planar
contact models a slide unit of a machine tool (Fig. 1a). The first body is a slider resting on the
second body, whereas the second body is a massive fixed-base (slideway). The elastic nature of
the bodies is neglected, thus they are assumed to be rigid bodies. The slider has one degree of
freedom in the vertical direction, hence, normal displacement of the slider can be studied. The
planar contact of rough surfaces (Fig. 1a) is modelled with a great number of microsprings and
microdampers (Fig. 1b) which represent interacting roughness of asperities. After which, the
homogenized contact (Fig. 1c) is modelled with one non-linear spring and damper (Figs. 1d,e).
This leads to a non-linear single-degree-of-freedom system.

Fig. 1. Scheme of the considered dynamical system (a), and its physical models (b-d), characteristic of
the spring force Fs(e), characteristic of the conservative force Fk(f)

The displacement of the slider y is determined by the coordinate Y with respect to the
rigid base (slideway). The co-ordinate system is pointing downwards (Fig. 1e) and its origin is
fixed on the level where the contact deflection δ begins. Hence, the contact deflection equals the
displacement when this displacement is positive, and the contact deflection equals zero when the
displacement is below zero. That convention gives an opportunity to model the loss of contact
– “gapping” – in the system. An important parameter is the static contact deflection due to
weight of the slider, which determines the equilibrium position δ0 = y0.
Three forces act on the slider, they are: the terrestrial gravity force, exciting (external,

driving) harmonic force and the contact force. The terrestrial gravity force Q is defined as
follows
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Q =Mg (2.1)

where Q denotes the terrestrial gravity force, M – mass of the slider M = 0.2106 kg, and
g – acceleration of gravity g = 9.81m/s2, whilst the exciting harmonic force P is given by

P = Pa cos(2πfet) (2.2)

where P denotes the exciting harmonic force, Pa – amplitude of the exciting force, fe – frequency
of the excitation, and t – time. Then, the contact force (reaction) R can be treated as a sum
of the spring force Fs and the damping force Fd (Fig. 1d), which are calculated from (Kostek,
2004; Martins et al., 1990; Hunt and Crossley, 1975)

IF y > 0 THEN Fs = −Scny
m2 , δ = y ELSE Fs = 0, δ = 0

IF y > 0 THEN Fd = −Shny
lẏ ELSE Fd = 0

(2.3)

where S denotes the nominal (apparent) contact area, δ is the normal contact deflection, while
cn, m2, hn, and l are parameters of the contact interface. The numerical values of the contact
parameters have been identified from experimental results, and thus they are reliable; S =
0.0009m2, cn = 4.52E16 N/m

4, m2 = 2, hn = 3.5 · 10
11 Ns/m4, l = 1 (Grudziński and Kostek,

2007; Kostek, 2002; Kostek, 2004). Lastly, the sum of the spring force Fs and the terrestrial
gravity force Q can be treated as the conservative force

Fk = Fs +Q (2.4)

The graph of the conservative force Fk is non-linear and asymmetrical (Fig. 1f), accordingly
the studied contact vibrations are non-linear and asymmetrical as well. Finally, the investigated
contact vibrations are described by the following non-linear differential equation

ÿ =
1

M
[Fk(y) + Fd(y, ẏ) + P (t)] (2.5)

The formulated differential equation of motion is non-linear because of the non-linearity of the
spring and the damping contact forces, which predestines numerical and perturbation methods
to solve this equation (Hess and Soom, 1991a,b; Kostek, 2013a,b,c; Nayak, 1972; Nayfeh, 1983;
Nayfeh and Mook, 1995; Perret-Liaudet, 1998; Perret-Liaudet and Rigad, 2007).

The normal contact vibrations are linear when their amplitude is very small; then the na-
tural frequency of the system equals fn0 = 1485Hz (Kostek, 2004). But when their amplitude
becomes larger, then the vibrations become non-linear and certain characteristic phenomena
appear (Grudziński and Kostek, 2007; Kostek, 2004; Kostek, 2013a). The vibrations become
asymmetrical and multiharmonic; moreover, their resonance peak bends. At the same time, the
amplitude of the m-th harmonic can be amplified significantly if its frequency is near the natural
frequency, which in turn introduces superharmonic resonances. The resonance frequencies are
given by

fe ≈
1

m
fn0 (2.6)

where fe denotes the excitation frequency of the 1/m superharmonic resonance, fn0 – natural
frequency, while m is a positive integer. Thus, the resonance peaks are observed below the natural
frequency. More information about non-linear resonances is presented in literature (Awrejcewicz,
1996; Belhaq and Fahsi, 2009; Bogusz et al., 1974; Cunningham, 1958; Fyrillas and Szeri, 1998;
Grudziński and Kostek, 2007; Kostek, 2004; Kostek, 2013a; Nayfeh and Mook, 1995; Parlitz and
Lauterborn, 1985; Tang, 2000; Thompson and Stewart, 2002).
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3. Analysis of contact resonances

First, an increase of the excitation amplitude from Pa = 0.50Q to Pa = 0.60Q makes the
amplitudes of the main resonance and the 1/2 superharmonic resonance growing; thus in turn
the bistability and multistability areas become larger (Figs. 2a,b, 3a,b). The phenomenon of
multistability has been presented previously (Kostek, 2013a). At the same time, the amplitudes
of the 1/3 and 1/4 superharmonic resonances become larger, thus, in turn, the resonances are
visible in Figs. 2a,b, 3a,b.

Fig. 2. Graphs of the contact resonances; peak-to-peak amplitude App = ymax − ymin against the
frequency of excitation fe; plus signs (+) represent resonant frequencies fe ≈ fn0/m, Eq. (2.6)
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Fig. 3. Graphs of the contact resonances; local extrema of time histories against the frequency of
excitation fe; (gray line – minima, black line – maxima, obtained with the numerical method)

Then, the further increase of the excitation amplitude up to Pa = 0.65Q leads to bending
of the 1/3 superharmonic resonance peak; therefore, four resonances can be excited at a certain
excitation frequency, see Figs. 2c, 3c. They are:

1. main resonance,

2. 1/2 superharmonic resonance,

3. 1/3 superharmonic resonance and

4. 1/4 or 1/5 superharmonic resonance.
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The vibrations excited at frequencies fe = 360Hz and fe = 287Hz are presented in the next
Section (Figs. 4, 5). It should be mentioned that 1/4 and 1/5 superharmonic resonances cannot
be excited at the same frequency, because the 1/4 superharmonic resonance peak does not bend
for Pa = 0.65Q (Figs. 2c, 3c).

Fig. 4. Time histories of the displacement (a, c, e, g), and phase portraits of vibrations (b, d, f, h), of the
primary resonance (a, b), 1/2 superharmonic resonance (c, d), 1/3 superharmonic resonance (e, f), and
1/4 superharmonic resonance (g, h), excited by a harmonic force of Pa = 0.65Q, fe = 360Hz. A number
of local minima is observed over one cycle of the excitation: one (a), two (c), three (e), and four (g)
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Fig. 5. Time history of the displacement (a), and phase portrait (b), of the 1/5 superharmonic
resonance vibrations excited by a harmonic force of Pa = 0.65Q, fe = 287Hz

Next, for the excitation amplitude being Pa = 0.70Q, opposing period-doubling bifurcations
at the 1/2 superharmonic resonance appear. Thus, incomplete period-doubling cascade (Thomp-
son and Stewart, 2002) can be observed. One of these bifurcations is visible in Fig. 3d. Between
these two opposing period-doubling bifurcations, eight curves forming closed loops represent
the resonance in Fig. 3d. The number of the curves is associated with the number of extrema
observed during one period of vibrations. The extrema are presented in the time history of di-
splacement in Fig. 6a. More information about the evolution of the 1/2 superharmonic resonance
will be presented in a new article.

Fig. 6. Time history of the displacement (a), and phase portrait (b), of the 1/2 superharmonic
resonance vibrations after first period-doubling bifurcation excited by a harmonic force of Pa = 0.70Q,

fe = 470Hz. Four local minima are observed over two cycles of the excitation

After that, for an excitation amplitude being Pa = 0.75Q, the branch of the 1/2 superhar-
monic resonance is divided into two parts (Figs. 2e, 3e) by two opposing cascades of bifurcations
leading to chaos. Therefore, the solution being near 100Hz is isolated from other attractors and
a gap between these two parts of the 1/2 superharmonic resonance appears. Hence, the isolated
part cannot be found with a sweeping signal; accordingly, a special procedure must be applied
to find one. Moreover, an incomplete period-doubling cascade is observed at the 1/3 superhar-
monic resonance; thus a number of curves represent the resonance in Fig. 3e. At the same time,
amplitudes of the 1/4 and 1/5 superharmonic resonances become larger, thus the resonances are
visible in Figs. 2e, 3e.

Some interesting phenomena are observed, when the excitation amplitude equals Pa = 0.80Q.
Likewise, as previously, the branch of the 1/2 superharmonic resonance is divided into two parts,
but the gap is larger (Fig. 2f). Thus, in consequence, the part of the 1/2 superharmonic resonance
being near half of the natural frequency (fe = 800Hz) is isolated from the 1/3 superharmonic
resonance. Similarly, the part of the 1/2 superharmonic resonance being near fe = 50Hz is
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isolated from other attractors. Likewise, the 1/3 superharmonic resonance is divided into two
parts, by two opposing cascades of bifurcations leading to chaos (Figs. 2f, 3f). The chaotic
vibrations of the 1/3 superharmonic resonance have been previously studied (Grudziński and
Kostek, 2007; Kostek, 2004). Furthermore, the peak of the 1/4 superharmonic resonance bends,
which is a result of an increase of the excitation amplitude and the amplitude of the resonance.
Next, an increase of the excitation amplitude up to Pa = 0.85Q makes the gap of the 1/2

superharmonic resonance larger; hence the two parts of the resonance get smaller (Figs. 2g, 3g). A
similar phenomenon is observed for the 1/3 superharmonic resonance too. Meanwhile, the afore-
mentioned 1/4 superharmonic resonance is divided into two parts by two opposing cascades of
bifurcations. Moreover, the peak of the 1/5 superharmonic resonance bends due to the increase
of the excitation amplitude. Therefore, three resonances can be excited at frequency fe = 234Hz
(Figs. 2g, 3g, 7). They are:
1. main resonance,

2. 1/5 superharmonic resonance and

3. 1/6 superharmonic resonance.

That is the phenomenon of multistability.

Fig. 7. Time histories of the displacement (a, c), and phase portraits of vibrations (b, d), of the
1/5 superharmonic resonance (a, b), and 1/6 superharmonic resonance (c, d), excited by a harmonic
force of Pa = 0.85Q, fe = 234Hz. A number of local minima is observed over one cycle of the

excitation: five (a), and six (c)

Last, due to an increase of the excitation amplitude up to Pa = 0.90Q the gaps of the
1/2, 1/3 and 1/4 superharmonic resonances become larger. Therefore, small isolated parts of
the 1/2 and 1/3 superharmonic resonances being near fe = 800Hz and fe = 500Hz are visi-
ble in Figs. 2h, 3h, while the 1/5 superharmonic resonance peak is divided into two parts by
two opposing cascades of period-doubling bifurcations. At the same time, the amplitude of the
1/6 superharmonic resonance is growing (Figs. 7c, 8a), thus in turn its resonance peak bends
(Figs. 2h, 3h). Also vibrations being below the resonant frequencies during an increase of the
excitation force amplitude become gradually more non-linear and more asymmetrical, see Fig. 9.
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Fig. 8. Time history of the displacement (a), and phase portrait of vibrations (b), of the 1/6
superharmonic resonance excited by a harmonic force of Pa = 0.90Q, fe = 170Hz. Six local minima are

observed over one cycle of the excitation

Fig. 9. Time history of the displacement (a), and phase portrait of vibrations (b), being below
resonances (quasistatic process) excited by a harmonic force of Pa = 0.90Q, fe = 50Hz

The presented results clearly show the evolution of the superharmonic resonances. First, their
amplitudes are growing with an increase of the excitation amplitude; next their peaks bend; and
then incomplete period-doubling cascades appear. After that, the period-doubling cascades lead
to chaotic motion. And finally, the period-doubling cascades divide a superharmonic resonance
into two separate parts. With a further increase of the excitation amplitude, the two parts
become smaller and the gap becomes lager. The phenomena are observed gradually with an
increase of the excitation amplitude, first for the 1/2 superharmonic resonance, and then for
the 1/3, 1/4, 1/5, and finally, the 1/6 superharmonic resonances. The higher harmonics need a
larger excitation amplitude to become significant. Moreover, the evolution of the superharmonic
resonances becomes faster with an increase of the excitation amplitude. That in short presents
the evolution of the superharmonic resonances. The main resonance has been simulated at
frequencies of excitation being from fe = 30Hz to fe = 2000Hz. The visualization of the contact
resonances is available on the internet https://www.youtube.com/watch?v=cNRU-TUXCao.

4. Analysis of contact vibrations

In this Section, contact vibrations excited for various magnitudes of the excitation frequency
and the excitation amplitude are studied. The obtained time histories of displacement and phase
portraits of contact vibrations are presented in Figs. 4-9. Although the vibrations are various,
they have some common features, which are described below. The vibrations are asymmetrical
with respect to the equilibrium position y0, because different values of the conservative force are
obtained for the same displacement magnitude, depending on whether the displacement is up or
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down from the equilibrium position (Fig. 1f). Therefore, phase portraits have an asymmetrical
shape. The asymmetry of the contact vibrations is visible in Fig. 3 too. The contact vibrations are
not harmonical, they have a multi-harmonic nature because both the conservative and damping
force are non-linear. Accordingly, the phase portraits have a non-elliptical shape.

First, the main resonance and the 1/2, 1/3, and 1/4 superharmonic resonances, excited by
the external force of the frequency fe = 360Hz and amplitude Pa = 0.65Q are studied (Figs. 2c,
3c, 4). This external force can excite four resonances, which is the so-called multi-stability.

The contact micro-vibrations of the main resonance are the most asymmetrical because
their amplitude is the largest, see Fig. 4a. Hence, their phase portrait has a non-elliptical shape
(Fig. 4b). Moreover, the slider periodically loses contact with the slideway, and the minima
reach negative values (Figs. 4a,b). One minimum is observed during one period of vibrations,
and the orbit point circumnavigates the origin once during one period. Consequently, two curves
represent the main resonance in Fig. 3c. At the same time, for the 1/2 superharmonic resonance,
two minima and two maxima are visible during one period in Fig. 4c. Hence, the orbit point
circumnavigates the origin twice (Fig. 4d). Accordingly, four curves represent the resonance in
Fig. 3c. The amplitude of these vibrations is large, thus the loss of contact is visible in Figs. 4c,d.

The amplitude of the 1/3 superharmonic resonance is smaller compared with the afore-
mentioned resonances, but still the vibrations are very asymmetrical and the loss of contact
is visible (Fig. 4e). Three minima and three maxima are observed over one period in Fig. 4e,
and thrice the orbit point circumnavigates the origin (Fig. 4f). Hence, six curves represent the
resonance in Fig. 3c. It should be mentioned that the phase portrait has a complex shape.

Although the amplitude of the 1/4 superharmonic resonance is small (Fig. 3c), its vibrations
are sophisticated. Four minima and four maxima are observed over one period of vibrations
(Fig. 4g); hence eight curves represent this resonance in Fig. 3c. Moreover, some loops are visible
in the phase portrait, thus one has a complex shape (Fig. 4h). The vibrations are studied both
with perturbation and numerical methods. The obtained results show good agreement (Fig. 4g),
which leads to the conclusion that the previously presented perturbation solution well describes
this resonance (Kostek, 2013a,b).

The 1/5 superharmonic resonance excited by the external force of the frequency fe = 287Hz
and amplitude Pa = 0.65Q is studied both with the perturbation and numerical methods. The
obtained results show good agreement (Fig. 5a), hence the perturbation solution well reflects
the nature of this resonance. In spite of the fact that the amplitude of the 1/5 superharmonic
resonance is small, its vibrations are sophisticated. The vibrations are asymmetrical and multi-
harmonic. Moreover, the phase portrait has a complex shape (Fig. 5b). This resonance is at an
early stage, thus only two minima and two maxima are observed over one period of vibrations.
Hence four curves represent this resonance in Fig. 3c.

The vibrations of the 1/2 superharmonic resonance excited by the external force of the
frequency fe = 470Hz and amplitude Pa = 0.70Q are presented in Fig. 6. In this case, the
period of these vibrations is doubled due to the period-doubling bifurcation (Fig. 3d). Thus four
minima and four maxima are visible over two periods of excitation (Fig. 6a), hence eight curves
represent the resonance in Fig. 3d. Accordingly, the orbit point circumnavigates the origin four
times (Fig. 6b). The amplitude of these vibrations is large, thus the loss of contact is visible
in Figs. 3d and 6. These vibrations (Fig. 6) can be compared with the vibrations presented
before, in Figs. 4c,d. Summarising this, the period-doubling bifurcation makes the vibrations
more sophisticated, more extrema appear over one period of vibrations, the period of vibrations
is doubled, the phase portrait has a more complex shape, and a subharmonic frequency appears
(fe/2).

Three resonances can be excited by the external force of the frequency fe = 234Hz and
amplitude Pa = 0.85Q (Fig. 2g). But only two are presented in Fig. 7, and they are the 1/5
and 1/6 superharmonic resonances. First, for the 1/5 superharmonic resonance, five minima and
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five maxima are visible over one period of excitation (Fig. 7a), thus ten curves represent the
resonance in Fig. 3g. Accordingly, the orbit point circumnavigates the equilibrium position five
times (Fig. 7b). The amplitude of these vibrations is large, thus the loss of contact is visible
in Figs. 3g and 7a,b. In this case, the perturbation solution does not hold because of the loss
of contact. The vibrations of the 1/5 superharmonic resonance being at the early stage are
presented in Fig. 5, which clearly shows the evolution of the 1/5 superharmonic resonance due
to an increase of the excitation amplitude. Finally, the 1/6 superharmonic resonance is presented
in Figs. 3g, 7cd. These vibrations are asymmetrical and multi-harmonic. Moreover, a number
of loops are visible in Fig. 7d, thus the phase portrait has a complex shape. In this case, the
resonance is at an early stage, but six minima and six maxima are observed over one period of
vibrations in Fig. 7c. Hence, twelve curves represent this resonance in Fig. 3g.

An increase of the excitation amplitude up to Pa = 0.90Q makes the amplitude of the
1/6 superharmonic resonance grow, thus, with the frequency of excitation fe = 170Hz a loss of
contact is visible in Figs. 3h and 8. Moreover, on a phase portrait, the orbit point circumnavigates
the equilibrium position six times, over one period of vibrations (Fig. 8b).

The vibrations that are below the resonant frequencies are visible in Fig. 9. This shows
quasistatic vibrations, which are non-linear, asymmetrical and multi-harmonic. The time history
of displacement and the phase portrait have characteristic shapes which are different from others
presented in this article. These vibrations are studied both with the perturbation and numerical
methods. The obtained results show excellent agreement (Fig. 9a), which leads to the conclusion
that the perturbation solution describes these vibrations well. The vibrations take place when
the contact interface is loaded by a low frequency external force, which is very common in
industrial practice. Hence, the vibrations have been studied previously by researchers (Kostek,
2004; Skrodzewicz, 2003; Skrodzewicz and Gutowski, 2000). It should be mentioned that the
presented perturbation solution has a similar structure to the model presented by Skrodzewicz
(2003), in spite of the fact that the author shows a different approach to the phenomenon.

Summarising this, the contact vibrations (Figs. 4-9) are strongly non-linear; therefore, some
characteristic phenomena are observed. The vibrations are sensitive to the magnitude of the
excitation frequency and the excitation amplitude; hence a small change of the parameters can
significantly change the obtained results. Moreover, the vibrations are sensitive to initial condi-
tions too, which is a result of the multistability; because a number of solutions can be obtained
for identical excitations. Finally, a number of minima are observed over one period of vibrations.
The number depends on the parameters of excitation and the kind of excited vibrations. The
number corresponds with the integer m, which indicates a superharmonic resonance (Eq. 7).
This phenomenon reflects the multi-harmonic nature of contact vibrations. In conclusion, the
vibrations are far from the dynamics of a linear single-degree-of-freedom system.

5. Conclusions

This article presents the evolution of non-linear normal contact vibrations and contact resonan-
ces, which are important in the context of precision machining and machine tools vibrations.
These vibrations have been studied both with numerical and perturbation methods. The obta-
ined results show good agreement, which leads to the conclusion that the perturbation solution
describes the contact vibrations well. The vibrations have been studied for a wide range of
excitations, which provides valid information.

The contact vibrations are non-linear, which leads to asymmetry of vibrations, “gapping”,
superharmonic resonances, multi-stability, complex motion and chaotic motion (Grudziński and
Kostek, 2007; Kostek, 2004). The kinematics of contact vibrations is complex, which is a result
of the multiharmonic nature of these vibrations and magnification of higher harmonics. The
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magnification of the higher harmonics is associated with the superharmonic resonances. Ac-
cordingly, a number of minima are observed over one period of vibrations. This number, which
depends on the excitation parameters, kinds of vibrations, and the kind of the excited resonance,
corresponds to m, see Eq. (2.6). In consequence, these phenomena make the shape of the phase
portraits complex.

Moreover, the evolution of the superharmonic resonances has been studied. At the begin-
ning, the amplitude of a superharmonic resonance is growing with an increase of the excitation
amplitude. Then, its peak bends, which introduces multistability. Next, an incomplete period-
doubling cascade appears. After that, it changes into two opposing period-doubling cascades
leading to chaos. At last, a branch of the superharmonic resonance is divided into two sepa-
rate parts. Finally, the separate parts of the resonance become smaller with an increase of the
excitation amplitude. At the same time, the gap between these two separate parts becomes
larger. The following stages of the evolution are observed first, for the 1/2 superharmonic re-
sonance, and then for the 1/3, 1/4, 1/5 and 1/6 superharmonic resonances. The amplitudes of
these resonances become smaller, and their vibrations become more complex, with an increase
of the integer m, while the evolution of these resonances becomes faster with an increase of the
excitation amplitude.

This summarises the evolution of the contact resonances and shows the complex nature of the
normal contact vibrations, which are far from linear dynamics. Thus, to analyse machine tools
vibrations, non-linear models of contact and non-linear dynamics should be applied. Hence, the
contact vibrations and resonances should be studied under a wide range of excitation signals,
while simplified linear models of contact rough surfaces do not allow the proper modelling of
complex dynamical phenomena.
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