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Universidade Tecnológica Federal do Paraná – UTFPR, Ponta Grossa-PR, Brazil; e-mail: a.m.tusset@gmail.com
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Nonlinear motion of the microcantilever probe in the Atomic Force Microscope (AFM) has
been extensively studied considering mainly the van der Waals forces. Since the behavior of
the microcantilever is vital to quality of generated images, the study of control strategies
that force the probe to avoid undesired behavior such as chaotic motion, is also of significant
importance. A number of published works has shown that the microcantilever is subject to
chaotic motion for a certain combination of parameters. For such a parameter combination,
the control system must suppress the chaotic motion. Here, an study of the AFM mathe-
matical model is presented, aiming to find a region of operation of the AFM where the
motion is chaotic. In order to suppress the chaotic motion, a periodic orbit of the system is
obtained, and the controller forces the system to that periodic orbit. Two control strategies
are used, namely: The State Dependent Riccati Equation (SDRE) and the Optimal Linear
Feedback Control (OLFC). Both control strategies consider the complete nonlinearities of
the system, and the OLFC guarantees the global stability. The numerical simulations carried
out showed the efficiency of the control methods as well as the sensitivity of each control
strategy to parametric errors. Without the parametric errors, both control strategies were
effective in maintaining the system into the desired orbit. On the other hand, in the presence
of parametric errors, the SDRE technique was more robust than the OLFC.
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1. Introduction

The invention of the Scanning Tunneling Microscope (STM) and of the Atomic Force Microscope
(AFM) by Gerd Binnig, in the 1980s, started surface investigation in the atomic scale. Since then,
many improvements and developements had been made achieving important results by simple
contact measurements. Nevertheless, the contact AFM cannot generate true atomic resolution in
stable operation (Mestron et al., 2007; Morita et al., 2009; Bhushan, 2004). The AFM system has
become a popular and useful instrument to measure intermolecular forces that can be applied
in electronics, biological analysis, materials, semiconductors, etc.

A typical AFM consists of a microcantilever with a sharp tip mounted to a piezoelectric
actuator, as shown in Fig. 1. The microcantilever displacement is determined by a position
sensitive photodetector, from a laser beam reflected off the microcantilever end-point, providing
feedback signal to the control system (Morita et al., 2009; Bhushan, 2004; Jalili et al., 2004).

In the mid 1990s, noncontact AFM techniques achived true atomic resolution under attractive
regime at room temperature. The noncontact AFM operates in the static mode or dynamic mode,
i.e., static AFM or dynamic AFM, respectively. In the static AFM, the force Fts interacting
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between the tip and sample translates into deflection of the cantilever, and the image is a map
(x, y, Fts) with Fts = const .

Different techniques provide several opportunities to take pictures from different types of
samples, generating a wide range of information. The different methods of generating images –
also called scanning modes or modes of operation – mainly refer to the distance between the
probe tip and the sample at the time of scanning, and to the ways the tip moves over the sample
surface. The tip displacement due to the tip and sample interaction forces are translated into
images, and since the tip and sample forces strongly depend on the tip and sample distance,
different modes of operation generate different images (Frétigny, 2007; Moritaet al., 2009; Bueno
et al., 2012).

The two dinamic AFM basic methods are Amplitude Modulation (AM-AFM) and Frequen-
cy Modulation (FM-AFM), in both AM-AFM and FM-AFM the microcantilever is deliberately
vibrated at a predetermined amplitude and frequency, near the microcantilever eigenfrequency.
The tip-sample interaction forces cause changes in the amplitude, phase and frequency of the
microcantilever oscillation, i.e., the tip-sample interaction forces are modulated in the micro-
cantilever motion (Morita et al., 2009; Bueno et al., 2012; Polesel-Maris and Gauthier, 2005;
Couturier et al., 2001; Bueno et al., 2010; Zhong et al., 1993). Initially, the AM-AFM was used
only in noncontact mode, but later it was also used at a closer distance involving repulsive
tip-sample interactions in the intermittent contact mode AFM, or Tapping Mode (TM-AFM).

In the tapping mode, the microcantilever amplitude of oscillation is modulated as the mi-
crocantilever tip scans the sample. This modulation causes the microcantilever tip to only tap
on the sample surface near the extreme of the oscillation cycle, minimizing the frictional forces
that are present in the contact mode and reducing the damage on soft samples, providing high
resolution topographic images even for sample surfaces that are easily damaged or dificult to
image by other AFM techniques (Morita et al., 2009; Zhong et al., 1993; Hansma et al., 1994).

Under certain physical conditions the AFM system is subject to undesirable behaviors such
as bifurcations and chaotic motion, due to the nonlinear effects of the tip-sample interaction
forces. This type of irregular motion impairs the AFM performance since it degrades the atomic
forces measurements, generating poor resolution and inaccurate images. In the TM-AFM the
chaotic motion often occur during the transition from noncontact to tapping mode indicating
the presence of complex dinamics (Morita et al., 2009; Bhushan, 2004; Ashhab et al., 1999a; Hu
and Raman, 2006; Raman et al., 2008).

The nonlinear behavior of the microcantilever has also been used to improve sensitivity and
material contrast by modulating high frequency distortions on the microcantilever motion when
the microcantilever is harmonically driven very close to the sample surface. In principle, higher
harmonics contain detailed information about the tip-sample potential (Morita et al., 2009;
Raman, 2008)

In the literature, a number of control methods have been proposed aiming to suppress or
mitigate undesirable irregular motion and its effects. In (Yabuno, 2008), the microcantilever
amplitude of vibration is controlled by applying an additional nonlinear damping via nonlinear
feedback. In (Hornstein and Gottlieb, 2008), the model differs from standard lumped mass
models by the inclusion of nonlinear elastic terms yielding a consistent set of system parameters
that incorporates the influence of the modified microcantilever dispersion and the controller,
which is introduced as a part of the generalized force, and affects both the equilibrium and the
time dependent solution of the microcantilever equation.

In (Yamasue and Hikihara, 2006), a chaotic microcantilever in AM-AFM is stabilized using
the Time-Delayed Feedback Control (TDFC) method, forcing the microcantilever to a periodic
orbit of the system. In (Salarieh and Alasty, 2009), a chaotic TM-AFM is controlled using
the TDFC method. The feedback gain is obtained and adapted according to a minimun entropy
algorithm. In (Ashhab et al., 1999a), the AFM is modeled considering the van der Waals potential
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force, and the cantilever is vibrated by a sinusoidal input. The forced dynamics is analysed using
the Melnikov method determining the regions of the parameter space in which chaotic motion is
possible. Then, using a PI controller, the Melnikov method is computed again, and the obtained
relation is used to suppress the chaotic motion.

In (Yamasue et al., 2009), an experimental stabilization of irregular and non-periodic mi-
crocantilever oscillation in the AM-AFM with the TDFC technique is demonstrated using a
magnetic excitation instead of typical piezoelectric excitation. In (Balthazar et al., 2013), the
TM-AFM operating in liquid is modeled, and chaotic motion is identified for a wide range of the
parameter values, and two control techniques used to suppress the chaotic motion are compared,
namely, the Optimal Linear Feedback Control (OLFC), proposed by Rafikov et al. (2008) and
the TDFC, showing that the OLFC presents a faster transient response than the TDFC.

In this work, the TM-AFM operating in vacuum is modeled based on the forced dynamical
system suggested by Ashhab et al. (1999b), and the chaotic motion is observed for a certain
parameter combination. In order to suppress the microcantilever chaotic motion, two control
techniques are proposed, the Optimal Linear Feedback Control (OLFC) and the State-Dependent
Riccati Equation (SDRE). Additionally, the robustness of both control techniques is tested
considering parameter uncertainties on the TM-AFM model and on the control signal.

In Section 2, the mathematical model of the TM-AFM is described. In Section 3, the control
of chaotic motion by the application of the OLFC and SDRE methods is presented. In Section 4,
the robustness of the control techniques is tested by including parameters uncertainties on the
control signal determination. The final remarks and the acknowledgments are in Sections 5 and 6,
respectively.

2. TM-AFM mathematical model

The physical model of the TM-AFM is shown in Fig. 1. The basis of the microcantilever is
excited by a dither-piezo generating a displacement ψ cos(wt). The microcantilever is controlled
by a piezo-actuator.

Fig. 1. Model of an AFM

The first mode of vibration of the TM-AFM microcantilever can be modeled as a vibrating
mass-spring-damper system (Morita et al., 2009; Bhushan, 2004; Zhang et al., 2009) vibrating
close to the surface of the sample, as shown in Fig. 2. The tip is considered as a sphere of
radius R. In the equilibrium position (when only the gravity acts on it), the distance between
the cantilever tip and the sample is given by Z0. The position of the cantilever measured from
the equilibrium position is given by x. The mass of the microcantilever is given by m, and the
spring and damping coefficients are given by k and c, respectively. Fu is the control system
force used to control the microcantilever displacement by means of the Piezo-actuator.
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Fig. 2. Model representative of AFM through a mass-spring-damper

According to Rutzel et al. (2003), the interaction between the tip of the cantilever and the
surface of the sample can be modeled as being the interaction between a sphere and a flat
surface, as

ULJ(x, z0) =
A1R

1260(z0 + x)7
−

A2R

6(z0 + x)
(2.1)

where ULJ(x, z0) is the Lennard-Jones (LJ) potential, A1 and A2 are the Hamaker constants to
the attractive and repulsive potentials, respectively. Then, the potential forces are represented
by a sum of the attractive and repulsive forces (van der Waals force) (Rutzel et al., 2003), given
by

FLJ = −
∂ULJ

∂(x+ z0)
=

A1R

180(z0 + x)8
−

A2R

6(z0 + x)2
(2.2)

In the TM-AFM, the tip only touches the surface of the sample in the maximum amplitude
of oscillation. The contact between the tip and the sample is complicated and delicate, this the
main reason to use this operation mode in fragile samples. Since the microcantilever must be
driven to periocally oscilate during the scanning process, the microcantilever is excited by a
harmonic force (Ashhab et al., 1999b; Yamasue and Hikihara, 2006; Salarieh and Alasty, 2009;
Morita et al., 2009; Giessibl, 1995)

F = ψ coswt (2.3)

The conservative spring force is given by

Fk = kx (2.4)

The dissipative force is given by:

Fc = cẋ (2.5)

From the equilibrium of forces acting on the microcantilever, it results that
mẍ = −Fk − Fc + FLJ + F + Fu and considering the foregoing relations (Eqs. (2.2)-(2.5)),
the governing equation of motion becomes

mẍ+ cẋ+ kx =
A1R

180(z0 + x)8
−

A2R

6(z0 + x)2
+ ψ coswt+ Fu (2.6)



TM-AFM nonlinear motion control with robustness analysis... 97

Taking into account the following relationship between the variables in (2.6)

T = wt y =
x

zs
ẏ =

ẋ

wzs
w2 =

√
k

m

a =
z0
zs

b =
c

mw
h =

A1R

180mw2z9s
d =

A2R

6mw2z3s

Zs =
2
3

3

√
A2R

3k
U =

Fu
mw2zs

the dimensionless equation of motion is given by

y′′ + by′ + y − F (y)− f cos(T ) = U (2.7)

where

F (x1) =
h

(a+ x1)8
−

d

(a+ x1)2
(2.8)

Defining the state variables as x1 = y and x2 = y′, the dimensionless equation of motion
can be transformed into state space equations, given by

x′1 = x2 x′2 = −bx2 − x1 + F (x1) + f cos(T ) + U (2.9)

According to Yamasue and Hikihara (2006), Salarieh and Alasty (2009), for some parameters,
the system in equation (2.9) presents chaotic behavior. Considering the parameters in Salarieh
and Alasty (2009), h = (9/25) · 10−5, f = 2, b = 0.04, d = 4/27, a = 0.8. For the initial
conditions x1(0) = 0.8 and x2(0) = 0, and for U = 0, the behavior of the system can be seen
in Fig. 3. From the simulation results, it can be seen that the system presents chaotic behavior.

3. Chaos control in TM-AFM

Chaotic oscillations undermines the quality of the AFM images reducing the resolution and
the operating range of the AFM. Stabilizing the system in a periodic orbit and suppressing
the chaotic motion is essential for the accurate tip and sample interaction forces measurement
(Morita et al., 2009; Bueno et al., 2012).

3.1. Obtaining periodic orbits

Considering the nonlinear characteristics of the van der Waals force – see Eqs. (2.2) and (2.8),
in order to simplify the mathematical reasoning when applying the perturbation techniques, it
is approximated by a Taylor series expansion resulting in linear quadratic and cubic terms,
simplifying the mathematical reasoning. Then, from Eqs. (2.8) and (2.9), F (y) is expanded in
a Taylor series at the point y = 0, resulting

F (y) ≈ −0.2315 + 0.5785y − 1.0839y2 + 1.8032y3 (3.1)

Replacing Eq. (3.1) in Eq. (2.7) and considering U = 0, results

y′′ + εy′ + c1y + c2y
2 − c3y3 + p− f cos(T ) = 0 (3.2)

where ε = 0.04, c1 = 0.4215, c2 = 1.0839, c3 = 1.08032 and p = 0.2315.
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Fig. 3. (a) Microcantilever displacement; (b) phase portrait; (c) Lyapunov exponents λ1 = 0.093741,
λ2 = −0.133749; (d) Poincaré map; (e) frequency spectrum

In order to obtain a periodic solution to Eq. (3.2), an expansion using the multiple scales
method is done, considering T0 = T and T1 = εT , and solutions of the following form are looked
for

y = εµ1 + ε
2µ2 (3.3)

where ε is the parameter responsible for the balance (Nayfeh, 1981), with

d

dτ
= D0 + εD1 + ε

2D2 + . . .

d2

dτ2
= D20 + 2εD0D1 + ε

2(D21 + 2D0D2) + . . .

(3.4)

then, the derivatives become

D20µ1 + c1µ1 = 0

D20µ2 + c1µ2 = −2D0D1µ1 −D0µ1 − c2µ
2
1

(3.5)

One possible solution to the system in Eq. (3.5) is

y = εa1 cos(
√
c1T + β1) + ε

2a2 cos(ε
√
c1T + β2) +

ε2c2a1
6c1

cos(2
√
c1T + 2β1) (3.6)
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For the initial conditions y0 and y′0, it results that β1 = β2 = 0, a1 = y0/ε and
a2 = −y0/(6εc1), and replacing them into Eq. (3.6) periodic orbits of the form

y = y0 cos(
√
c1T )−

εy0
6c1
cos(ε
√
c1T ) +

εc2y0
6c1
cos(2
√
c1T ) (3.7)

are obtained. In Fig. 4, the periodic orbit for Eq. (3.7), for y0 = 0.8 and y
′

0 = 0, is shown.

Fig. 4. (a) Microcantilever displacement; (b) phase portrait for solution (2.9)

3.2. Application of the OLFC

The OLFC method was developed by Rafikov et al. (2008). This method obtains an optimal
linear feedback for a class of nonlinear systems ensuring the stability of the problem. In this
section, the OLFC is applied attempting to drive the TM-AFM to the periodic orbit obtained
in the previous section.
The TM-AFM equation of motion with the control law is described by the following nonlinear

equation

x′1 = x2 x′2 = −bx2 − x1 + F (x1) + f cos(T ) + U (3.8)

where

U = ũo + uof (3.9)

and uof is the feedback control. The feedforward optimal control ũo is given by

ũo = ˙̃x2 + bx̃2 + x̃1 − F (x̃1)− f cos(T ) (3.10)

where x̃ is the desired periodic orbit (Eq. (3.7)). Replacing Eq. (3.10) into Eq. (3.8), and defining
the deviations from the desired orbit by

e =

[
e1
e2

]
=

[
x1 − x̃1
x2 − x̃2

]
(3.11)

results in

e′1 = e2 e′2 = −be2 − e1 + F (x1)− F (x̃1) + uof (3.12)

The system of Es. (3.12) is written in the following form

e′ = Ae+G(e, x̃) +Buof (3.13)

where

A =

[
0 1
−1 −b

]
G(e, x̃) =

[
0

F (e1, x̃1)− F (x̃1)

]
B =

[
0
1

]
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According to Rafikov et al. (2008), Tusset et al. (2012b), if there exist matrices Q and R positive
definite, being Q symmetric, such that the function

Q̃ = Q−GT(e, x̃)P−PG(e, x̃) (3.14)

is positive definite for the bounded matrix G, then the linear feedback control uof is optimal
and transfers the nonlinear systems from any initial state to the final state

e(∞) = 0 (3.15)

minimizing the functional

J =

∞∫

0

(eTQ̃e+ uTofRuof ) dt (3.16)

The control uof can be found by solving the equation

uof = −Ke (3.17)

where K = R−1BTP and the symmetric matrix P can be determined from the algebraic Riccati
equation given by

PA+ATP−PBR−1BTP+Q = 0 (3.18)

Defining the desired trajectory as the periodic orbit in equation (3.7), which was obtained
from the Multiple Scales method, and considering the matrices A and B, given by

A =

[
0 1
−1 −0.04

]
B =

[
0
1

]
(3.19)

Choosing

Q = 104
[
1 0
0 0.1

]
R = [0.01] (3.20)

and solving equation (3.18), results

P =

[
3193.7138 9.99
9.99 3.1933

]
K =

[
999 319

]
(3.21)

Replacing equation (3.21) into equation (3.17), the optimal feedback control law is given by

uof = −999e1 − 319e2 = −999(x1 − x̃1)− 319(x2 − x̃2) (3.22)

For the optimal control verification, the function in equation (3.14) is numerically calculated
by L(T ) = eTQ̃e. The sufficient criterion to guarantee that the control signal in equation (3.22)
is optimal is that L(T ) is positive definite (Rafikov et al., 2008).

Figure 5 shows the application of the OLFC to the TM-AFM problem. As observed in Fig. 4b,
the function L(T ) is positive definite for e→ 0. It can be concluded that the control signal of
equation (3.22) is optimal and moves the system of equation (3.8) to the desired orbit given by
equation (3.7) in less than two seconds, as observed in Fig. 4a.
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3.3. State-Dependent Riccati Equation (SDRE)

The SDRE strategy is an effective algorithm for synthesizing nonlinear feedback controls by
allowing the nonlinearities in the system states and, additionally, offering great design flexibility
through state-dependent weighting matrices (Tusset and Balthazar, 2012; Tusset et al., 2012a;
Mracek and Cloutier, 1998).

3.3.1. Application of SDRE control

The dynamic system defined by Eq. (2.9) can be parameterized in first order equations and
written in the state-dependent coefficient (SDC) and the non state-dependent coefficient in the
following way (Tusset et al., 2012c)

X′ = A(X)X+BUs +Φ(X, T ) (3.23)

where X = [x1, x2]
T is the time dependent state vector and X′ ∈ R2 is the derivative of the

state vector. Us = usf + ũs, where usf is the feedback control, ũs is the feedforward control and
Φ(X, T ) is the nonlinearities vector. The initial and final conditions are given by X(t0) = X0,
X(∞) = 0, respectively.

Fig. 5. (a) Deviations from the desired orbit; (b) L(T ) calculated in optimal trajectory;
(c) displacement of TM-AFM with and without OLFC control

Considering F (x1) as the expansion

F (x1) =
−dx1(6a5 + 15a4x1 + 20a3x21 + 15a2x31 + 6ax41 + x51)

(a+ x1)8
−
−h+ da6

(a+ x1)8
(3.24)

the coefficient dependent matrices are given by

A(x1) =




0 1

−1−
dx1(6a

5 + 15a4x1 + 20a
3x21 + 15a

2x31 + 6ax
4
1 + x

5
1)

(a+ x1)8
−b




Φ(x1, T ) =




0

−
−h+ da6

(a+ x1)8
+ f cos(wT )


 B =

[
0
1

] (3.25)
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A state feedback instead of an output feedback is adopted to enhance the control performan-
ce. The cost function for the regulator problem is given by

J =

∞∫

t0

[XTQ(X)X+ uTsfR(X)usf ] dT (3.26)

where Q is semi-positive-definite matrix and R positive definite.

Assuming full state feedback, the control law is given by

usf = −R−1(X)BT(X)P(X)X (3.27)

The estate-dependent Riccati equation to obtain P(X) is given by

AT(X)P(X) +P(X)A(X) −P(X)B(X)R−1(X)BT(X)P(X) +Q(X) = 0 (3.28)

Defining the feedforward control as

ũs = −Φ(x1, T ) =
−h+ da6

(a+ x1)8
− f cos T (3.29)

and replacing equation (3.29) into equation (3.23), the system of equation (3.23) can be repre-
sented as in equation (3.11) in the form of deviations

e′ = Ae+Busf (3.30)

In Fig. 6, the application of the SDRE control technique is shown considering the matrices
in Eq. (3.20). As it can be observed in Fig. 6, the SDRE technique drives the system to the
desired periodic orbit of equation (3.7) in less than 2 seconds (see Fig. 6a).

Fig. 6. (a) Deviations from the desired orbit (3.11); (b) isplacement of AFM with and without
SDRE control

4. The effect of parameter uncertainties

Since mathematical models are subject to parametric inaccuracies or bad estimatives, in this
Section, the robustness of the OLFC and SDRE strategies is tested considering the control signal
determination sensitivity to parameter uncertainties (Shirazi et al., 2011) and, in order to test
the ability of controllers, the perturbed control laws are applied to the nominal dynamic system.
In Section 4.1, the robustness of both control strategies is tested for parameter uncertainties in
the determination of the control signal. On the other hand, in Section 4.2, the control signal
determination considers the uncertainties in each parameter isolated.
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4.1. Control signal determination with parameter uncertainties and measurement noise

In order to consider the effect of parameter uncertainties on the performance of the controller,
the real parameters of the system are supposed to have uncertainties as follows: f = 1.6+0.8r(t),
b = 0.032 + 0.016r(t), a = 0.72 + 0.36r(t), d = (3.2 + 1.6r(t))/27 and h = 0.288 · 10−5 + 0.144 ·
10−5r(t), where r(t) are normally distributed random functions, as proposed in Shirazi et al.
(2011). The simulation results are shown in Fig. 7.

Fig. 7. Error parameters uncertainties; (a) OLFC subject to parameter uncertaintes, (b) OLFC with
parameter uncetainties for 3.5 ¬ T ¬ 3.75, (c) SDRE with parameter uncertainties for noise function:

0.02 sinT , (d) SDRE with parameter uncertainties for 5 ¬ T ¬ 40 (steady state)

It can be seen in Figs. 7a and 7b that the OLFC error increase over time when the control
signal determination is subject to parameters uncertainties. Additionally, Figs. 7c and 7d show
the robustness of the SDRE technique when the parameters have random uncertainties and
measurement noise.

4.2. Control with uncertainty

Considering that the control signal U is subject to parametric errors, the influence of each
indivual parameter in the robustness of the control system is analyzed considering a random
error of 20% of the nominal value. The sensitivity of the control to each parameter individually
can be seen in Fig. 8. Figures 8a and 8b show that the OLFC error is unstable to uncertainties
in the parameter a. In Figs. 8c and 8d, it can be seen that, except for the parameter a, the error
is never larger than 2.0 · 10−6. In that case, the SDRE strategy is more robust in the presence
of parameter uncertainties in the control signal determination.

5. Conclusion

In order to suppress the chaotic behavior keeping the system in a controlled periodic orbit
obtained fromMultiple Scales method, two control strategies were considered, namely: the OLFC
and SDRE strategies. Considering the results, it can be concluded that both controls are robust
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Fig. 8. Errors for individual parameter uncertainties in the control signal determination;
(a) OLFC individual parameter uncertainties, (b) OLFC individual parameter uncertainties for
3.5 ¬ T ¬ 3.8, (c) SDRE individual parameter uncertainties, (d) SDRE individual parameter

uncertainties for 2 ¬ T ¬ 10

to parametric errors except for the parameter a where the error increases over time for the
OLFC. Additionally, the SDRE strategy appears to have better robustness performance, even
for the parameter a. The OLFC is therefore not indicated in the case of errors in the parameter a
since the error becomes unstable, as shown in Figs. 7a,b, and 8a,b.
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