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This paper employs an analytical method to analyze the buckling of piezoelectric coupled
plates with different boundary conditions on the basis of the first order shear deformation
plate theory. The structure is composed of a host isotropic plate and two bonded piezoelectric
layers. Convergence study is performed in order to verify the numerical stability of the
presented method. Also, the present analysis is validated by comparing the results with
those in the literature, and then the critical buckling load of the piezoelectric coupled plates
is presented in tabular and graphical forms for different plate aspect ratios, thickness of the
piezoelectric, actuator voltage and boundary conditions.
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1. Introduction

Piezoelectric materials have strongly attracted the attention of many research groups due to
their unique electromechanical coupling characteristics which produce mechanical deformations
under application of electrical loads and electrical fields under application of mechanical loads.
The main advantages of these types of smart materials are high precision, low weight and
high sensibility. Smart structures (e.g., piezoelectric coupled plates) may be used as sensors
or/and actuators in various engineering applications including vibration control, acoustic noise
suppression, active damping and so on. They are commonly used as an embedded layer on host
structures. As a result, a thorough understanding of the interaction between the host structure
and piezoelectric layer is helpful in order to effectively utilize this combination in different
applications.

Shape or vibration control of laminated plates with integrated piezoelectric sensors and ac-
tuators has been identified as an important field of study in recent years. However, relatively
few works have been done on the compressive and/or thermal buckling of plates containing pie-
zoelectric layers. Oh et al. (2000) investigated postbuckling and vibration analysis considering
large thermopiezoelastic deflections for fully symmetric and partially eccentric piezolaminated
composite plates. The non-linear finite element equations based on the layerwise displacement
theory were formulated for piezolaminated plates subject to thermal and piezoelectric loads. The
Newton-Raphson iteration method was used to solve the non-linear equation. Shen (2001a,b)
analyzed compressive and thermal postbuckling of shear deformable laminated plates with fully
covered or embedded piezoelectric actuators subjected to combined mechanical, electrical and
thermal loads. A higher order shear deformation plate theory was adopted and the initial geo-
metric imperfection of plates was accounted. It was found that the control voltage had a small
effect on the postbuckling load-deflection relationship of shear deformable piezolaminated pla-
tes with immovable unloaded edges, and almost no effect on the postbuckling load-deflection
relationships of the same plate with movable edges.
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Coupled multi-field generalized non-linear mechanics together with an associated plate finite
element for analyzing the buckling and postbuckling response of active and sensory piezoelectric-
composite laminated plates including non-linear effects due to large rotations and stress stiffening
were presented by Varelis and Saravanos (2004). The discrete coupled equations of motion of the
smart structure were finally linearized and solved using an incremental-iterative method based
on the Newton-Raphson technique. Kapuria and Achary (2006, 2008) employed 3D elasticity
and zigzag theory for linear compressive and thermal buckling of laminated plates containing
piezoelectric layers. Akhras and Li (2008) extended the finite layer method to thermal buckling
analysis of rectangular simply supported symmetrical cross-ply piezoelectric composite plates.
Using this method, the three-dimensional analysis was transformed into one-dimensional analysis
by virtue of the orthogonal properties of trigonometric interpolation functions.

Buckling optimization of laminated plates with integrated piezoelectric actuators can be fo-
und in Correia et al. (2003). Assessment of third order smeared and zigzag theories for buckling
and vibration of symmetrically laminated hybrid angle-ply plates containing piezoelectric layers
can be found in Dumir et al. (2009). Shariyat (2009) studied dynamic buckling of laminated pla-
tes with piezoelectric sensors and actuators under thermo-electro-mechanical loads using a finite
element formulation based on a higher-order shear deformation theory. A nine-node second order
Lagrangian element, an efficient numerical algorithm for solving the resulted highly non-linear
governing equations, and an instability criterion already proposed by the author were employed.
Shen and Zhu (2011) investigated compressive postbuckling under thermal environments and
thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate
with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear
deformation plate theory that includes thermo-piezoelectric effects.

In the present research, buckling analysis of a three-layered rectangular plate with piezoelec-
tric layers is investigated. Based on the first order shear deformation plate theory, the equilibrium
and stability equations are obtained. Introducing a new analytical method, the coupled stability
equations are converted into independent partial differential equations. It is assumed that the
plate is simply supported on two opposite edges and has arbitrary boundary conditions along
the other edges. By using the Levy solution, these equations are converted into two ordinary
differential equations, one of which has variable coefficients. For solving the equations accura-
tely, the power series method of Frobenius (see Wylie and Barrett, 1951) is used. To examine
accuracy of the present formulation and procedure, several convergence and comparison studies
are investigated. Also, the effects of some parameters of the plate and piezoelectric layers on the
critical buckling load are studied.

2. Stability equations

Consider a three-layered rectangular plate, made of an isotropic substrate of thickness h and
piezoelectric films of thickness h, that are perfectly bonded on its top and bottom surfaces as
actuators, as shown in Fig. 1. The length and the width of the plate are a and b, respectively.
Rectangular Cartesian coordinates (z,y, z) are assumed for derivations in this study.

The displacement components of the plate based on the first-order shear deformation plate
theory are considered as (Reddy, 1984, 2004)

U(SC,y,Z) = uo(ac,y) + z¢x(:c,y) U(.T,y, Z) = Uo(SC,y) + Z@Z)y(xa?/)

w(x,y, z) = wo(x,y) (2.1)

where u, v and w represent the displacement of the plate in the x, y and z directions, respecti-
vely, ug and vg are the displacements of the mid-plane, wy is the transverse displacement, and
1, and 1, show rotation terms about y and x axes, respectively. The parameters ug, vo, wo,
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Fig. 1. Coordinate system and geometry of a rectangular plate integrated with piezoelectric layers

1, and 1, are all functions of x and y variables. In this theory, the transverse normal do not
remain perpendicular to the mid-surface after deformation. This amounts to including transver-
se shear strains in the theory. The inextensibility of the transverse normal requires that w not
be a function of the thickness coordinate z (Reddy, 2004).

Using the non-linear form of strain-displacement relations, the following strain components
are obtained (Reddy, 2004)

(0) (1)

Exx Uy + w?x/2 E?g) Exx
Eyy Uy + w?y/ 2 6?(13) 53(4%;)
"sz - /I,Z)y + w,y - ’sz +z 0 (22)
V2 Yy + W %(EOZ) 0
where
(0)
(0) 2 (1)
Eyg Do,y + w07y/2 Ezi'f Q;Z)z,x
’Y?(;z) = Yy + woy and Eg(,y) = Vyy (2.3)
’Ya(vg) Yz + wo,x %%) ¢x,y + ¢y,x
’Y:g:?) U0,y + V0,2 + W0,z W0,y

Subscript () denotes derivation with respect to the coordinates. The constitutive law for hybrid
rectangular plates, taking into account the piezoelectric effect, is given by Liew et al. (2003)

Ozx Qu Q2 0 0 0 Exx 0 0 e

Tyy Q21 Q22 0 0 0 Eyy 0 0 e3| |E:

Tyz¢ = | 0 0 Q44 0 0 Yyz¢ — | O 0 0 Ey (2.4)
Txz 0 0 0 Qs5 0 Yz 0 ey O E,

Txy 0 0 0 0 Q66 Vzy ers 0 0

where Q;; (i,j =1,...,6) is the elastic stiffness of the layers given by

E vFE
5 Q12:Q21=1_U2

Qu = Q2 = Qus = Q55 = Qos = 5 (2.5)

1—-wv (14wv)

The piezoelectric stiffness es;, egs, e15 and ey can be expressed in terms of the dielectric

constants dg1, ds2, dis and dgs. The elastic stiffness Qf; (i, = 1,...,6) of the piezoelectric
actuator layers as
e31 = (d51Q%; + d3209%;) e32 = (d31Q%y + d3209%,) (2.6)

€94 = d24QZ4 €15 = dlSQf’%
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As only the transverse electric field component E. is dominant in the plate type piezoelectric
material, it is assumed that

E, 0
E, =4 0 (2.7)
Ez Va/ha

where V, is the voltage applied to the actuators in the thickness direction.

The equilibrium equations under mechanical load may be derived on the basis of the statio-
nary potential energy. The equilibrium equations of a plate can be obtained using the principle
of minimum total potential energy (Reddy, 1984)

Nazz + Nay,y =0 Nayw + Nyyy =0
Mzz,x + Mxy,y - sz =0 sz,x + Myy,y - Qyz =0 (2'8)
NegW gz + 2NgyW zy + Nyyw gy + Quzz + Qyzy =0

Equations (2.8) are non-linear equilibrium equations based on the first-order shear deformation
plate theory. In Egs. (2.8), the terms N, Q and M are stress and moment resultants. Using the
constitutive relations, the stress and moment resultants are defined as

Ltha
2
Ny = / Ope dz = A1€§:(2 + A3€?(J?/) + Bitag + Bsthyy — 2Va(ds1QYy + ds2Q3)
_h_p
2 a
Lthg
N, = / Oyy dz = A3el0) + Aleéoy) + B3y o + B11yy — 2V, (d31QYs + d32Q35)
—%—ha
L+ha
Nyy = / Oy dz = A7) + Boly)
,%,ha
Ltha 5+ha
Qu- = k? / Oz dz = CH0 Qy. = Kk / oys dz = Oy (2.9)
~Lop, ~5~ha
Ltha
My, = / Oz dz = 316522 + B3€?(/%) + D19z o + D3athy y
Eoh,
Ltha
M,, = / oyyz dz = Bsel®) + B1ell) + Do s + Dty
_h_yp
2 a
Lthg
M,, = / Ouyz dz = B\ + D2’Yg(cz)
—b_p,

where the constants A;, B;, D;, T;, C' in Egs. (2.9) are
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Ltha bihg
(A1,B1,Dy) = / Qu1(1,2,2?) dz (A2, Bo, D) = / Qu(1,2,2%) dz
___ha ———ha
o s (2.10)
(A3, B3, D3) = / Q12(1, 2,2%) dz C =k / Qui(1,2,2°) dz
~%—ha —2ha

In Eq. (2.10)4, k? is the shear correction factor. Equations (2.8) are five coupled equilibrium
equations, which are non-linear in terms of the displacement components. In order to obtain the
stability equations, the adjacent equilibrium criterion is used (Brush and Almroth, 1975), and
the stability equations are obtained as

N:%a::v—'—Nzlyy 0 N:%yx+N;yy 0

N0 +2N0 +N0 yy+Qx” Qyzy 0

where N9

T

Ng?y and Ngy are the pre-buckling force resultants.

3. Decoupling the stability equations

In order to obtain the governing equations, the equivalent form of Eqs. (2.9) in terms of neigh-
boring state displacements is substituted into Eqgs. (2.11). Therefore, the stability equations in
terms of the displacement components are obtained as follows

As(ug yy T V0 :ry) + Ba(y gy T ¢y oy) T Azvg oy T A1u0 gzt BB¢y ey T By, ar =

Ao (U 4y + V0 00) + By + Uy 1) + A3 4y + A1, + Bay o + Bity,,, =

Biug 4y + B3v) sy + D1y + D3ty oy + Ba(ug yy + 00 4y) + D24 4y + 1y 1)
—C(Yr+wj,) =0 (3.1)

By (ug .y T V0, 0.0) + D21y ay T ¢y 2x) + Bsug oy T Bivg gy T D)y oy T Dlwy vy
—C’(¢1 +w0y) =0

NP0 2y + 2Ny wOacy +NO way + Oy, ‘Hﬂom) +C(%y +w0yy) 0

Based on Egs. (2.10), the coefficients As, Bs and Dj3 can be rewritten as
(A3, B3, D3) = (A1, B1,D1) — 2(Az, Ba, D3) (3.2)

Equations (3.1) are five coupled equations in terms of the neighboring displacement components.
To decouple governing stability equations (3.1), four new functions are introduced as

Y1 = u(ll,:v +vé,y Y2 = ué,y _vé,x Y3 = ¢:)1:,x+¢g}/,y P4 = ¢:)13,y _w;,x (33)
Using the functions introduced in relations (3.3), the stability Eqs. (3.1) can be expressed as
A1p1z + B3 e + Aspay + Bowsy =0 A1y + Brpsy — Aspe s — Baps . =0 (3.4)

and

Bip1,z + D1gs e + Bapay + Dapay — K> As (v, + wé,w)
Bio1,y + Dipsy — Baway — Doy 5 — k2A2(¢; + wtl),y)

! 3.5
. (5.5)
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and
k? As(ps + V2wh) + Noptwg 4y + 2N9, W 4y + Npy5 =0 (3.6)

where V2 is the two-dimensional Laplace operator. It should be pointed out that the coefficients
B and Bj are exactly equal to zero when the laminated plate is symmetric. By differentiation
of Egs. (3.5) with respect to the variables x and vy, respectively, and simplifying the resulting
equations, the function 3 is related to the transverse displacement w as follows

D1V?p3 — k? Ay(p3 + V2wj) = 0 (3.7)

From Eq. (3.6), ¢3 can be obtained as

1
=~ —— (N w§ 4 + 2N wo ot NO o yy) Viw} (3.8)

Substituting Eq. (3.8) into Eq. (3.7) yields

vz(N:m: O T

k:2 I + 2N, wg 4y + Nyywy ) — D1V*V2w;

+ (N wg 4 + 2N, way +N0 woyy) =0

Following the same procedure as was done to formulate Eq. (3.9), the following equation can be
obtained in terms of function 4 as follows

DyV%py — K2 Ay, =0 (3.10)

Equations (3.9) and (3.10) are two decoupled equations in terms of the transverse displace-
ment wy and function ¢y, respectively. Using Egs. (3.5), and (3.8), the rotation functions 1,
and 1), can be expressed in terms of wy and ¢4 as

Dy k2A, 1 Do
sz)alz = k2A2 {_ Dy w(l) - sz (NO wO ,TX + 2NO wO Ty + NO yWo yy) v2w(1)} . + k2—1429047?1
D kA 1 D
1 _ L 2,1 0 0 0 2,1 2
wy = kQAQ [_ D, Wy — /-CQA (N wO zz T 2N wO Y + N y 0o yy) \% wO} v - k2—142()04$
(3.11)

4. Boundary conditions

It is assumed that two opposite edges of the plate at x = 0 and = = a are simply supported (S)
and have arbitrary boundary conditions at the other two edges. The arbitrary boundary con-
ditions along the other edges, y = 0 and y = b can be clamped-clamped (CC), free-free (FF),
simply supported-simply supported (SS), free-clamped (FC), free-simply supported (FS) and
clamped-simply supported (CS). Each boundary may have the following conditions:

— Simply Supported

’Uozwozwmzo (4.1)
— Clamped

wo = 1y = by = 0 (4.2)
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— Free
Myy = My = Qy: + NJjwj , + Nyywg,, =0 (4.3)
The stress and moment resultants Q,., M,, and M,, can be defined as

Myy - Dl (wa:,a: + wy,y) - 2D2wa},a} sz = D2(¢a},y + wy,a})
Qyz = k2A2 (% + wO,y)

which are functions of the rotation functions 1, and 1, and the transverse displacement wy.

(4.4)

5. Buckling analysis

To find the critical buckling load, the pre-buckling forces should be found. Thus, using the same
procedure developed by Duc and Tung (2010), the pre-buckling force resultants are found to be

P
Na?a: = _7@’ Nﬂ??/ =0

0 Ag Px Al - A3 (51)
Ny ==+ = [ 2Valdn Qs + dQSy)

where P, is the uniformly distributed load along the edges = = 0, a. Substituting relations (5.1)
into Eq. (3.9), yields

D P,
e ey
As P, A — Aj u u 1
+ (_A_lT e [—2Va(ds1 Q5 + d32Q22)])w0,yy} (5:2)
Px A3 Al - A3 a a
+ {_Twé,zw + ( Al b + Ay [_2Va(d31Q12 + d32Q22)])wé,yy} =0

To analyze the buckling behavior, decoupled stability equations (3.10) and (5.2) should be
solved. As mentioned before, the edges of the plate in the x direction are assumed to be simply
supported. Using the series solutions in the z direction, the functions w{ and ¢4 are expressed
as

o0
Z y) sin mre = Z g(y) cos mre (5.3)

where m is the number of half-waves in the x direction. Series solutions (5.3) satisfy the simply
supported boundary conditions in the z direction. Substituting relation (5.3) into Egs. (3.10)
and (5.2), yields two ordinary differential equations in terms of the functions f(y) and g(y) as
follows

AsP, A — A . Y df(y
Doy A Rl +dn Q)]+ 4 4) dy(‘*)
mm\2r 1P 1, A3 P, A — As Y Y
+{ 2D1( ) {—57 +k AQ + 2(_14_17 + T[_Qva(dBIQm +d32Q22)])]
As P, A —A ?f(y)
2 (Al Ai—As a a y 4
k Ag( 10 + T [ 2Va(d31Q12+d32Q22)])} i (5.4)

mm P,

() (L ) (2 e -

Da[~gly) (2" 4 £2)

e } — k*Asg(y) =0

a
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Equation (5.4); is an ordinary differential equation with variable coefficients. In order to solve
this equation, the power series solution method of Frobenius (Wylie and Barrett, 1951) is utilized.
To this end, the function f(y) is written in the following form

y) =Y Cjy/ (5.5)
=0

where C; are arbitrary constant coefficients. Substituting proposed solution (5.5) into Eq. (5.4)1,
and shifting the indices, yields

A PJ? A - A a a
D1 <_A_z1)’7 + 1T13[—2Va(d31Q12 + d32Q22)] + k2A2)
o ' . ' . mm\27 1P,
UGG +3)G 426 + DG+ {20 (T [T e,
j=0
1 Ag Px A1 - A3 a a
5 (—A—l? + T[—Qva(d:gl@lz + d32Q22)])} (5'6)

As P, A —A " e ,
- k?QAQ(—A—j7 + 1T13[—2Va(d31Q12 + d3200%,)] )}Z (F+2)(J+1 Cj+2y]]

[P () - () ] o

Collecting the coefficients of similar powers of j in Eq. (5.6), from the coefficient of 3°, it can
be obtained

1
24D, (42 5+ DA [V, (31 Qf + d3 Q)] + K2 A»)

(oY LA AR Ay, ol 40
As P, Aj— As

‘k2A2<_A_17m + - 2ValdnQt + d32Q3,)]) }Co (5.7)

() () - (1) e )

Also, the coefficient of 37 gives

Cy=—

1
Dy (— 425 + A2V, (dn Q% + dso Q)] + K245 ) (j+ ) (+ 3)(j+ 2)(j+ 1)

{{on () (55 R+ A 0t + ) + )

A3 P, A —A . . , ,
Py (S5 o SR 2V Q1 + de@$)]) F U+ 200+ 1) e (5:8)

(1) (- ) - () et

Equations (5.7) and (5.8) are recursion relationships, and relation (5.8) is valid for j > 0. It
should be noted that the coefficients C; (i = 0,1,2,3) are arbitrary coefficients on account
of which the other coefficients C; (j > 4) would be obtained just from recurrence formulas
expressed in terms of them selves.

Cipa=—
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For solving Eq. (3.10), substituting proposed series solution (5.3) into Eq. (3.10), and solving
the resulted ordinary differential equation, yields

g(y) = C_ysinh(Ay) + C_2 cosh(\y) (5.9)
where
m 2 k2A2
A= \/(T) + 5, (5.10)

Imposing the boundary conditions at the edges of the plate in the y direction, a system of six
homogeneous algebraic equations is obtained. Setting the determinant of the coefficients equal
to zero, the buckling load of the hybrid plate is determined. Needless to say that the lowest
value among all of these P, for each m is known as the critical buckling load P,;.

6. Results and discussion

Numerical results for buckling analysis of a three-layered rectangular plate with piezoelectric
layers for different boundary conditions are computed. The material properties are shown in
Table 1. This table shows the characteristics of PZT-5A as the piezoelectric and aluminum as
the host plate. Moreover, for all numerical results which are reported here, the following values
of variables are used unless otherwise indicated by tables or graphs

b 5
%:1 2 =100 h, = 0.001m h=00lm V, = 500V l<:2:6

Table 1. Material properties of the aluminum and PZT-5A layers
‘ ‘ Aluminum ‘ PZT-5A ‘

Elastic modulus E [GPa 70 63
Poisson’s ratio v 0.3 0.3
Piezoelectric constant dz; [10~m/V] = 2.54
Piezoelectric constant dza [10~m/V] = 2.54

In this Section, firstly, the convergence rate of the power series is checked. Secondly, compa-
rison with the previously published related article is employed in order to verify the accuracy
of the proposed method. Finally, the critical buckling load of the piezoelectric coupled pla-
tes are presented in tabular and graphical forms for different plate aspect ratios, thickness of
piezoelectric, actuator voltage and boundary conditions.

To guarantee the accuracy of the buckling load obtained by the procedure described above,
it is necessary to conduct a convergence study to determine the number of terms required in
the power series solution. Since in real calculations a series solution will have to be truncated
somewhere according to a pre-determined error bound, an exact solution really implies that the
results can be obtained to any desired degree of accuracy. Therefore, the series expansion, Eq.
(5.5), will have to be truncated in numerical calculations. Accordingly, to calculate a sufficient
number of terms (IN), a special case for all kinds of boundary conditions was studied.

Table 2 shows the convergence of P, for six different boundary conditions. From this
table, it is clearly visible that for the SSSS case, more than 18 terms are needed to obtain the
value of P,.., accurately to six significant digits. Also, it is seen that if the SCSC is chosen as a
boundary condition, at least 24 terms are required to obtain an extremely accurate value of P,.,.
The bold numbers in the table are those beyond which the sixth digit does not change as N
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Table 2. Convergence test of the critical buckling load, P,.. [KN], with different combinations
of boundary conditions

N Boundary conditions
SCSC | SSSC | SSSS | SESC | SSSF | SESF

10 | 423.4500 | 346.6509 | 251.0307 | 118.7528 | 108.3371 | 77.6299
12 | 551.1659 | 357.9866 | 253.8557 | 120.6816 | 106.5636 | 81.2094
14 | 524.5552 | 355.9793 | 253.5745 | 120.9698 | 106.2536 | 82.1316
16 | 530.1927 | 356.1081 | 253.5927 | 120.9983 | 106.2160 | 82.2540
18 | 529.9826 | 356.0962 | 253.5918 | 121.0004 | 106.2127 | 82.2646
20 | 530.0266 | 356.0965 | 253.5918 | 121.0005 | 106.2125 | 82.2653
22 | 530.0258 | 356.0965 | 253.5918 | 121.0005 106.2125 | 82.2653
24 | 530.0259 | 356.0965 | 253.5918 | 121.0005 106.2125 | 82.2653
26 | 530.0259 | 356.0965 | 253.5918 | 121.0005 106.2125 | 82.2653
28 | 530.0259 | 356.0965 | 253.5918 | 121.0005 106.2125 | 82.2653
30 | 530.0259 | 356.0965 | 253.5918 | 121.0005 106.2125 | 82.2653

increases. As more terms are taken, P,.. converges to its exact value. Therefore, the numerical
results from the power series approach which are presented in the calculations were obtained by
taking sufficient terms N to converge to the number of digits shown in the tables.

In order to verify the accuracy of the present formulations, the buckling load obtained from
the present method is compared with those available in the literature. In Table 3, comparison
of the non-dimensional critical buckling loads for isotropic plates is made between the results
obtained by the present method and those reported by Hosseini-Hashemi et al. (2008). For all
boundary conditions, good agreements can be observed, and it is concluded that our formulation
is completely trustful. After verifying the merit and accuracy of the present accurate solution,
the following new results for the three-layered rectangular plate with piezoelectric actuators can
be used as the benchmark for future research studies.

Table 3. Comparison of non-dimensional critical buckling loads (P.. = P,a?/Dy) for an isotro-
pic rectangular plate with different boundary conditions for uniaxial compressive loading in the
x direction

a | h Boundary conditions
b|a SCSC | SSSC | SSSS | SEFSC | SSSF | SEFSF
0.5(0.1][6] | 18.055467 16.247894 | 14.915722 | 10.642566 | 10.408425 | 9.325573
Pr.| 18.05546694 | 16.24789354 [14.91572216|10.64256680|10.40842450(9.32557275
0.2|[6] | 15.851026 14.573567 | 13.580179 | 9.769217 9.590606 | 8.632796
Pr.| 15.85102641 | 14.57356705 [13.58017889| 9.76921715 | 9.59060641 |8.63279575
1 (0.1[[6]| 63.404106 51.727083 | 37.447690 | 15.394207 | 13.257101 | 9.112050
Pr.| 63.40410565 | 51.72708294 [37.44768979|15.39420741|13.25710052(9.11205022
0.2|[6]| 43.567623 41.394657 | 32.441432 | 13.627190 | 12.054586 | 8.434126
Pr.| 43.56762327 | 41.39465731 [32.4414315713.62719035|12.05458573 |8.43412622
2 10.1{[6] | 168.416063 | 151.127293 | 129.765726 | 46.387846 | 24.457914 | 8.891002
Pr.|168.41606196 | 151.12729228 |129.7657263 | 46.38784629 |24.45791485|8.89100235
0.2][6] | 80.032333 78.916068 | 76.902078 | 36.692284 | 21.430636 | 8.248819
Pr.| 80.03233149 | 78.91606516 |76.90207522 |36.69228453|21.43063569 |8.24881884

[6] — Hosseini-Hashemi et al. (2008); Pr. — present

The variation of the critical buckling load versus the plate aspect ratio for three various
voltage actuators are shown in Table 4 and Fig. 2. The primary conclusion tabulated from
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Table 4 is that the critical buckling load diminishes as the plate aspect ratio increases. Moreover,
the percentage decrease is about 89% for the SFSF plate and about 15% for the SCSC one from
a/b=0.5to a/b = 1.5 under the same actuator voltage V, = —500. It is worth mentioning that
increasing the constraints on boundary conditions results in an increase in the critical buckling
load, i.e. for a fixed value of variables, the SCSC and SFSF have the highest and lowest P,
respectively. Figure 2 illustrates the effect of a/b for three various voltage actuators, i.e. 500, 0
and —500 on the P, for the SFSC plate. It is apparent from this figure that the P,.. can be
increased by applying a negative voltage on the actuator layers, and the effect of V, becomes
more significant at higher plate aspect ratios.

Table 4. Effect of the plate aspect ratio on the critical buckling load for different boundary
conditions

Boundary conditions
SCSC | SSSC | SSSS | SESC | SSSF | SESF

—500 | 0.5 | 620.6445 | 556.4839 | 511.1295 | 379.6773 | 371.7482 | 339.1097
1.0 | 564.8202 | 389.0031 | 283.1340 | 135.4563 | 117.3006 | 82.9526
1.5 | 525.5415 | 408.0511 | 270.2732 | 101.6814 | 72.9200 | 36.4562
0 0.5 | 615.4263 | 551.5939 | 506.6638 | 377.8521 | 370.1353 | 338.4924
1.0 | 547.4352 | 372.5638 | 268.3629 | 128.3953 | 111.8539 | 82.6416
1.5 | 514.6062 | 397.7806 | 244.4790 | 86.9342 | 61.9961 | 36.2055
+500 | 0.5 | 610.2019 | 546.6993 | 502.1981 | 375.9378 | 368.4899 | 337.9531
1.0 | 530.0259 | 356.0965 | 253.5918 | 121.0005 | 106.2125 | 82.2653
1.5 | 503.6551 | 387.4945 | 218.6847 | 71.3912 | 50.6116 | 35.8746

Vo | a/b

375
5 350H
A 325f
300}
275}
250}
225}
200}
175}
150}
125}
100}
75}
T 15 20
E _ 5 ®

V,=500, 0, -500

Fig. 2. Effect of the plate aspect ratio on the critical buckling load for the SFSC boundary condition

Figures 3a,b show the critical buckling load for hybrid laminated plates with different bo-
undary conditions subjected to various actuator voltages. The results presented herein reveal
that the minus actuator voltages increase the buckling load, whereas the plus actuator voltages
decrease the buckling load at the same condition. Very high voltages will be able to influence the
buckling response of the hybrid laminated plate. However, such high voltages cannot be applied,
because they lead to breakdown in the material properties. It can also be seen from Fig. 3b that
when the SFSF is chosen as a boundary condition, the effect of voltage actuator on the critical
buckling load is very small. In Table 5, the effect of the ratio of the piezoelectric layer thickness
to thickness of the host layer on the critical buckling load at different boundary conditions is
tabulated. Also, in Fig. 4, this effect for the SSSS boundary condition is depicted. It is seen that
with an increase in the piezo-to-host thickness ratio, the P, increases.
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Fig. 3. Effect of the actuator voltage on the critical buckling load for the SCSC, SSSC and SSSS
boundary conditions (a) and for the SESC, SSSF and SFSF boundary conditions (b)

Table 5. Effect of the ratio of piezoelectric layer thickness to thickness of the host layer on the
critical buckling load for different boundary conditions

Boundary conditions
SCSC | SSSC | SSSS | SESC | SSSF | SESF

0 382.3593 | 256.3732 | 182.2478 | 86.8944 | 76.3741 | 59.5945
0.1 | 530.0259 | 356.0965 | 253.5918 | 121.0005 | 106.2125 | 82.2653
0.2 | 708.1540 | 476.5520 | 339.8699 | 162.2539 | 142.2768 | 109.5356
0.3 | 916.0362 | 617.2578 | 440.7347 | 210.4871 | 184.4213 | 141.2979
0.4 | 1153.2794 | 777.9461 | 555.9935 | 265.6071 | 232.5654 | 177.4930

ha/h

700}
5 650f
&% 6oot
550}
500}
450}
400}
350}
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200
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ha/h

Fig. 4. Effect of the ratio of the piezoelectric layer thickness to thickness of the host layer on the critical
buckling load for the SSSS boundary condition

7. Conclusion

In this article, mechanical buckling analysis has been presented for a three-layered rectangular
plate with piezoelectric actuators subjected to the combined action of mechanical and electric
loads. The derivations were based on the first-order plate theory and by employing an analy-
tical approach, the five coupled governing stability equations are converted into two decoupled
partial differential equations. By using the Levy solution, these equations are converted into
two independent ordinary differential equations, and the power series method of Frobenius is
used for solving these equations accurately. Extensive parametric studies for this structure under
different sets of electric loading and boundary conditions have been carried out. The following
conclusions, from the numerical computations were drawn.



Buckling analysis of three-layered rectangular plate ...

825

10.

11.

12.

13.

14.

15.

The buckling load is decreased by increasing the plate aspect ratio in both negative and
positive actuator voltages and all boundary conditions.

The application of negative voltage on the actuator layers can improve the mechanical
buckling strength, and the critical buckling load can be controlled by applying a suitable
voltage on the actuator layers.

The critical buckling load increases with the increase of ratio of the piezoelectric layer
thickness to the thickness of the host layer.

Increasing the constraints on boundary conditions results in an increase in the critical
buckling load.
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