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An application of nonlinear optimisation methods to select some parame-
ters of a passenger car steering system is presented. A simplified planar
model of the system as well as spatial multibody models are developed. The
simplified model is used in the optimisation task, ensuring minimisation of
vibrations of the steering wheel. The optimisation task is solved in two sta-
ges. The first one allow us to obtain optimal geometry of the system. In the
second stage, nonlinear characteristics of some elements are obtained. The
correctness of optimisation results is verified by the application of a more
sophisticated spatial model. An own simulation programme has been wor-
ked out. It allowed us to perform dynamic analysis of the steering kickback
using both simplified and complex structural models as well as to execute
a built-in optimisation module.
Asymmetric input forces applied to the wheel centre have been used in the
computer simulations. The excitations analysed are typical for a car moving
over an obstacle. The work presented concentrates on the steering kickback
phenomena, which may strongly influence discomfort perceived by the car
driver.
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1. Introduction

Various commercial simulation tools have been widely applied in the engine-
ering practice and they allow users to model dynamics of almost any mecha-
nical system. Yet many industry companies and research centres still work on
their own self-developed models. Such models are usually devoted to specific
requirements and they can be better adopted than general simulation packa-
ges. Simplified, dedicated models are much faster and can be easily adapted
to different applications.
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Models presented in the paper enable vibrations of a steering system in
a passenger car with the McPherson suspension to be simulated. Impulsive
vibrations generated by an obstacle are analysed. The primary objective in
this work is to reduce the vibration level of the steering wheel generated by
impulsive forces due to an uneven road. Steering vibrations of this kind are
known as the steering kickback phenomenon.

The steering kickback problem was described, for example, by Kenji and
Massaki (1999). The authors investigated the contribution of force and ac-
celeration components to the tie-rod axial force by the application of indivi-
dual measurements. The component load method was applied to the steering
kickback analysis by Cho (2004). A strong influence of the impact load and
kingpin moment on the kickback phenomenon was reported. A few of papers
dealt with the wheel shimmy problem. In papers by Pacejka (1973), Sharp and
Jones (1980), the results obtained were presented as frequency characteristics
and time histories. Some simple dynamical models were used. The results of
simulations were compared with empirical transfer functions. Steering wheel
vibrations as an effect of the wheel shimmy were discussed also by Dodlbacher
(1979), where the author presented a structural model of the suspension and
suspension frame mounted by bushings, which took elasto-kinematic proper-
ties into account. The commercial package ADAMS was applied in order to
examine tire radial stiffness variation, static and dynamic imbalance and belt
run-out by Balaramakrishna and Kumar (2009). Interesting results related to
steering system vibrations were presented by Groll et al. (2006). The authors
analysed a control system designed to eliminate periodical vibrations without
decreasing the road feedback quality. A multibody model of the suspension
was used by Ammon et al. (1997), with the BRIT tire model. Hydraulic power
steering system was described together with experimental verification. Harlec-
ki et al. (2004) discussed a dynamic multi-body model, taking dry friction into
consideration. An influence of clearance and friction in joints on the vehicle be-
haviour was shown in Lozia and Zardecki (2002). A spatial suspension models
with elastic connectors were presented by Knapczyk and Kuranowski (1986).
The results presented indicated the importance of flexible bushing elements.
Vehicle subsystems are assembled using bushing joints. The work of Ambrosio
and Verissimo (2009) demonstrated the modelling approach and simulation
results for the whole vehicle with non-ideal joints represented by bushings.

Optimisation of geometrical parameters in multibody systems was presen-
ted by Collard et al. (2005). The authors proposed a solution to problems with
degenerated constraints due to an ill-conditioned Jacobian matrix when per-
forming the optimisation. Penalisation of the objective function was developed



Simulation and optimisation of a steering... 189

and successfully applied in several examples. Optimisation of a multibody ve-
hicle steering and suspension system was demonstrated by Bian et al. (2003).
The steering error was optimised, and the vector of design variables of the
system consisted of eleven components. An interesting work, concerning glo-
bal ride index optimisation was reported in Goncalves and Ambrosio (2003).
Flexible, spatial model of the sport car was analysed. The optimisation of ride
performance was performed by the summation of weighted accelerations in se-
lected points: seat and back of the driver. The suspension spring stiffness and
damping ratio were selected as design variables in the optimisation process.
The objective was defined based on a ride comfort index given by ISO 2631
standard. The method was also applied by Goncalves and Ambrosio (2005) to
optimise handling performance of the car. Suspension system and a railway
vehicle multibody models were considered as examples by Datoussaid et al.
(2002). Evolutionary strategies were applied in order to minimise the toe an-
gle variations in the first system and stability and comfort problems related
to the design of the railway car. The evolutionary methods are less competi-
tive in calculation time, but they provide a global optimum in contrast to the
deterministic, gradient-based optimisation methods.

A large number of investigations deal with optimal planning of robot tra-
jectory. For example Jutard-Malinge and Bessonnet (2000) presented opti-
misation of motion of a robot which transfers an object grasped in motion.
An optimisation of motion with end-effector defined trajectory was presented
by Galicki and Popowicz (1999), motion transfer time minimisation by Chen
(1991), minimisation of electromechanical losses showing the energy saving
possibility by Sergaki et al. (2002). The cited papers are only a few examples
and one could easily find applications of optimisation methods to variety of
disciplines.

In this paper, dynamic and multibody analysis is performed in order to
evaluate the discomfort caused by vibrations occurring on the steering wheel
(steering kickback). The main objective of the paper is to present how optimi-
sation methods can be applied in order to choose geometrical parameters and
characteristics of nonlinear elements, which minimise vibrations of the steering
wheel. Nonlinear functions of the power assistance system and longitudinal stif-
fness characteristics of the suspension are optimised in the examples presented.
Two optimisation routines are proposed, allowing for a selective optimisation
of different types of system parameters and simultaneous optimisation.

The full vehicle model, based on homogenous transformations and joint
coordinates, including the steering system was presented in Szczotka and Woj-
ciech (2008). A part of this model (the suspension system with the steering



190 M. Szczotka

line) is upgraded in this paper in order to model elasto-kinematic behaviour.
Some other modifications are introduced into the tire model. The interaction
with an uneven road represented by an obstacle with sharp edges is assumed
in the model by the use of approximation functions, similarly to the method
given by Paciejka (2002) and Zegelaar (1998).

2. Simplified model of the system

This model should predict, with sufficient accuracy, vibrations on the steering
wheel transferred from the road. The system considered (Fig. 1) is defined by
main geometry components of the suspension and steering system. It has five
degrees of freedom. The whole suspended mass is modelled as a single body
with appropriate inertial properties. Flexible connection of the lower control
arm to the car body is expressed by spring and damping coefficients cL, bL
or cN , bN , respectively. The desired scrub radius Rscr and toe angle variation
are defined by the location of points R, L and N as well as angles α, β and γ.

Fig. 1. Simplified model of the steering system

The vector of generalized coordinates q is defined as

q = [xs, ys, ψs, y, ϕ]
⊤ (2.1)
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where xs, ys are longitudinal and lateral translations of the suspended mass,
ψs is the rotation angle (small) of the body, y is the displacement of the
steering rack, ϕ is the steering wheel rotation angle.

Force FR, acting on the steering rack body, can be calculated from its axial
deformation, having assumed that

FR = cR∆r =
ERπd

2
R

4lR

(
[r0 − Tr0]

⊤[r0 − Tr0]
) 1
2

(2.2)

where dR, lR are the diameter and length of the rod, ER is the Young modulus
of elasticity, and

r0 = [xR, yR, 1]
⊤

T =



cosψ sinψ xs
− sinψ cosψ ys
0 0 1




xR, yR are shown in Figure 1.

The power assistance force FA is assumed as a function of the steering
column deformation or moment applied to the steering wheel. For a hydraulic
power assistance system, it can be assumed that

FA = pAPoil
(
ck(ϕ− iUy)

)
(2.3)

where pA is the piston area, Poil = Poil(Msw) is the generated pressure (can
be a nonlinear function), ck is the stiffness coefficient of the steering column,
iU is the steering gear ratio.

The equations of motion for this model can be written in the following
form

Mq̈ + Pq̇ +Kq =H(t) (2.4)

where M = diag {ms,ms, Is,mR, Isw}, ms, Is are the suspended mass and
moment of inertia, respectively, mR is the steering rack mass, Isw is the
steering wheel moment of inertia, K is the stiffness matrix

K =

[
Ks 0

0 KRS

]
Ks =



c1,1 c1,2 c1,3

c2,2 c2,3
sym. c3,3




KRS = diag {iUcRS ,−cRS}
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and

cRS = ck(ϕ− iUy)

c1,1 = cR cos
2 γ + cL cos

2 β

c1,2 = cR sin γ cos γ + cL sin β cos β

c1,3 = cR(xR cos γ sin γ − yR cos γ) + cL(xL cos γ sin γ − yL cos γ)

c2,2 = cR sin
2 γ + cL sin

2 β

c3,3 = cR(x
2
R sin

2 γ + y2R cos
2 γ − 2xRyR sin γ cos γ) +

+cL(x
2
L sin

2 β + y2L cos
2 β − 2xLyL sin β cos β)

iU is the rack gear ratio, P = ηK, η is the damping ratio,

H(t) = [H̃
⊤

, FR sin γ + FA(Msw), 0]
⊤

H̃ =




FN cosα− FT (t)
FN sinα− FT (t)

FT (t)[yF − ψxF ]− FN (yb cosα− xb sinα)




FR is defined in (2.2), FT (t) is the tire contact force due to the road une-
venness, FA(Msw) is defined in (2.3), FN = FN (∆L, L̇) is the force due to
nonlinear suspension stiffness and damping characteristics.
Having defined the model described by equation (2.4), it is useful to obtain

its state-space representation (Kaczorek, 1975). Assuming linearised stiffness
and damping characteristics of bushings, equation (2.4) can be rewritten in
the following form

q̈ =M−1(H − Pq̇ −Kq) (2.5)

Denoting the state space vector x(t) = [q⊤, q̇⊤]⊤, the full state-space
representation takes the form

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) +Du(t) (2.6)

where u(t), y(t) are the input and output vectors, and

A =

[
0 I

−M−1K −M−1P

]
B =

[
0

M
−1H

]
D = [0]

matrices B and C are defined depending on the input.
Model (2.6) is applied in order to obtain the frequency response of the

system. Let us assume the force FT as the input, and the tie-rod force FR
and steering wheel rotation ϕ as the outputs. For this case, it can be assumed
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B = [0, . . . , 0, (−M−1H)1, . . . , 0]
⊤

D = [0]

y(t) = [FR, ϕ]
⊤ u(t) = [1] (2.7)

C =

[
cR cos γ cR sin γ cR(yR cos γ − xR sin γ) 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

]

The main parameters of the steering and front suspension system used
in all calculations performed, are listed in Table 1. The presented values are
typical for a ”C”-segment vehicle.

Table 1. Assumed main parameters of the system

Parameter name Value

Vehicle speed 35 km/h

Rack friction 0 or 0.08

Suspension / wheel mass 20 kg / 15 kg

Steering column stiffness 60Nm/rad

Steering wheel inertia 0.04 kgm2

Ring-rim radial stiffness / damping 4.5 · 107 Nmm/rad / 5Nsm/rad

Rack mass 2 kg

Tire belt mass, moment of inertia 15 kg / 0.57 kgm2

Steering wheel tangential acceleration Atan is used in the paper as a pa-
rameter describing the vibration level perceived by driver. It is defined as

Atan = ϕ̈rsw (2.8)

where rsw = 185mm is the steering wheel radius.

The linear model is used in pre-selection of steering system parameters
and in optimisation calculations (in both frequency and time domains). An
important property of this model is the simulation time. The time domain
analysis of one second of real time takes approx. 50-60ms, when equations
of motion (2.4) are integrated using the Runge-Kutta method of the IV order
with the constant time step h = 10−5 s. High numerical efficiency is critical for
every optimisation problem. All simulations in this and the following sections
are performed using an own C++ computer program. Load cases representing
a vehicle running over a single obstacle are assumed. Only one side wheel
of the vehicle is assumed to pass over the obstacle, generating the kickback
phenomenon. The course of the road interaction force can be obtained either
from the full vehicle model simulation or from measurements.
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3. Optimisation as a tool for reduction of the kickback problem

Steering kickback vibrations are generated as a result of dynamic coupling
between vehicle subsystems. Designers have to select many parameters, cha-
racteristics and relations in the suspension and steering system. In a complex
system, various design criteria have different requirements. Sometimes, it is
preferred that the driver ”feels” the road by his hands on the steering wheel.
At the same time, the driver should be isolated from specific vibrations.

Let us assume that geometrical parameters of the system are components
of the vector G

G = [g1, . . . , gi, . . . , gnG ]
⊤

(3.1)
(Gmin)i ¬ (G)i ¬ (G

max)i for i = 1, . . . , nG

where Gmin,Gmax are minimal and maxiamal acceptable values for geometric
parameters, nG is the number of parameters selected in the optimisation.

Assume also that discrete values of the characteristics which will be opti-
mised are the components of the vector F

F = [f0, . . . , fi, . . . , fnF ]
⊤ f(s′) = SPLINE(s′, s,F )

(3.2)
(Fmin)i ¬ (F )i ¬ (F

max)i for i = 0, . . . , nF

where s′ = l(t,q, q̇) is the independent argument of SPLINE function
which depends on the solution to the equations of motion at time t,
s = [s0, . . . , snF ]

⊤ is the vector of known independent discrete arguments,
fi = fi(si) is the i-th value to be optimised, nF is the number of discrete
points, SPLINE(·) is the 3-rd order spline interpolation function (Fig. 2), q is
defined in (2.1), Fmin, Fmax are minimal and maximal values of the vector F .

Fig. 2. Discrete representation of a curve by a spline function
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Moreover, it is assumed that other design parameters of the system, which
are selected at the beginning, remain constant during the optimisation (such
as masses, other constrained geometrical parameters), form the vector P C

PC = [PC(i) , . . . , PC(nPC )
]⊤ (3.3)

Two strategies of optimisation are proposed, see Fig. 3. In the first appro-
ach, the optimisation is performed in two stages. First, the optimisation task
is executed in order to select the set of geometrical parameters of steering and
suspension systems. One may find, for example, an optimal location of the
steering rack, coordinates of mounts and even mass or moment of inertia. In
addition to selection of decision variables (which are components of the vec-
tor G), all necessary constraints should be provided. When this optimisation
task is solved, the solution vector Gopt contains the optimal values which are
assigned as the system geometry parameters. In the second phase, one per-
forms optimisation of other components, like stiffness characteristics, power
assistance characteristics, etc. and the decision variables F represent a discre-
te function (or several functions). The second approach consists in solving the
optimisation task for two decision vectors G and F simultaneously.

Fig. 3. Two optimisation approaches

The solution of the optimisation problem is defined as follows. Find the
minimum of the functional:

Γ (t,q, q̇,X) (3.4)
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assuming the decision vector X as

X =





G for OPT1, STEP 1

F for OPT1, STEP 2

[G⊤,F⊤]⊤ for OPT2

(3.5)

with constraint conditions

dj(t,q, q̇,X) ¬ 0 for j = 1, . . . , nd

ej(t,q, q̇,X) = 0 for j = 1, . . . , ne
(3.6)

where nd, ne are the numbers of constraint relations (defined by (3.1)2 and
(3.2)3).
Calculation of the functional Γ as well as constraints d and e, requires

equations of motion of the system (2.4) to be integrated in the range of time
0-T . The initial value problem to be solved, rewriting (2.4), is defined by the
equations

Mq̈ = F (t,q, q̇,Y ) qt=0 = q
(0) q̇t=0 = q̇

(0) (3.7)

where q(0), q̇(0) are initial displacements and velocities, respectively, and Y is
defined as follows

Y =





[P⊤C ,X
⊤,0]⊤ for stage OPT1, STEP 1

[P⊤C ,G
opt⊤ ,X⊤]⊤ for stage OPT1, STEP 2

[P⊤C ,X
⊤]⊤ for the approach OPT2

(3.8)

The optimisation problem described can be solved using any optimisation
method. In the programme developed, Nelder-Mead’s method (proposed in
Nelder and Mead, 1965) is implemented and applied. The dynamic equations
of motion have to be integrated in every iteration.

3.1. Definition of the objective function

The definition of objective function (3.4) is related to the level of steering
wheel vibrations. It is composed of several elements, each of which defines
an objective ”measure” representing discomfort related to the steering wheel
vibrations. The sum of components is assumed to be the objective function

Γ =
nΓ∑

k=1

ǫkΓ̃k(t,q, q̇,X) (3.9)
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where Γ̃k = Γk/Γ
0
k , Γk(t,q, q̇,X) is the k-th component of the vibration ”me-

asure” of the steering wheel, Γ 0k (t,q, q̇,X
init) is the k-th objective function

component for initial vector Xinit, nΓ is the number of vibration ”measures”,
ǫk is the k-th weight coefficient.

The selection of functionals Γk is described below. Γ1 equals to the peak-
to-peak value of the calculated acceleration signal. The peak-to-peak is espe-
cially important when impulsive vibrations with considerable amplitudes are
present

Γ1 = |max(ϕ̈)−min(ϕ̈)| (3.10)

The vibration energy correlated with impulsive, non stationary signal may
be described by the component Γ2 which reflects a change in the vibration
level. The component Γ2 is defined as follows

Γ2(t) =

⊤∫

0

√
Γ ′2(t)

∆tw
dt (3.11)

where

Γ ′2(t) =

t+ 1
2
∆tw∫

t− 1
2
∆tw

|ϕ̈(τ)|2 dτ

and ∆tw is a ”moving” time window whose length depends on the vehicle
speed (for 35 km/h it can be assumed ∆tw = 0.6 s), T is the simulation time
(T = 1 s).

The third component of functional (3.9), Γ3, describes how different parts
of the human body perceive the vibration in different directions. For driver’s
hands on the steering wheel, one can use the function W (f) presented in
Fig. 4a

Γ3 =

√√√√√√

f2∫

f1

|FFT (f)W (f)|2 df (3.12)

where FFT (f) is the amplitude of the fast Fourier transformation performed
on ϕ̈ at frequency f , f1, f2 are the upper and lower limit of frequencies,
W (f) is the filter function.

Another objective component is the dissipation time. Let us assume that
the excitation intensity rises above some level at time t1. Then we record
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Fig. 4. (a) Function W (f) according to (BS6841, 1987), (b) steering wheel vibration
with and without filter

time t2, when the oscillation energy returns back to the same level observed
at time t1. Therefore

Γ4 = TDS (3.13)

where TDS = t2−t1 is the time period when Γ
′
2 ­ κDS×max(Γ

′
2), κDS = 0.25.

The root mean square is commonly used parameter describing energetic
content of a signal. Thus, the last component included in the objective func-
tion, is

Γ5 =

√√√√√√

T2∫
T1

|ϕ̈(t)|2 dt

T2 − T1
(3.14)

where T1, T2 are time intervals (all load cases: T1 = 0 s, T2 = 1 s).

Some other functions can also be defined. Weight coefficients applied to
each component Γk, have been assumed as ǫk = 1 for k = 1, . . . , 5. The de-
finition of objective function (3.9) allows us to define a single value for the
”quality” of a design with respect to the vibration level. Since each compo-
nent Γk is scaled taking the initial value, when assuming the same value for
every weight factor ǫk, one obtains the same contribution to the objective func-
tion. Of course selection of ǫk is arbitrary, and one can perform experiments
with other values, but the choice made in this work proved the optimisation
task to be quite effective. Having introduced a single value as the objecti-
ve function (also suggested in standards, for example (ISO2631, 1974), most
common optimisation routines can be applied in general practical problems.
An alternative would be a more complex, multicriteria optimisation method
which could compromise several, even conflicting criteria at time.
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3.2. Approach OPT1, STEP 1 – geometry optimisation

In this section, we consider that some selected parameters which describe the
system geometry can be changed in the optimisation task. The scope of the-
se changes is defined individually for each variable, depending on the specific
vehicle model and project limitations. These criteria can be very complex in
practice, since a change of any geometric parameter affects other characteri-
stics of the car such as handling, stability, dynamics, safety.

However, in certain situations, the designer may have greater freedom in
choosing the basic steering geometry. Then applying the proposed method, he
can find an optimal geometry of the system. The parameters of the system,
which have been chosen as the decision variables are specified below (shown
also in Fig. 1)

G1 = [rL, rX , x
tr, ytr]⊤ (3.15)

where rL is the rack length, rX is the position of the steering rack, x
tr and

ytr are the coordinates of the tie-rod spherical joint connecting it with the
unsprung mass.

Characteristics of the power assistance system (a) and the longitudinal
stiffness of the suspension (b), which are components of the vector F , are
shown in Fig. 5. These characteristics do not change during the optimisation.

Fig. 5. (a) Stiffness characteristics in the X direction, (b) course of power assistance

The constraint vectors given below allow for a large spectrum of parameter
modifications, especially for the steering rack position rX [m]

Gmin1 = [0.2,−1.3,−0.1825,−0.0725]⊤

(3.16)
Gmax1 = [0.4, 0.7,−0.0825, 0.0225]⊤
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As the starting point, the following set of parameters has been assumed
([m])

G01 = [0.25, 0.3,−0.1325,−0.025]
⊤ (3.17)

Table 2 and Fig. 6 present the results of geometry optimisation of the
system. The left part of Table 2 indicates components Γk, before and after
optimisation. The ratio Γ init/Γ opt reflects the magnitude of the change (im-
provement) of steering wheel vibration in the optimal solution with respect to
the initial value. The comparison shows that the peak-to-peak value decreased
more than eight times and the dissipation time is almost a half of the initial
value. In the right side part, the optimal values of decision variables are listed.
The differences between steering acceleration courses are shown in Fig. 6a. The
acceleration is almost completely eliminated. Similarly, comparing the results
in the frequency domain, a significant reduction of the amplitude |X(f)| has
been achieved (Fig. 6b).

Table 2. Results of geometry optimisation case (1), stage OPT1, STEP 1

Compo- Initial Optimal Ratio Varia- Initial Optimal
nent Γk values values Γ init/Γ opt ble values values

Γ1 39518.2 4574.88 8.638 rL 0.25 0.219926

Γ2 2786.27 217.96 12.783 rX 0.3 −0.243438

Γ3 68.819 0.607 113.29 xtr −0.1325 −0.162729

Γ4 0.863 0.452 1.907 ytr −0.025 −0.0154482

Γ5 3079.05 276.805 11.123

Fig. 6. Stage OPT1, STEP 1, case (1), geometry optimisation (a) time courses of
the initial and optimal steering wheel acceleration, (b) frequency spectrum of the

tangential acceleration
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Such an improvement of the vibration level shown in Fig. 6 is not always
possible. Changing the system parameters, for example the steering rack loca-
tion, can be much limited. In the next example, the variable rX can vary only
in the range of ±5 cm from its initial position rXinit = 0.05m. Additionally,
we assume that ytr = −0.025m = const .
The results for this case are summarised in Fig. 7 and Table 3. The effect

of optimisation is not as spectacular as before. However, the improvement is
significant: about 30% reduction of the peak-to-peak steering wheel accelera-
tion is noticeable (Fig. 7a). The obtained level of improvement affects comfort
perceived by the driver, see Fig. 7b.

Fig. 7. Stage OPT1 STEP 1, case (2), optimisation of geometry (a) time courses of
the initial and final acceleration, (b) frequency spectrum

Table 3. Results of geometry optimisation case (2), stage OPT1, STEP 1

Compo- Initial Optimal Ratio Varia- Initial Optimal
nent Γk values values Γ init/Γ opt ble values values

Γ1 19243.9 13520 1.423 rL 0.25 0.2

Γ2 1188.88 866.91 1.371 rX 0.05 0.00

Γ3 14.277 7.602 1.877 xtr −0.1325 −0.0825

Γ4 0.748 0.746 1.002 ytr
−0.025 −0.025

Γ5 1369.07 998.77 1.371 (locked)

3.3. Approach OPT1, STEP 2 – optimisation of characteristics

Having performed the optimisation of geometry, further reduction of the vi-
bration level can be done through the choice of some characteristics of the
system. In this section, optimisation of the steering assistance curve and the
suspension longitudinal stiffness characteristic is performed. To this end, the
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optimal set of parameters Gopt, chosen in the previous section (”Optimal va-
lues”, Table 3), is the starting point. The optimisation results are presented
in Table 4 and Fig. 8.

Table 4. Results for optimisation stage OPT1, STEP 2

Parameter OPT1 STEP 1 OPT1 STEP 2 ΓOPT1−STEP 1

ΓOPT1−STEP 2

Γ1 13520 9333.02 1.448

Γ2 866.91 736.38 1.177

Γ3 7.602 5.322 1.428

Γ4 0.746 0.764 0.977

Γ5 998.77 840.99 1.187

Fig. 8. Results of OPT1 STEP 2 optimisation (a) steering wheel tangential
acceleration, (b) frequency spectrum of the steering wheel tangential acceleration

The effectiveness of different approaches to the optimisation problem can
be compared by introducing the vibration index IV , defined as

IV =
nΓ∑

k=1

ǫk
Γ optk
Γ initk

(3.18)

where Γ initk , Γ
opt
k values of the objective function components before and after

the optimisation, I
(0)
V =

∑nΓ
k=1 ǫk (I

(0)
V = 5 in all cases considered).

The reduction of the index IV reached is more than 18.4% (from I0V = 5.0
to IoptV = 4.081) compared to the level of vibrations after OPT1 STEP 1. Those
results have been obtained, as indicated previously, only by the modification
of selected characteristics of the system, without changing the geometry itself.
The solution has been obtained after 4332 iterations.
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3.4. Second approach: OPT2 – simultaneous optimisation

In this section, all parameters are optimised simultaneously (both vectors G
and F ). The geometry given in Table 3, with identical constraints as specified
in Section 3.2 (the second set of parameters) is assumed as the starting point.

The differences between the two approaches are presented in Table 5.
Obviously, the first approach (OPT1) allows one to obtain the solution fa-
ster. It is much easier to solve two smaller optimisation tasks with nG and nF
decision variables instead of one large with nG+nF variables. Moreover, the re-
sult of OPT1 approach is marginally better due to lower IV . The optimisation
method used stops at the local minimum. This local minimum can be different
than that obtained in OPT1 step. The system is also very sensitive to geome-
try changes, and the simultaneous optimisation of selected design variables re-
sults in slightly different parameters: rL = 0.200057m, rX = 3.50103 ·10

−8 m,
xtr = −0.0826746 m.

Table 5. Comparison between simultaneous and successive optimisation

Component Γk OPT2 OPT1 STEP 2 Difference [%] OPT1 STEP 1

Γ1 9393 9333.02 0.64 13520

Γ2 736.42 736.38 0.005 866.91

Γ3 5.315 5.322 −0.132 7.602

Γ4 0.765 0.764 0.13 0.746

Γ5 840.71 840.99 −0.033 998.77

No. of iterat. 6037 4332 192

CPU time 450 s 310 s 15.8 s

The results show that the level of vibration reduction as well as global mini-
ma are very similar in both approaches. Both optimisation routines terminate
at approximately the same point.

4. Spatial model of the system – indirect verification

The calculation results presented previously have been obtained from a simpli-
fied model described in Section 2. In order to prove correctness of the results,
an indirect verification is performed. The calculation results are compared with
those obtained from a different, more sophisticated and validated model. The
spatial model has been verified by road measurements, also during obstacle
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passing manoeuvres. An acceptable correspondence of calculations and me-
asurements was achieved, see Szczotka and Wojciech (2008). The rigid finite
element method Wittbrodt (2006) was applied in order to discretise flexible
links.
The equations of motion of the system with constraints are formulated in

the form
Mq̈ −DR = F −D⊤q̈ = G (4.1)

where
q = [q⊤1 , . . . ,q

⊤

nB
,q⊤sl,q

⊤

sr,q
⊤

l , qLT , qRT ]
⊤

and nB is the number of rigid bodies in the system, q
⊤
i = [q

(i)
1 , . . . , q

(i)

n
(i)
q

]⊤ is

the number of generalized coordinates of the body i, qsl = [q
(sl)
1 , . . . , q

(sl)
nsl ]
⊤,

qsr = [q
(sr)
1 , . . . , q

(sr)
nsr ]

⊤ are the vectors of left and right flexible drive
axle, nsl, nsr are the numbers of rigid finite elements in the discretisation,

ql = [q
(l)
1 , . . . , q

(l)
nl ]
⊤ is the vector of generalized coordinates of the steering

column, n
(l)
l is the number of rigid finite elements of the steering column,

qLT and qRT are the carcass compliances (used in the tire slip model), R is
the vector of unknown constraint reactions

R = [R⊤J1 , . . . ,R
⊤

J4
, RY ,MDL,MDR,M

(sl)
W ,M

(sr)
W , Ff ]

⊤

and RJi = [R
(Ji)
1 , R

(Ji)
2 , R

(Ji)
3 ]
⊤ is the i-th spherical joint reaction vector, RY is

the reaction force in the rack-pinion joint, MDL, MDR are reaction torques

on differential outputs, M
(sl)
W , M

(sr)
W are reaction torques coupling the driven

wheels with drive axles, Ff is the unknown dry friction force, M is the mass
matrix

M = diag{M(S),M(sl),M(sr),M(l),mTL,mTR}

and M(S) is the mass matrix of the rigid body system, M(sl), M(sr), M(l)

are diagonal mass matrices of flexible shafts, mLT , mRT are small masses
representing the tire carcass, F = F (t,q, q̇) is the right side vector, D is
the matrix of constraint coefficients, GJ is the right side vector of constraint
equations.
The generation procedure for matrices G, D, M(S) and F , in the general

case of rigid multibody systems with closed kinematic loops, was presented in
detail in Szczotka and Wojciech (2008). If one assumes

n
(l)
l = nsl = nsr = 0 (4.2)

the system considered includes the rigid drive axles and steering column.
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The tire model used in the developed simulation software is in principle
similar to the SWIFT model (Pacejka, 2002; Zegelaar, 1998; Schmeitz et al.,
2007). An important advantage of the model is that the tire structural vi-
brations are taken into account. Usually, natural frequencies of in-plane belt
vibrations are in the range of 45-75Hz.

The results (tangential accelerations) obtained from the spatial model are
compared with those from the simplified model used for the optimisation, see
Fig. 9. Calculations were carried out for two sets of parameters according to
Table 2: initial and optimal. In both cases, a good compatibility of the results
has been achieved.

Fig. 9. Comparison of the results: corresponding to the ”full” and ”simple” model,
(a) tangential acceleration of the steering wheel before optimisation,

(b) accelerations after application of the optimised characteristic of the steering
assistance system

5. Conclusion

The optimisation allowed us to significantly reduce the steering kickback phe-
nomenon. The dynamic analysis of the planar simplified model is useful at the
early project stages. It requires only a few basic parameters to be specified.
The spatial (full) model requires the complete set of the input data. Obviously,
it offers a much wider spectrum of the results and types of analysis. Detailed
suspension geometry, mass distribution, stiffness of the components, and many
other effects can be reflected. However, due to much longer simulation time,
its application to optimisation problems is limited.

The approach proposed, combining two levels of optimisation, can be ap-
plied in practice. At the beginning of the design process, there is always some
space for changes. The steering-suspension geometry has quite large influence
on the steering kickback. Therefore, at the first stage, the geometry of the sys-
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tem can be optimised. Having optimised the geometry, optimal characteristics
of selected components can be found. It has been shown that it is much easier
and faster to optimise components sequentially. In addition, such an approach
gives better control of the process.

One of the important features of the models presented is the numerical
effectiveness. Simpler models can be easily adapted to special applications
(i.e. implemented as modules in the in-house standards transformed to PLC
systems). This is of special importance when an optimisation process has to be
performed. The software tool developed can be applied in the early design of
a steering system, for prediction of the NVH characteristic and other indexes.
Having implemented all analysis methods, modules and mathematical models
within one software, the user can perform many numerical experiments pretty
easy and efficiently.
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Symulacja i optymalizacja drgań typu kickback koła kierownicy

samochodu

Streszczenie
W pracy przedstawiono zastosowanie metod optymalizacji do doboru pewnych

parametrów układu kierowniczego samochodu osobowego. Przedstawiono zarówno
uproszczony, płaski model układu, jak również jego wersję przestrzenną. Model
uproszczony wykorzystano w zadaniach optymalizacji, których celem jest minimaliza-
cja drgań przenoszonych na koło kierownicy w wyniku jazdy po nierównej nawierzch-
ni. Zadanie optymalizacji jest rozwiązane w dwóch etapach. W pierszym poszukiwa-
no optymalnej geometrii układu. Nieliniowe charakterystyki układu są znajdywane
w drugim etapie. Wyniki optymalizacji zostały następnie zweryfikowane w złożonym
modelu układu. Własne oprogramowanie pozwala na przeprowadzanie analiz z zasto-
sowaniem obu modeli oraz dokonywania obliczeń optymalizacyjnych.
Analizowano wpływ sił dynamicznych chrakterystycznych dla przejazdu przez

przeszkodę kołami jednej strony pojazdu. Wyniki obliczeń koncentrują się na drga-
niach typu kickback, które są jednym z czynników znacznie wpływających na dyskom-
fort kierowcy.
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