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The paper presents theoretical and experimental studies of energy dissipation in a model
of a conical sleeve-pivot joint. Energy dissipation between cooperating surfaces of a friction
pair including structural friction, elastic and frictional effects between its elements and
Lame’s problem are taken into account. A comparative analysis was conducted to compare
the theoretical results obtained from numerical simulations and direct experimental data
acquired from the MTS testing machine. The analysis of the influence of geometrical and
material parameters, external loading on the dissipation of energy is presented too. This
paper shows an outline of theoretical considerations, the method for conducting tests as well
as selected comparative results.
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1. Introduction

Analytical considerations concern the natural energy dissipation problem observed on a tem-
porary fastening in a conical sleeve-pivot joint subject to an axial load. In the literature, the
authors have not found papers concerning the problem of natural damping of vibrations in a co-
nical sleeve-pivot joints (including structural damping). The range of the present paper includes
theoretical and experimental investigations of the previously mentioned assemblies subjected to
the axial loading. Such a type of friction joints can be commonly found in various mechanical sys-
tems used in daily engineering applications, e.g. machine tools, automobile or aircraft industry.
In this paper, authors investigate a fastening with Coulomb’s law, elasticity of the joint elements,
Saint-Venant’s principle and Lame’s problem taken into account. Beside theoretical tests, also
a mathematical model, based on the a real experimental research, is proposed and verified. The
sleeve-pivot connection shown in Fig. 2a was subjected to an axial load αP (0 ¬ α ¬ α1). In
this paper, an assumption has been made that α1 = 1. The main aim of the theoretical investi-
gation is a detailed analysis of the previously mentioned conical joint taking into consideration
structural friction, which appears in a temporary and permanent fastening everywhere, where
a step out pressure acts onto cooperating surfaces. Energy dissipation phenomena caused by
structural friction is observed in various types of wedge connections in both temporary and per-
manent joints. This problem is widely discussed in the literature for more than fifty years. The
pioneer work that considered static problems for structural friction with additional simplified
assumptions was done by Kalinin et al. (1960). Thereafter, similar problems were investigated
in both the domestic and foreign literature. It is worth mentioning that static and dynamic pro-
blems observed in the structural friction field were particularly considered in monographs e.g. by
Giergiel (1990), Osiński (1986, 1998), Skup (2010) and papers by Gałkowski (1999), Grudziński
and Kostek (2005), Kaczmarek (2003), Sadowski and Stupkiewicz (2010) or Kosior (2005). The
examples of references by other foreign authors include works of Ando et al. (1995), Feeny et al.
(1998), Lin and Cai (1990), Person (1998), Popp (1998), Sextro (2002). The static analysis of
different types of cooperating joints is generally limited to investigations of displacements in an
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external loading function or determination of the static hysteresis loop (Fig. 1). The structural
friction phenomenon is rather a complex problem mainly due to: sophisticated mathematical
description of the structural friction phenomenon, loads and stresses distribution, nonlinearities
of strains and functions describing the structural hysteresis loop, roughness of the contacting
surfaces, etc.

Fig. 1. Theoretical hysteresis loop of the sleeve-pivot joint

2. Determination of the axial displacement in function of an external load for
loading stages of the sleeve-pivot joint

A simplified model of a sleeve-pivot joint loaded by an axial force αP is shown in Fig. 2a.
Displacements in the loaded sleeve-pivot joint have been examined in four different loading
stages. In each stage, an amount of dissipated energy was investigated. The section of the tested
object, having height ∆x has been depicted in Fig. 2. Theoretical considerations have been taken
separately for the sleeve and pivot. In the next step, the authors established a mathematical
formulation for the whole assembly.

Fig. 2. Physical model: (a) sleeve-pivot joint, (b) section of the pivot, (c) section of the sleeve,
(d) displacement scheme

Stage 1 – Loading of the sleeve-pivot joint section (Fig. 2a) (0 ¬ αP ¬ α1P )

The external radius r0 of the joint section (Fig. 2b) can be defined as

r0 = R− x tan β (2.1)

The force equilibrium equation in the section of the investigated sleeve-pivot joint is

∆σ1xF1 = ∆σ2xF2 → ∆σ2x =
r20

r2z0 − r20
∆σ1x (2.2)
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where: F1, F2 are the fields of the cross-sectional area of the pivot and sleeve section, ∆σ1x, ∆σ2x
– increase of normal stresses in the considered sleeve and pivot.

Considerations for the pivot section (Fig. 2b)

The equation of the equilibrium from the projection of forces in the x-axial direction can be
described as

−σ1xπr20 − µp cos β2πr0
∆x

cos β
− p sin β2πr0

∆x

cos β
+ (σ1x +∆σ1x)πr

2
0 = 0 (2.3)

where µ is the friction coefficient.
From transformed equation (2.3) and formula (2.2), the pressure per unit value p for the

contact surface joint is given by

p =
∆σ1x

∆x

r0

2(tan β + µ)
(2.4)

The equation of the equilibrium of forces operating in the pivot section in the radial direction
( y-axis, Fig. 2b) is

(−σ1r + µp sinβ − p cos β)2πr0
∆x

cos β
= 0 (2.5)

Substituting formula (2.4) into equation (2.5), the radial stresses are

σ1r =
−r0 cos β(1− µ tan β)
2(µ+ tanβ)

∆σ1x

∆x
(2.6)

Taking into account the symmetry of the system in the axial direction of x, y, and z

(Fig. 2bc), and in accordance with Hooke’s law (Dyląg et al., 1996), the relative radial strain ε1r
was determined

σ1z = σ1y = σ1r ε1z = ε1y = ε1r ε1z =
1

E1
[σ1z − ν1(σ1x + σ1y)] (2.7)

Taking into consideration dependences (2.7), equation (2.7)3 takes the form

ε1r =
σ1r(1− ν1)

E1
−
ν1σ1x

E1
(2.8)

where ν1, E1 are Poisson’s ratio and Young’s modulus of the pivot section.

As a result of the radial deformation of the pivot section, its radius changes. Its absolute
radial displacement can be described after substituting formula (2.6) into equation (2.8) by the
formula

∆r01 = ε1rr0 =
−r20 cos β(1− µ tan β)(1− ν1)

2E1(µ+ tanβ)

∆σ1x

∆x
−
ν1r0σ1x

E1
(2.9)

Considerations for the sleeve section (Fig. 2c)

The equation of the equilibrium from the projection of forces in the x-axial direction takes
the form

−σ2xπ(r2z0−r20)+µp cos β2πr0
∆x

cos β
+p sinβ2πr0

∆x

cosβ
+(σ2x+∆σ2x)π(r

2
z0−r20) = 0 (2.10)
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By transforming, reducing and substituting dependence (2.2), a formula describing pressure
per unit at the contact surface joint can be defined as in Eq. (2.4).

The equation of the equilibrium from the projection of forces in the y-radial direction
(Fig. 2b) takes the form

(σ2r − µp sinβ + p cos β)2πr0
∆x

cos β
= 0 (2.11)

hence, it appears

σ2r = −p cosβ(1− µ tan β) = pa (2.12)

The distribution of stresses σ2r and displacements up (Fig. 3) in the radial direction can be
determined by using Lame’s problem formulas (Dyląg et al., 1997), thus

σ2r =
E2

1− ν22

(

C1(1 + ν2)−
C2

r2
(1− ν2)

)

up = C1r +
C2

r
(2.13)

Fig. 3. Axially symmetrical stresses and displacements in the sleeve section

The integration constants C1 and C2 occurring in (2.13)1 were determined with the following
boundary conditions

σ2r =

{

−pa = p cos β(1− µ tan β) for r = r0
0 for r = rz0

(2.14)

Therefore

C1 =
(1− ν2)r20 cos βp(1− µ tan β)

E2(r
2
0 − r2z0)

C2 =
(1 + ν2)r

2
0r
2
z0 cos βp(1− µ tan β)
E2(r

2
0 − r2z0)

(2.15)

Substituting dependences (2.15) in (2.13)1, a formula describing the radial stresses in the
sleeve section was obtained in the following form

σ2r =
r20 cos βp(1− µ tan β)

r20 − r2z0

(

1−
r2z0
r2

)

(2.16)

Next, the radial displacement up (Fig. 2c) was determined from equation (2.13)2, additionally
taking into consideration integration constants (2.15)

up =
r20 cos βp(1− µ tan β)

E2(r20 − r2z0)

(

(1− ν2)r + (1 + ν2)
r2z0
r

)

(2.17)
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Finally, for r = r0 from (2.4), formula (2.17) after transformations can also be written in
another form

up

∣

∣

∣

r=r0
=
−r40 cos β(1− µ tan β)
2E2(r20 − r2z0)(tan β + µ)

(

(1− ν2) +
r2z0
r20
(1 + ν2)

)∆σ1x

∆x
(2.18)

The displacement ∆ between the cooperating surface elements of the joint (Fig. 2), by
making use of formulas (2.9) and (2.18), is given by

∆ = up
∣

∣

∣

r=r0
−∆r01 =

∆σ1x

∆x
z1 + σ1x

ν1r0

E1
(2.19)

where

z1 =
r20 cos β

2

1− µ tan β
tan β + µ

[ −r20
E2(r20 − r2z0)

(

1− ν2 +
r2z0
r20
(1 + ν2)

)

+
1− ν1
E1

]

(2.20)

A mutual axial displacement of the pivot and sleeve joint sections (Fig. 2) for the first stage
of the loading can be described as follows

u =
∆

tan β
=
∆σ1x

∆x

z1

tan β
+ σ1x

ν1r0

E1 tan β
(2.21)

thus formula (2.21) through making use of formula (2.20) takes the form

u1 = η3(R− x tan β)2σ′1x + η4(R− x tan β)σ1x (2.22)

where

η1 =
χ

E2

(

1− ν2 +
r2z0
r2
(1 + ν2)

)

+
1− ν1
E1

η2 =
cos β(1− µ tan β)
2(tan β + µ) tan β

η3 = η1η2 η4 =
ν1

E1 tan β
χ =

1
(rz0

r

)2
− 1

(2.23)

therefore, the axial strain displacement derivative (formula (2.22)) with respect to the distance x
gives:

ε1x =
du1

dx
= η3(R− x tan β)2σ′′1x + (R− x tan β)(η4 − 2η3 tan β)σ′1x − η4 tan βσ1x (2.24)

The relationship between the stresses and axial strains according to Hooke’s law is

ε1x =
1

E1
[σ1x − ν1(σ1z + σ1y)] (2.25)

Taking into account the symmetry of the system, formula (2.7)1,2 takes the form

ε1x =
σ1x

E1
− 2σ1r

ν1

E1
(2.26)

After substituting equations (2.1) and (2.6) in (2.26) and transformisg, we get

ε1x =
σ1x

E1
+ η5(R− x tan β)σ′1x η5 =

ν1 cosβ(1 − µ tan β)
E1(tan β + µ)

(2.27)

Comparing formula (2.24) to (2.27), a homogeneous quadratic differential equation with
variable coefficients has been obtained

η3(R− x tan β)2σ′′1x + η6(R− x tan β)σ′1x − η7σ1x = 0

η6 = η4 − 2η3 tan β − η5 η7 = η4 tan β +
1

E1

(2.28)
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Substituting σ1x = (R− x tan β)λ into (2.28), the characteristic equation is given by

λ2 −B4λ−C12 = 0 B4 = 1 +
η6

η3 tan β
C12 =

η7

η3
tan2β (2.29)

the characteristic equation discriminant is

∆41 = B
2
4 + 4C12 > 0 λ9,10 =

B4 ∓
√
∆41

2
(2.30)

therefore, the general solution to the differential equation may be written in the form

σ1x = C13(R − x tan β)λ9 + C14(R − x tan β)λ10 (2.31)

The integration constants C13 and C14 were designated for the next boundary conditions, thus

σ1x =











0 for x = 0

αP

πr2
for x = H

(2.32)

therefore

C13 = −C14Rλ10−λ9 C14 =
αP

πr2(rλ10 −Rλ10−λ9rλ9)
r = R−H tan β (2.33)

Finally

σ1x = C14[(R − x tan β)λ10 − (R − x tan β)λ9Rλ10−λ9] (2.34)

The stress derivative is given by

σ′1x = C14 tan β[λ9R
λ10−λ9(R− x tan β)λ9−1 − λ10(R− x tan β)λ10−1] (2.35)

Considering x = H, we get

σ′1x(x = H) = C14 tan β(λ9R
λ10−λ9rλ9−1 − λ10rλ10−1) (2.36)

Substituting obtained solutions (2.33), (2.32), (2.34) and (2.36)) in equation (2.22) depending
on the operating external force αP , the formula of displacement of the extreme cross-section
(x = H) takes the form

u1(x = H) =
αP

πr

(

η4 +
η3 tan β(λ9R

λ10−λ9rλ9 − λ10rλ10)
rλ10 −Rλ10−λ9rλ9

)

(2.37)

Formula (2.37) describes the loading process of the investigated sleeve-pivot joint depicted in
Fig. 1, interval 1.

Stage 2 – Unloading of the sleeve-pivot joint section without sliding

(α2P ¬ αP ¬ α1P )

Unloading of the investigated system consists of decreasing the force value from α1P down
to α2P . This stage is represented in Fig. 1 as a straight line A1A2 (interval 2). This process
does not produce any changes in the value of displacement.
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Stage 3 – Unloading of the sleeve-pivot joint section with sliding

(α3P ¬ αP ¬ α2P )

If we consider the friction forces per unit value equal to −µp acting on the considered slice
(the stress is equal to σx), the sliding phenomenon of cooperating surfaces will occur. The
loading state of the investigated joint at this stage is depicted in Fig. 4. Similarly to the first
stage, formulas are obtained for the unloading process.

Fig. 4. The unloading of the object (a) pivot sector, (b) sleeve sector

Considerations for the pivot section (Fig. 4a)

The equation of equilibrium of forces operating in the joint along the x-axis (Fig. 4a) takes
the following form

−σ1xπr20 − p sin β2πr0
∆x

cos β
+ µp cos β2πr0

∆x

cos β
+ (σ1x +∆σ1x)πr

2
0 = 0 (2.38)

The equation of the equilibrium of forces in the radial direction on the y-axis (Fig. 4a) is
given by

(−σ1r2− µp sin β − p cos β)2πr0
∆x

cos β
= 0 (2.39)

Considerations for a sleeve section (Fig. 4b)

Considering the equilibrium of force in the horizontal direction (Fig. 4b), we get

−σ2xπ(r2z0−r20)−µp cos β2πr0
∆x

cos β
+p sinβ2πr0

∆x

cosβ
+(σ2x+∆σ2x)π(r

2
z0−r20) = 0 (2.40)

The equation of the equilibrium of forces in the radial direction on the y-axis (Fig. 4b) takes
the following form

(σ2r + µp sinβ + p cos β)2πr0
∆x

cos β
= 0 (2.41)

Similarly to the first stage, the axial displacement in the third stage (u3(x = H)) may be written
in the form

u3(x = H) =
αP

πr

(

η4 +
η9 tan β(λ11R

λ12−λ11rλ11 − λ12rλ12)
rλ12 −Rλ12−λ11rλ11

)

(2.42)

where

η9 = η1η8 η8 =
cos β(1 + µ tan β)

2 tan β(tan β − µ)
λ11,12 =

B5∓
√
∆43
2

∆43 = B
2
5 + 4C15 > 0 B5 = 1 +

η10

η9 tan β
η10 = η4 − 2η9 tan β − c1

c1 =
ν1 cos β(1 + µ tan β)

E1(tan β − µ)
C15 =

η7

η9 tan2 β
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Formula (2.42) describes the unloading process of the sleeve-pivot joint, depicted in Fig. 1
(interval 3).

Stage 4 – Reloading process of the investigated joint (α3P ¬ αP ¬ α4P )

At the initial moment of the reloading process α3P to α4P , we do not observe the movement
of cooperating elements in the investigated joint. The constant displacement is continued until
the friction forces µp change the sign (Fig. 1, interval 4).

3. Determining of the energy dissipation for a single loading cycle of the
investigated system

During a single loading cycle, the amount of dissipated in the system energy can be expressed
by
∫

αP (u) du and corresponds to the field of the hysteresis loop in the triangular form OA1A2
or the quadrangle form A1A2A3A4 (α3 > 0) (Fig. 1), depending on the loading method of the
investigated system.
The amount of energy dissipation for the single loading cycle (Fig. 1) can be given in the

following form

ψ =
P

2
umax(α1 − α2)−

P

2
umin(α4 − α3) (3.1)

Assuming α = α1 and independent from α parameters η1-η9, r, R, λ9-λ12, β, H, formula (2.37)
takes the form

u1(x = H) = u1max = α1P (m17 +m18) (3.2)

and for α = α2, formula (2.42) is given by

u3(x = H) = u3max = α2P (m19 +m18) (3.3)

where

m17 =
η3 tan β(λ9R

λ10−λ9rλ9 − λ10rλ10)
πr(rλ10 −Rλ10−λ9rλ9)

m18 =
η4

πr

m19 =
η9 tan β(λ11R

λ12−λ11rλ11 − λ12rλ12)
πr(rλ12 −Rλ12−λ11rλ11)

(3.4)

Comparing formulas (3.2) and (3.3), we get

α2 = α1
m17 +m18
m19 +m18

(3.5)

Assuming α = α4, formula (2.37) takes the form

u1(x = H) = u1min = α4P (m17 +m18) (3.6)

For α = α3, formula (2.42) is given by

u3(x = H) = u3min = α3P (m19 +m18) (3.7)

Similarly – for stage 4, when the friction forces change their direction, α4 value was determined
by comparison of formulas (3.6) and (3.7), therefore

α4 = α3
m19 +m18
m17 +m18

(3.8)

Finally substituting expressions (3.2), (3.5), (3.7) and (3.8) in formula (3.1). we get

ψ =
P 2

2
(m19 −m17)

(

α21
m17 +m18
m19 +m18

− α23
m19 +m18
m17 +m18

)

(3.9)
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4. Results of numerical simulations

Simulation tests were carried out in the Mathematica 6.1 environment. The numerical calcu-
lations were conducted assuming the following values of parameters taken directly from the
experimental setup: ν1 = ν2 = 0.29, E1 = E2 = 2.1 · 1011 N/m2, µ = 0.15, β = 12◦, 14◦,
16◦, 18◦, R = 38 · 10−3m, r = 28.03 · 10−3m, H = 40 · 10−3m.
As a result of numerical calculations, hysteresis loops were obtained for both frictional and

elastic models (Figs. 5 and 6) of the cooperating elements. Additionally, Lame’s problem has
been taken into account.

Fig. 5. Structural hysteresis loops for the frictional sleeve-pivot model for various loading values P :
1 – 25 kN, 2 – 50 kN, 3 – 75 kN, 4 – 100kN and β = 12◦, v = 0.29, µ = 0.15

Fig. 6. Hysteresis loops for different values of coning angles of the friction joint; v = 0.29, µ = 0.15

the data depicted in Figs. 5 and 6 enable comparison of the amount of energy dissipated in
the investigated joint for various load values (Fig. 5) and cone angle values (Fig. 6). Analyzing
the results, we can observe that higher values of the loading forces result in increasing of the
investigated displacement and the amount of energy dissipated in the system (Fig. 5).

The conducted numerical tests revealed that the increasing of the cone angle β results in
linear decreasing of the structural hysteresis loop area (Fig. 6). Detailed analysis of the data
depicted in Fig. 7 enabled determination of the optimal value of the friction coefficient (µ = 0.13)
assuming the highest amount of the dissipated energy criteria.

The data depicted in Fig. 8 reveals characteristics of the hysteresis loop area ψ in function of
the loading force P . Numerically acquired characteristics ψ(P ) have strongly nonlinear character
for all considered cone angle values. Analyzing the data presented in Fig. 8, one can observe
that the obtained characteristics ψ(P ) are nonlinear for different values of coning angles.
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Fig. 7. Energy losses in function of the friction coefficient for the unloading process of the tested model;
P = 100 kN, β = 12◦, v = 0.29

Fig. 8. Energy losses in function of the loading for various values of the cone angle β of the investigated
system; v = 0.29, µ = 0.15

As a conclusion, it is worth mentioning that in the design process of material systems and
constructions including friction cone joints, it is possible to use the natural way of vibration
damping by using structural friction occurring in the friction cone joint. The obtained results
confirmed that by an appropriate selection of geometrical parameters of the tested joint (for
example Fig. 6 or Fig. 8) and material properties (for example Fig. 7), the amount of natural
energy dissipated in the investigated system can reach its highest possible value.

The obtained results have confirmed that conducting such kind of experimental and numeri-
cal tests can be very useful. The presented in the paper analytical considerations allow one – at
the initial stage of design – to examine vibration damping strategies without involving the real
model of the expensive cone joint element. Such an approach seems to be especially reasonable
from the economical point of view.

5. The experimental model

The main goal of experimental testing is to choose the most suitable mathematical model that
would constitute the best approximation of the real model response, i.e. minimizing the diffe-
rences between the areas of experimental and numerical hysteresis loops. In order to perform
experimental tests, a real model of the friction pair of the sleeve-pivot joint was designed and
manufactured (Fig. 9). The experimentally investigated model was made of steel S2. In the te-
sting specimen, a cone angle β = 14◦ was applied. The overall construction model is shown in
Fig. 9. It was designed in such a way that its position in the machine gripping jaws during the
loading process would not change (Fig. 9 – elements 3 and 4). To measure displacements of the
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system, extensometers 2 and 3 (Fig. 10) were used with a measurement base of 10mm and a
measurement nominal range ±1.2mm (sub-range of the nominal range ±0.24mm), which were
included in the standard equipment of the universal strength testing machine MTS 809 (Fig. 10
– elements 2, 3).

Fig. 9. Design of the experimental model of a sleeve-pivot friction joint (decomposed system): 1 – lower
pressure plate grip, 2 – upper grip, 3 – pivot, 4 – sleeve

Fig. 10. Fastening of the tested model and an overview of its components: 1 – sleeve-pivot,
2 – extensometer type Ext 26, 3 – extensometer type Ext COD; 4, 5 – upper and lower gripping jaws of

the MTS testing machine, 6 – steady pin, 7 – programmer

The method of fastening extensometers 2 and 3 (Fig. 10) to tested elements 3 and 4 (Fig. 9)
is illustrated in Fig. 10. In elements 3 and 4 (Fig. 9), a steady pin was mounted in order to
ensure a coaxial measurement base for extensometers 2 and 3 (Fig. 10). In order to provide the
best conditions for the cooperating joined elements (maximum contact surface, surface pressure,
smoothness of the motion), the conical surfaces were subject to a surface finishing process that
consisted of very precise grinding.

6. The results of experimental testing

The tests were conducted using the MTS testing machine at the Institute of Machine Design
Fundamentals of Warsaw University of Technology. In the measurements, the Test Ware SX
special software has been used. The fastening scheme of the investigated system is illustrated
in Fig. 10. The single measurement methodology consisted of initial loading the system up to
a maximal force value Pmax limited by safety loading threshold of the tested material (elastic
range of deformations). Next, the system was unloaded down to the pre-assumed value Pmin
and reloaded again. The loading process was fully controlled by the computer to avoid arising
the torque while the experiment was conducted. Each experimental test was preceded by the
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calibration processes of both the extensometer and the control-measurement system. All expe-
rimental data, acquired from the laboratory tests was transformed into suitable characteristics
plotted in the Mathematica 6.1 software. (Figs. 11 and 12). The same numerical environment
was applied to approximate the obtained graphs and to calculate the area of experimental hy-
steresis loops with a numerical integration method. Typical experimental results are depicted in
Figs. 11 and 12. The system was loaded up to Pmax = 25, 50, 75, 100 kN, and then unloaded to
Pmin = 5kN.

Fig. 11. Verification of the experimental and numerical data for Pmax = 50kN,
number of loading cycles: 4

Fig. 12. Experimental hysteresis loops for the model loaded by various forces Pmax,
number of loading cycles: 4

In Fig. 12, a set of experimentally determined hysteresis loops has been depicted. The pre-
viously mentioned characteristics have been obtained for various loading forces Pmax from 25 kN
to 100 kN, and a constant unloading condition Pmin = const = 5 kN.

The loading program realized on the tensile strength machine consisted of linear increasing
of the compression force value up to Pmax value, maintaining the maximal load for 10 s, and
unloading process down to the threshold value Pmin. Four independent loading cycles have been
realized.

It has to be mentioned, that the described loading process of the cone joint is very com-
plex. It is quite difficult to separate the structural friction phenomenon from the experimental
data mainly due to the existence of internal friction, which was neglected in the theoretical
considerations.

Table 1 shows the comparison of energy losses obtained as a result of numerical simulations
and real experimental tests and the percentage difference between them.
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Table 1. The percentage difference between average values of experimental and numerical hy-
steresis loop areas

No.
Load Theoretical Experimental Difference
[KN] model ψ [Nm] model ψ [Nm] [%]

1 25 207.192 166.64 19.57

2 50 827.716 767.95 7.22

3 75 1862.360 1739.08 6.62

4 100 3310.860 3113.04 5.97

7. Conclusions

The paper presents a mathematical model of the sleeve-pivot cone joint and results of numerical
simulations and experimental tests conducted on a real model. A comparative analysis allows one
to formulate a conclusion that the numerical response of the model reflects the real behaviour
of the investigated cone joint. The characteristics depicted in Fig. 11 are comparable – both
quantitatively and qualitatively. The divergence between the theoretical and experimental results
is mainly caused by the simplifying assumptions taken for the mathematical model, i.e. constant
friction coefficient, negligence of internal friction, precision of manufacturing of the real model,
problems related to the fixing of the model in the testing machine (positioning of the model in
gripping jaws of the testing machine) and problems encountered during measurements.
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