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In this paper, an experimental investigation, an analytical analysis and a numerical model of
a typical four-point bending test on a polypropylene honeycomb multi-layer sandwich panel
are proposed. The polypropylene honeycomb core is modelled as a single solid and multi-layer
of equivalent material properties. Analytical and numerical (finite element) homogenization
approaches are used to compute the effective properties of the single honeycomb core and
analytical homogenization of the multi-layer one. The results obtained by numerical simu-
lation (finite element) of four-point bending are compared with the experimental results of
a polypropylene honeycomb core/composite facing multi-layer sandwich structures.

Keywords: multi-layer sandwich, polypropylene honeycomb, modelling, bending

1. Introduction

Owing to their merits of a high strength/weight ratio, heat resistance, sound insulation and easy
assembly, sandwich structures have been widely used in aerospace, automotive and construction
industries (Yu and Cleghorn, 2005; Wang and Yang, 2000; Kim and Hwang, 2000). A typical
sandwich panel is composed of three layers, in which two thin sheets (faces) of a stiff and strong
material are separated by a thick core of low-density materials (Allen, 1961). Considering the
very varied use of these materials in numerous fields, it is essential to know their mechanical
properties in order to predict and calculate their behaviour in specific and diverse environments.
One thus finds the faces possessing particular mechanical characteristics and the honeycomb
core being able to have different specific mechanical properties. The assembly of these two parts
is carried out by joining, welding or brazing with another material of different behaviour.
The aim of this work concerning the research subject “Modelling of Composite Multi-layer

Sandwichs” is to model the bending behaviour of sandwich structures. The main steps in this
study are: i) the determination of elastic constants of the material by analytical and numerical
homogenization, and ii) the comparison of the results obtained by numerical modelling with the
experimental data recorded for a polypropylene honeycomb core/composite facing multi-layer
sandwich structure.

2. Sandwich material

2.1. Mechanical properties

A typical sandwich panel consists of two thin faces with a thickness t, separated by a
lightweight core of thickness hc, as illustrated in Fig. 1. The overall depth and width of the
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panel are h and b, respectively. The faces are typically bonded to the core to provide a load
transfer mechanism between the main components of the sandwich panel.

Fig. 1. A structure of a sandwich composite

The flexural rigidity D of a sandwich beam is the sum of flexural rigidities of the faces and
the core measured with respect to the centroidal axis of the entire section. It can be expressed
as
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where Ef and Ec are Young’s moduli of the face sheet and core, respectively, and d = t+ hc.
Df is the bending stiffness of the face sheet about its own neutral axis, D0 – stiffness of the face
sheets associated with bending about the neutral axis of the entire sandwich, and Dc – stiffness
of the core (Allen, 1961). Since the core is stiff in shear but generally soft, its Young’s modulus
is much smaller than that of the face sheet. By assuming Ec ≪ Ef and the face sheets are thin,
the expression for D becomes

D ≈ Ef
b(h3 − h3c)

12
(2.2)

The shear stiffness Q is given by the following equation

Q = Gc
b(h− t)2

hc
(2.3)

The face stress is defined such that

σf =
P (L2 − L1)

2tbd
(2.4)

In the core, the shear stress is given as

τc =
P

2bd
(2.5)

The elastic deflection wt for a sandwich beam at loading points (L2 − L1)/2 is the sum of the
flexural and shear deflections for a four-point bending (Fig. 2)

wt = w1 + w2 =
P (L2 − L1)

2(L2 + 2L1)

24D
+
P (L2 − L1)

2S
(2.6)

Fig. 2. The four-point bending test
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3. Materials and experimental method

3.1. Materials

The sandwich panels used in this study consist of three main parts (Fig. 3):

• Two face sheets of composite glass fibres (T800/M300)/polyester resin with the nominal
face thickness of 1mm

• A honeycomb polypropylene core

• Intermediate layers of composite glass fibres M450/polyster resin with the nominal inter-
mediate layers thickness of 0.05mm.

The composite structures are pressed in only one pass. The mechanical properties of the basic
materials are given in Tables 1 and 2.

Table 1. Mechanical properties of a polypropylene honeycomb core

Properties Polypropylene honeycomb core

Density [kg/m3] 80

Shear modulus [MPa] 8

Shear strength [MPa] 0.5

Elastic modulus [MPa] 15

Table 2. Mechanical properties of polyester resin/glass fibres T800/M300 and M450 composites

Properties T800/M300 composite M450 composite

Young’s modulus [MPa] 9162 5500

Tensile strength [MPa] 321 200

Shear modulus [MPa] 2101 2115

Thickness [mm] 1 0.05

Poisson’s ratio 0.3 0.3

3.2. Experimental method

The tests were carried out using a four-point bending testing fixture device shown in Fig. 4.
The device, especially designed for such tests, was connected to a servo-hydraulic universal
testing machine INSTRON 4302 controlled by an INSTRON electronic unit. These tests were
performed with respect to the NFT54-606 norm. To check the reproducibility of the results, five
beams by composite type were tested. The crosshead displacement rate was 3mm/min. The
sample dimensions are grouped in Table 3.

Table 3. Specimen dimensions

Specimen b [mm] h [mm] hc [mm] L1 [mm] L2 [mm] L [mm]

Single core 35 22 20 120 300 440

Double core 35 22.05 20.05 120 300 440

Triple core 35 22.1 20.1 120 300 440

Quadruple core 35 22.15 20.15 120 300 440
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Fig. 3. Honeycomb multi-layer sandwich

Fig. 4. Static four-point bending test

4. Experimental results

Figure 5 depicts the load-displacement curve for multi-layer honeycomb composite structures
solicited in four point bending. The bending behaviour is similar and can be described in three
principal phases: the first phase is initial linear elastic behaviour followed by a phase of nonlinear
one in which the maximum loading is reached. In the last phase, a reduction in the load applied
is observed till the total rupture of the samples. The linear behaviour corresponds to the work
of the skins in traction and compression, whereas the nonlinear behaviour mainly depends on
the core properties under the effect of the shear stress. This figure shows also an increase of the
mechanical properties of facing stress, core shear stress and bending stiffness by about 50, 51 and
36 percent, respectively, as the number of layers increases from single to quadruple layers. The
assessed mechanical properties of these composite multi-layers sandwiches are given in Table 4.

Table 4. Mechanical properties of the multilayer sandwich structures

Specimen
Load Facing stress Core shear stress Bending stiffness
[N] [MPa] [MPa] [N·mm2]

Single core 520 63 0.36 706 · 105

Double core 736 90 0.50 711 · 105

Triple core 931 113 0.63 714 · 105

Quadruple core 1065 129 0.72 718 · 105
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Fig. 5. Typical load/displacement curves for multilayer sandwiches

5. Effective properties of the single honeycomb core

5.1. Analytical homogenization approach

The development of constitutive material models for honeycomb materials is complicated due
to highly anisotropic properties of the material. Computationally efficient modelling methods and
constitutive laws are required to reduce time and whilst being accurate enough to realistically
represent the overall structural behaviour. The analytical expressions used to determine the
effective elastic properties of the cellular hexagonal honeycomb core are based on the works
of Gibson and Asby (1997), Masters and Evans (1996), Grédiac (1993), Shi and Tong (1995),
Becker (1998), Xu and Qiao (2002), Meraghni et al. (1999). Appropriate expressions are given
in Appendix A.

The elemental beam theory has been adopted (Fig. 6) for each component inside the unit-cell’
to arrive at different expressions for effective properties employing the strain energy concept.
The length of the diagonal and vertical struts including the angle as well as their thickness have
been kept as variable. The presented analytical approach is simple and computes the effective
properties in a fraction of the time that is required for FE analysis with a minimum change
in the input file. The proper implementation of this method embedded in large quasi-static or
dynamic simulations (where a part of the structure could be modelled with a detailed finite
element mesh and the rest could be modelled with a single solid layer of equivalent material
properties) would give high computational advantage, which is essential in large-scale modelling
and simulation environment.

Fig. 6. Deformation mode of a honeycomb structure according to Gibson and Ashby (1997)
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5.2. Numerical homogenization approach

The aim is to determine the elastic properties by a numerical homogenization method applied
to a Representative Volume Element of the honeycomb to compare the results with those achie-
ved analytically. The Representative Volume Element (RVE) (Fig. 7) consists in 40 cells meshed
with plate finite elements with 4 nodes and 6 degrees of freedom per node. Every foil contains
12 elements: 4 according to height and 3 to length. To estimate the various elastic moduli, a
displacement is imposed on the face of the RVE in a given direction while the opposite face is
being fixed. Symmetries are taken into account by using the appropriate boundary conditions.
Nine simulations are necessary to determine nine elastic constants of the single honeycomb. Fi-
gure 8 presents an example of the tensile simulation along the direction i (i = x, y, z) which is
used to determine the three elasticity moduli E1, E2 and E3 and then six Poisson’s ratios. The
finite element results are depicted in Table 5.

Fig. 7. Representative Volume Element “RVE

In Fig. 7 lx, ly and lz are the lengths of the Representative Volume Element, with:
lx = 64.7mm, ly = 36mm, lz = 10mm. The mechanical properties of the honeycomb are
related to its geometrical characteristics which are (Fig. 6): c = a = 4.6188mm, e = 0.24mm,
l = 10mm, φ = 30◦.

Fig. 8. RVE with the imposed displacement in the X , Y and Z directions

The comparison between the results of Gibson’s analytical model and those obtained by the
numerical simulation made it possible to better determine the values of the elasticity modu-
lus. One can note that the variation of the results between the numerical simulation and the
analytical model is approximately 7.8% for E1 and 5% for Poisson’s ratio, which is relatively
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Table 5. Mechanical properties of a single polypropylene honeycomb core

Polypropylene Finite element Gibson and Ashby
honeycomb code (Ansys) (1997)

E1 [MPa] 0.448 0.486

E2 [MPa] 0.545 0.486

E3 [MPa] 96.3 90

ν12 1.05 1

ν13 0.002 0.002

ν23 0.002 0.002

ν31 0.4 0.4

ν32 0.4 0.4

G12 [MPa] 0.1292 0.1214

G21 [MPa] 0.0664

G23 [MPa] 16.93 16.44

G32 [MPa] 1.2698

G13 [MPa] 17.11

G13min [MPa] 24.673

G13max [MPa] 27.415

G31 [MPa] 1

acceptable by taking Gibson’s model as the reference. In the case of traction in the Y direction,
the variation of the results between the two models is approximately 12% and 25% for E2 and
Poisson’s ratio, respectively. For displacement in the Z direction, the variation is approximately
7% for E3. On the other hand, the variation of Poisson’s ratio is very weak. Concerning the shear
modulus G12, the variation of the results between Ansys and Gibson are approximately 6.4%.
This relatively important error weakly affects the modulus, therefore it has little influence on
the sandwich mechanical properties. The shear moduli G21, G31 and G32 are obtained only by
the numerical simulation. Gibson does not give comparative values.

6. Effective properties of the multi-layer honeycomb core

The mechanical characteristics of the M450 intermediate layer (isotropic composite material) are
presented in Table 2. The analytical expressions used to assess the effective elastic properties of
the multi-layer honeycomb core are determined by the following equation

X =
1

h

n
∑

i=1

Xihi (6.1)

The mechanical properties of these composite multi-layer sandwiches are listed in Table 6.

7. Effective properties of the composite T800/M300 face

The composites T800/M300 used in this study are made of fibers well-balanced and oriented
along two perpendicular directions: one is called the warp and the other the weft direction. For
an approximation of the elastic properties of the fabrics, one can consider them to consist of
two plies of the unidirectionals crossing at 90◦ angles with each other. One can then use the
following notation: n1 – number of warp yarns per meter, n2 – number of fill yarns per meter
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Table 6. Mechanical characteristics of the multi-layer core

Multilayer cores Double core Triple core Quadruple core

E1 [MPa] 14.2 27.84 41.42

E2 [MPa] 14.2 27.84 41.42

E3 [MPa] 103.49 116.9 130.27

ν12 1 1 1

ν13 0.002 0.003 0.002

ν23 0.002 0.003 0.002

G12 [MPa] 5.39 10.64 15.86

G23 [MPa] 10.54 26.84 32.02

G13 [MPa] 29.81 35 40.16

k =
n1
n1 + n2

=
1

2

and fiber modulus: Ef ′ = 73000MPa, Gf = 30000MPa, νf = 0.25; resin modolus:
Em = 4000MPa, Gm = 1400MPa, νm = 0.4; fiber volume fraction Vf = 28%.

One can use the following relations to characterize the unidirectional ply:

— modulus of elasticity along the direction of the fiber

El = Ef ′Vf + EmVm (7.1)

— modulus of elasticity in the direction transverse to the fiber

Et = Em
( 1

1− Vf +
Em
Ef
Vf

)

(7.2)

— shear modulus

Glt = Gm
( 1

1− Vf +
Gm
Gflt
Vf

)

(7.3)

— Poisson’s ratio

νlt = νfVf + νmVm (7.4)

This two plies of the T800/M300 composite can be considered together. The fabric layer is
replaced by a single orthotropic one. One can therefore obtain the mechanical characteri-
stics of the T800/M300 which are determined by the formulas presented in Table 7 (Gay,
1997; Berthelot, 1997). Once the honeycomb core and T800/M300 composite are homogenized,
the whole sandwich panel is likened to a beam constituting of three elastic layers: orthotro-
pic/orthotropic/orthotropic that will be used in the numerical model described below.

8. Numerical simulation results

Finite element calculations are also performed on CASTEM 2008. The honeycomb sandwich
structure is modelled using 3D solid (eight nodes and six DOFs per node) elements (Mindlin,
1997). For symmetry reasons, only a quarter of the sandwich panel (Fig. 9) is considered in the
present analysis. The applied boundary conditions are as follows: at the level of the support,
the transversal displacement Uz is fixed to zero; at the symmetry level on face 1, the in-plane
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Table 7. Three-dimensional elastic properties of composite T800/M300

E1 [MPa] E1 = kEl + (1− k)Et 9135

E2 [MPa] E2 = (1− k)El + kEt 9135

E3 [MPa] E3 = Ematrix 4000

ν12 ν12 =
νlt

k + (1− k)
El
Et

0.2

ν13 ν13 =
Et
2G13

− 1 0.3

ν23 ν23 = ν13 0.3

G12 [MPa] G12 = Glt = Gm

(

1

1−Vf+
Gm
Gf
Vf

)

1616

G23 [MPa] G23 = Gm +
GmVf

Gm
Gf −Gm

+
Km + 2Gm
2Km + 2Gm

(1− Vf )
1769

G13 [MPa]
G13 = Gm +

GmVf
Gm

Gf −Gm
+
Km + 2Gm
2Km + 2Gm

(1− Vf )
1769

Avec Km =
Em

2(1− 2νm)

Fig. 9. Modelling of four points on bending CASTEM 2008

displacement Ux and the rotations hy and hz are fixed to zero as well; then on face 2, the
in-plane displacement Uy and the rotation hx and hz are likewise zero.

The sandwich plate is composed of the composite face and multilayer honeycomb core whose
dimensions are: length L = 440mm, width b = 35mm, core thickness hc = 20mm, face
thickness t = 1mm and intermediate layer thickness t′ = 0.05mm.

Prior to initiating the evaluation study, an analysis of mesh convergence is carried out to
ensure the accuracy of the proposed finite element solution since it is considered in the present
study as the reference. The convergence was achieved with 4200 elements: 20 elements following
the x-axis, 15 elements in the thickness of the core, 3 elements in the thickness of each skin and
10 elements following the y-axis (Fig. 10).

Figures 11a and 11b show the evolution of the load versus the displacement of tow sandwich
materials with a single and double core, respectively. These figures compare the bending pro-
perties obtained experimentally with that obtained by the 3D finite element model. The values
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Fig. 10. Finite-element mesh of the sandwich structure

indicate a good prediction of the bending properties with a maximum difference of 7 % between
the numerical prediction and experimental results. This gap is very reasonable by taking into
account the systematic defects of the manufacturing process, in particular the air bubbles and
uncertainties of the used devices.

Fig. 11. Comparison of experimental and numerical bending results of the single (a)
and double (b) honeycomb

9. Conclusion

Experimental and numerical modelling investigations of a typical four-point bending test of
single and multi-layer honeycomb sandwich structures have been performed. Analytical and
numerical (FE) homogenization approaches have been used to compute the effective properties
of the single and multi-layer honeycomb core as well as the T800/M300 composite face.

The correlation between the effective properties of the single honeycomb core obtained by
the analytical and numerical modelling is in good agreement. Compared to the lower bound of
Gibson, the shear modulus G13 is low. This can be improved by coupling node cells of the single
honeycomb core.

The comparison between the experimental results and those obtained by the numerical si-
mulation of the sandwich structures in honeycomb polypropylene shows a slight difference. This
variation remains very reasonable by taking into account the systematic defects of the manufac-
turing process, in particular the air bubbles and uncertainties of the used devices.

Acknowledgments

The authors would like to gratefully acknowledge P.A. Technologies for instrumenting the polypro-

pylene honeycomb. This work was supported by the Departement de la Recherche et de l’Enseignement

Suprieur of REGION LORRAINE, France.



Numerical simulation and experimental bending... 441

Appendix A

Table 8. The effective elastic properties of honeycomb

Linear elasticity
The effective elastic properties

of honeycomb

Tensile modulus in the X1 direction E1 = Es
(e

l

)3 cosφ

(1 + sinφ) sin2 φ

Tensile modulus in the X2 direction E2 = Es
(e

l

)3 1 + sinφ

cos3 φ

Shear modulus in the (X1,X2) plane G12 = Es
(e

l

)3 1 + sinφ

3 cos φ

Poisson’s ratio in the (X1,X2) plane ν21 =
(1 + sinφ) sinφ

cos2 φ

Poisson’s ratio in the (X1,X2) plane ν12 =
cos2 φ

(1 + sinφ) sinφ

Tensile modulus in the X3 direction E3 = Es
(e

l

)

e

l
+ 2

2(1 + sinφ) cosφ

Transverse shear G23 = Gs
1 + 2 sin2 θ

2 cosφ(1 + sinφ)

e

l

Transverse shear G13 = Gs
cosφ

1 + sinφ

e

l

Poisson’s ratio
ν32 = ν31 = ν (solid material)

ν13 =
E1
E3
ν31 ν23 =

E2
E3
ν32
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