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The paper focuses on the comparison of identification of the mathema-
tical model of an inspection mobile robot by making use of fuzzy logic
systems and neural networks. The solution to the problem was carried
out through simulations and experimentally.
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1. Introduction

It is hard to take all phenomena into consideration when modelling mani-
pulators or robots, therefore the corresponding mathematical models are not
known exactly. Correct analysis of dynamics of such complex systems requires
identification of dynamical equations of motion (Giergiel et al., 2000, 2002).
The identification of mathematical models with the use of neural networks

and fuzzy logic systems enables one to recognize unknown parameters and
adjust the mathematical model to the real object. The proposed in the paper
methods of identification were verified on a prototype object.

2. Identification using fuzzy logic

In the design of fuzzy sets, a the most important is specification of the consi-
deration set. In the case of an ambiguous term ”high temperature”, another
value will be considered too high, if we accept the temperature interval 0-10◦C,
and other, if we accept the temperature interval 0-1000◦C. The consideration
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domain or the set of action will be marked with the X letter. We must re-
member that X is a fuzzy set. The definition of the fuzzy set (Rutkowska et
al., 1997) was formulated as follows:

A fuzzy set in a non-empty space X, written down as A ⊆ X, is called a
set of pairs

A = {(x, µA(x)); x ∈ X} (2.1)

where
µA : X → [0, 1] (2.2)

is a membership function of the A fuzzy set. This function assigns for eve-
ry element x ∈ X some affiliation degree to the fuzzy set A. Three cases
are distinuished: full affiliation of the element x to the fuzzy set A, when
µA(x) = 1, no affiliation of the element x to the fuzzy set A, when µA(x) = 0,
and partial affiliation to the fuzzy set A of the element x, when 0 < µA(x) < 1.
There are many standard forms of the membership function, which have be-
en described in literature, see e.g. Rutkowska et al. (1997), however the most
common are: gauss functions, triangular functions and trapezoidal functions
(Driankow et al., 1996; Osowski, 1996).
In systems with fuzzy logic the rules are symbolic ”IF-THEN”, quality

variables are described with linguistic variables and there are fuzzy operators
like ”AND”, so the sample rule can be written as follows

IF x1 is small AND x2 is large THEN y is average (2.3)

A mathematical model was adopted (Fig. 1b) for description of motion of an
inspection robot (Fig. 1a).
The dynamic equation of motion (Giergiel and Kurc, 2006a,b,c, 2007) is
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where: mi, i = 1, . . . , 5 are masses. IBy, ICy, IFy, IGx – mass moments of
inertia, N1, N2 – forces of pressure of wheels, f1, f2 – arms of resistance of
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Fig. 1. (a) Inspection robot, (b) model of the robot

the rolling wheels, M – torque of the motor, l4 – distance between FG and
BC points, r – radius of wheels, zs, zk – number of teeth of cogwheels.
The assumed data is

m1 = 0.004 kg m2 = 0.554 kg
m3 = 0.075 kg m4 = 0.05 kg
m5 = 0.015 kg IBy = 0.000034692 kgm2

ICy = 0.000001971 kgm2 IFy = 0.000018807 kgm2

IGx = 0.000000312 kgm2 f1 = 0.0015m
f2 = 0.003m N1 = 4.4N
N2 = 6.1N zs = 12 zk = 48

Equation (2.4) is written down in the state space

α̇ = Aα+B[f(α, β, γ) +G(α, β, γ)u(t)] (2.5)

or in the form of a vector matrix
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Variables β, γ, δ which occur in equations (2.7) are dependent on the pipe
profile. Elements f(α, β, γ) and G(α, β, γ) in formula (2.5) are non-linear
functions approximated by systems with fuzzy logic

f(α, β, γ) = −
1
s1
(s2β̈ + s3) G(α, β, γ) =

s4

s1
(2.8)

Because functions f(α, β, γ) and G(α, β, γ) do not have the linear form with
regard to parameters (2.7), there are some inaccuracies in the modelling. The
identification system takes the form

˙̂α = Aα̂+B[f̂(α, β̂, γ̂) + Ĝ(α, β̂, γ̂)u] +Kα̃ (2.9)

where vector α̂ is an estimation of the state vector α, f̂(α, β̂, γ̂), Ĝ(α, β̂, γ̂)
are estimations of the non-linear functions in equation (2.5). Accepting the
error of the estimation of the state vector in the form

α̃ = α− α̂ (2.10)

and subtracting equation (2.9) from equation (2.5), a description of the iden-
tification system in the error space is acquired

˙̃α = AHα̃+B[f̃(α, β, γ, β̂, γ̂) + G̃(α, β, γ, β̂, γ̂)u] (2.11)

where: AH = A−K and the matrix K is such that the characteristic equation
of the matrix AH is strictly stable.

3. Identification using neural networks

Another kind of the solution to the task of identification is an application of
artificial neural networks.
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Adding and subtracting the expression Amα from equation (2.5) where
Am is a stable design matrix (Giergiel et al., 2002), we receive

α̇ = Amα+ (A− Am)α+B[f(α, β, γ) +G(α, β, γ)u] (3.1)

Equation (3.1) defines the series-parallel structure of the identification system
which is in the form

˙̂α = Amα̂+ (A− Am)α+B[f̂(α, β̂, γ̂) + Ĝ(α, β̂, γ̂)u] (3.2)

where α̂ is the estimator of the vector of the state α, f̂(α, β̂, γ̂) and Ĝ(α, β̂, γ̂)
are estimators of the non-linear functions from equation (3.1).
The error of the estimation of the state is given in the form (2.10).
Substracting equation (3.2) from (3.1), a description of the task of identi-

fication is received in the error space

˙̃α = Amα̃+B[f̃(α, β, γ, β̂, γ̂) + G̃(α, β, γ, β̂, γ̂)u] (3.3)

where
Amα̃ = Amα− Amα̂ (3.4)

and

f̃(α, β, γ, β̂, γ̂) = f(α, β, γ)− f̂(α, β̂, γ̂)
(3.5)

G̃(α, β, γ, β̂, γ̂) = G(α, β, γ) − Ĝ(α, β̂, γ̂)

To determine the function f̂(α, β̂, γ̂) and Ĝ(α, β̂, γ̂), neural networks have
been applied.
Since the functions f(α, β, γ) and G(α, β, γ) are supposed to be approxi-

mated by neural networks, then

f(α, β, γ) =W⊤f Sf (α, β, γ) + εf (α, β, γ)
(3.6)

G(α, β, γ) =W⊤GSG(α, β, γ) + εG(α, β, γ)

where εf (α, β, γ) and εG(α, β, γ) are the inaccuracies of approximation of
the function f(α, β, γ) and G(α, β, γ) through neural networks, Wf and WG
– matrices of weights of neural connections, Sf (α, β, γ) and SG(α, β, γ) –
vectors of base functions.
These networks have the structure of a network with the radial functional

extension in form of Gauss’ function

Sj(x) = exp(−β‖x− cj‖2) (3.7)

where cj is the j-th centre.
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Fig. 2. Structure of radial networks approximating functions f̂(α, β̂, γ̂) and
Ĝ(α, β̂, γ̂)

A general structure of the system is shown in Fig. 2.
Setting the estimations of functions in equation (3.5) in the form

f̂(α, β̂, γ̂) = Ŵ
⊤

f Sf (α, β̂, γ̂)
(3.8)

Ĝ(α, β̂, γ̂) = Ŵ
⊤

GSG(α, β̂, γ̂)

formulas (3.5) are written in the form

f̃(α, β, γ, β̂, γ̂) = W̃
⊤

f Sf (α, β, γ, β̂, γ̂) + εf (α, β, γ)
(3.9)

G̃(α, β, γ, β̂, γ̂) = W̃
⊤

GSG(α, β, γ, β̂, γ̂) + εG(α, β, γ)

where εf (α, β, γ) and εG(α, β, γ) are the errors of approximation of the ne-
twork, W̃f and W̃G – errors of the estimation of weights of the network.
Then equation (3.3) will be in the form

˙̃α = Amα̃+B[W̃
⊤

f Sf (α, β, γ, β̂, γ̂) + W̃
⊤

GS∆(α, β, γ, β̂, γ̂)] +B[Rf +RG]
(3.10)

where: Rf = εf (α, β, γ), RG = εG(α, β, γ)u, S∆(α, β, γ, β̂, γ̂) = u ⊗

SG(α, β, γ, β̂, γ̂).
The stability of the system was checked according to the Lyapunov stability

criterion. It is known that the dynamic system will be stable if a Lyapunov
function exists for it (Giergiel et al., 2000, 2002).
A function has been assumed in the form
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If this function is to be the Lyapunov function, its derivative has to be negative

V̇ = −α̃⊤Qα̃+ α̃⊤PB[W̃
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The training of the neural network weights has been carried out according to
the formula

˙̃
Wf = −FfSf (α, β, γ, β̂, γ̂)α̃

⊤
PB

(3.13)
˙̃
WG = −FGS∆(α, β, γ, β̂, γ̂)α̃⊤PB

From the matrix form of the Lyapunov equation

E⊤P+ PE = −Q = −I (3.14)

a Hertmitian matrix was determined as

P =

[
p1 p2
p2 p3

]
(3.15)

by solving the equation
[
e11 e21
e12 e22

] [
p1 p2
p2 p3

]
+

[
p1 p2
p2 p3

] [
e11 e12
e21 e22

]
=

[
−1 0
0 −1
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(3.16)

A denotation has been assumed

h = PB (3.17)

where

h =

[
h1
h2

]
(3.18)

Finally, the weight training algorithm for (3.13) has the form

˙̂
Wf = FfSf (α, β, γ, β̂, γ̂)α̃

⊤
h

(3.19)
˙̂
WG = FGSG(α, β, γ, β̂, γ̂)α̃

⊤
h

The identification of the mathematical model of the inspection robot was car-
ried out according to this procedure.
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4. The simulation and verification using fuzzy logic

The verification was carried out on a prototype of the inspection robot. We
may expect that the estimated model will be different from the mathematical
model (Giergiel et al., 2002).
To determine functions f̂(α, β̂, γ̂), Ĝ(α, β̂, γ̂), fuzzy logic systems were cre-

ated in the application MatlabTM (Fig. 3), which makes it possible to create
models of fuzzy logic (fuzzy logic toolbox) (Buratowski and Żylski, 3003; [11]).

Fig. 3. Model of fuzzy logic approximated non-linear functions

The task of the fuzzy logic system is to determine functions f̂(α, β̂, γ̂),
Ĝ(α, β̂, γ̂) in such a way, that an error α̃ between the state vector α of the
computing model and the estimated state vector α̂ is the smallest. Takagi-
Sugeno’s model was applied in the designing phase (Buratowski and Żylski,
3003; Rutkowska et al., 1997; [11]). The fuzzification block transforms the
input space in form X = [α̇1a, α̇1b] × [α̇2a, α̇2b] ⊂ Rn into a fuzzy set A ∈ X
characterised by the membership function µA(x) : X → [0, 1], which assigns
a degree of affiliation into fuzzy sets. In Fig. 4, the membership functions are
presented in the form of Gauss’ function (gaussmf) according to the input
range: α̇1 ∈ [0, 100], α̇2 ∈ [0, 10].
The base of rules for the model description was accepted as in Fig. 5. Three

membership functions were accepted for the inputs of the fuzzy system and
9 rules of inferring were created. A principle was offered: every rule from one
input with every rule of the other input, since the information about each
output from the fuzzy systems is missing.
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Fig. 4. Functions of affiliation and intervals of variability

Fig. 5. Base of rules for the accepted set



218 J. Giergiel, K. Kurc

The set A was accepted on the input with T-norm (Osowski, 1996) of the
minimum type

µ
A
j

1
×...×A

j
n
(x) = min[µ

A
j

1

, . . . , µ
A
j
n
] (4.1)

On the output of the Takagi-Sugeno model presented in Fig. 6, a signal
was received

y(x) =

M∑
j=1

yjτj

M∑
j=1

τj

(4.2)

where

τj =
n∏

i=1

µ
A
j

i

(xi) (4.3)

is the ignition level of the j-th rule.

Fig. 6. Exit of the fuzzy logic system

The described fuzzy logic systems were applied for approximation of non-
linear functions (2.8) and they were modeled in the form Fig. 7.
Fuzzy Logic sets f and G are responsible for approximation of non-linear

function (2.8). All fuzzy sets use numerical information which explicitly con-
nects the input and output signals. In order to check the proposed solution, a
verification was carried out.
At the beginning, the simulation and experimental results were compared

(Fig. 8).
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Fig. 7. Structure of identification with fuzzy logic

Fig. 8. Diagrams from simulation and measurements; (a) velocities of the F point of
the robot, (b) torque of the motor, (c), (d) variables

In the next stage, the parameter identification of the inspection robot was
carried out according to the structure (Fig. 7) designed in MatlabTM-Simulink
software, taking as the input function u(t) the torque of the motor (Fig. 8b
and Fig. 9a).
The torque moment on the motor shaft received from measurements was

taken as an the input function (Fig. 8b and Fig. 9a), and then fuzzy identifica-
tion of the inspection robot parameters was carried out according to remarks
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Fig. 9. Results of identification; (a) input signal, (b) angle of rotation and angular
velocity on the shaft driving motor, (c) parameters estimator, (d) errors estimator

given in Section 2. The estimated parameters were the angle of rotation and
angular velocity (Fig. 9c) of the motor shaft, which were compared with the pa-
rameters obtained during measurements (Fig. 9b). Subtracting them, the angle
estimation error and the angular velocity estimation error were obtained as
(2.10) (Fig. 9d). It can be seen that the estimation error for the angle of rota-
tion of the motor shaft α̃ is equal zero (Fig. 9d) but there is a small error in
the estimation of the angular velocity ˙̃α. The obtained solutions of fuzzy logic
identification are limited, and the proposed procedure enables identification
of non-linear systems by applying fuzzy logic systems.

5. Simulation and verification using neural networks

In the next stage, the identification of the robot parameters was done with
the application of neural networks according to the structure (Fig. 10) given
for the input function u(t) in form of the torque of the motor (Fig. 8b and
Fig. 11a).
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On the schema (Fig. 10), ”Neural network f” and ”Neural network G” are
the models describen in Section 3.

Fig. 10. Structure of identification with neural networks

Fig. 11. Results of identification; (a) input signal, (b) angle of rotation and angular
velocity on the shaft driving motor, (c) parameters estimator, (d) errors estimator
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Taking the torque on the motor shaft from the measurements as the in-
put function (Fig. 8b and Fig. 11a), the neural identification of the inspection
robot parameters was carried out in accordance with the procedure given in
Section 3. The estimated parameters are the angle of rotation and angular
velocity (Fig. 11c) of the motor shaft. They were compared to the parameters
obtained during measurements (Fig. 11b). Subtracting them, the angle esti-
mation error and the angular velocity estimation error were obtained as (2.10)
(Fig. 11d). It can be seen that the estimation error for the angle of rotation
of the motor shaft α̃ is equal zero (Fig. 11d), but there is an error in the es-
timation of the angular velocity of the motor shaft ˙̃α. The obtained solutions
are limited, and the proposed procedure enables identification of non-linear
systems by applying neural networks.

6. Comparison of applied methods

The identification with neural networks and with fuzzy logic were compared
according to the structure (Fig. 12).

Fig. 12. Structure of the comparison of identification with neural networks and fuzzy
logic systems

On the schema (Fig. 12), ”Identification with neural networks” is repre-
senting the model described in Swction 3, and ”Identification with fuzzy logic
systems” the model from Section 2.
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Three experiments were carried out in order to compare the two methods
of identification, whose errors are presented for the estimator (Fig. 13-15) ac-
cording to formula (2.10).

Fig. 13. Errors estimation, experiment 1

Fig. 14. Errors estimation, experiment 2

The conducted comparison shows (Fig. 13-15) that the estimation errors
for the angle of rotation of the motor shaft from neural identification α̃neu
and from fuzzy identification α̃roz are both zero. There are some errors of the
angular velocity estimation from the identification with neural networks ˙̃αneu
and from the identification with fuzzy logic ˙̃αroz. The mean error of the angular
velocity estimation for neural networks is slightly smaller than for fuzzy logic.
The errors of the experiment are kept within 0.2-1% of the recorded values.
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Fig. 15. Errors estimation, experiment 3

7. Conclusions

During the verification stage, a comparison between for the test rig and simu-
lation results was conducted. It seems that the results obtained from measu-
rements in the real robot are satisfactory and slightly differ from simulation
runs, which confirms the adequacy of the design and simulation stage. Visible
differences are an effect of many factors appearing during the simulations (in-
accuracies of the estimation of the model parameters, missing description of
physical phenomena ”incomplete modelling”) as well as during the measure-
ments (parametric interferences – changes in diameter of the pipeline).
Having carried out the stages of identification with neural networks and

with fuzzy logic, it is possible to assume that these methods can be successfully
applied for the identification of dynamical equations of motion and actual
parameters as well as for monitoring dynamic loads and detection of damage.
Since the results are similar, there is a question arising, which method

should be applied for the identification of non-linear systems? To resolve this
problem, one may ask which method can be more easily and fartly implemen-
ted? And the answer is simple: fuzzy logic systems.
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Streszczenie

W artykule przedstawiono porównanie identyfikacji modelu matematycznego mo-
bilnego robota inspekcyjnego układami z logiką rozmytą i sieciami neuronowymi. Roz-
wiązanie problemu zostało przeprowadzone na drodze numerycznej i doświadczalnej.
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