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In this paper, we consider a special case of the general fractional plastic flow rule, namely
the one which is equivalent to the classical non-associated Drucker-Prager (D-P) plasticity
model. Fractional plastic flow is obtained from the classical flow rule by generalisation of the
classical gradient of a plastic potential with a fractional gradient operator. It is important
that, contrary to the classical models, non-associativity of fractional flow appears without
introduction of the additional potential. The classical associative D-P plasticity is obtained
as a special case. The discussion on objectivity of the fractional gradient is also presented
also.
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1. Fractional plastic flow – general setup

In the paper by Sumelka (2014) the concept of generalisation of the classical plastic/viscoplastic
flow rule utilising fractional calculus was presented. The fundamental role in this new formulation
plays the definition of directions of plastic strain given as a fractional gradient of a plastic
potential. The concept can be stressed as follows.
On the assumption of small strain, we accept classical additive decomposition of the total

strain rate, namely (Lubliner, 1990)

ε̇ = ε̇e + ε̇p (1.1)

where ε̇ stands for the total strain rate and ε̇e, ε̇p denote elastic and plastic/viscoplastic parts,
respectively.
The elastic strain components can be achieved from Hooke’s law

σ
e = Le : εe (1.2)

where σe denotes the Cauchy stress tensor and Le denotes the fourth rank tensor of elastic
stiffness.
Now, we postulate that the rate of plastic strain can be written as

ε̇
p = Λp, (1.3)

where Λ is a scalar multiplier (calculated through the rules common for rate-independent (pla-
sticity) or rate-dependent (viscoplasticity) concepts) and p represents the second order tensor
which defines the direction of flow (Euclidean norm of p is one).
Fractional plastic flow is obtained, if one postulates that the direction of flow is stated in

terms of the fractional gradient

p = D
σ

αf
∥∥∥D
σ

αf
∥∥∥
−1

(1.4)

where f is a plastic potential, Dα denotes partial fractional differentiation, and α denotes the
order of the derivative. It is clear that for α = 1, classical (associative) solution is recovered.
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Remark 1. On the fractional differential operator. There are many definitions of frac-
tional differential operators (Samko et al., 1993; Podlubny, 1999; Kilbas et al., 2006; Lesz-
czyński, 2011). In this sense, Eq. (1.4) can be redefined in terms of them. We claim that
for a specific material (concrete, steel, rubber, etc.) there should exist the optimal choice
of the specific definition mentioned.

2. Application of Caputo’s operator

Throughout this paper we utilise both sided Caputo’s derivative for the explicit definition of
Eq. (1.4). We call such a derivative the Riesz-Caputo (RC) derivative (cf. Agrawal, 2007; Fre-
derico and Tores, 2010).
So, for a function f over the interval t ∈ (a, b), we have

Dαf(t) = RCa D
α
b f(t) =

1

2

(
C
aD
α
t f(t) + (−1)n CtDαb f(t)

)
(2.1)

where a, t, b are so called terminals, CaD
α
t and

C
tD
α
b denote the left and right sided Caputo’s

derivatives, respectively, and n = [α] + 1. In our case (Eq. (1.4)), the interval t ∈ (a, b) can
change dependently on partial fractional differentiation.

Remark 2. Approximation of the left and right sided Caputo’s derivatives. Analytical
solutions utilising fractional differentiation are very limited. Due to this reason, many
numerical approximations were recently proposed (Diethelm et al., 2005; Odibat, 2006). In
this paper, we follow the concept discussed by Leszczyński (2011). It causes that Eq. (2.1)
reduces to an appropriate sum of classical derivatives of plastic potential function from the
specific point of interest and its surrounding. The size of the surrounding is controlled by
the interval over which the derivative is calculated. In this sense, the fractional derivative
is non-local.

Thus, the direction of fractional flow depends not only on the information in a point (con-
trary to the classical derivative) but also depends on the information from the surrounding.

3. Drucker-Prager plastic flow in terms of fractional calculus

Classical non-associated linear D-P model is governed by the yield criterion

f(σ) =
√
J2 −A−BI1 = 0 (3.1)

flow potential

g(σ) =
√
J2 − CI1 (3.2)

and, in consequence, unnormalised flow directions

∂g

∂σ
=
1

2
√
J2
s− CI (3.3)

where A, B, C are material constants, J2 is the second invariant of the deviatoric part of the
Cauchy stress, and I1 is the first invariant of the Cauchy stress, s is the stress deviator, and
I denotes the unit tensor.
Now, using the fractional flow concept cf. Eq. (1.4), it is enough to assume flow the potential

equivalent with the yield function. The directions of flow are then functions of the order of the
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fractional derivative α, and length of the interval over which partial the fractional derivative
is calculated. In this particular example, the unnormalised fractional flow directions, in the
principal directions of stress tensor, are as follows

a1Dσ1
α
b1
f =
1

2

h1
1−α

Γ (3− α)
{
[1− α21−α][f (1)1 (σ1 − 2h1, σ2, σ3) + f

(1)
1 (σ1 + 2h1, σ2, σ3)]

+ 2f
(1)
1 (σ1, σ2, σ3) + [2

1−α − 2][f (1)1 (σ1 − h1, σ2, σ3) + f
(1)
1 (σ1 + h1, σ2, σ3)]

}

a2Dσ2
α
b2
f =
1

2

h2
1−α

Γ (3− α)
{
[1− α21−α][f (1)2 (σ1, σ2 − 2h2, σ3) + f

(1)
2 (σ1, σ2 + 2h2, σ3)]

+ 2f
(1)
2 (σ1, σ2, σ3) + [2

1−α − 2][f (1)2 (σ1, σ2 − h2, σ3) + f
(1)
2 (σ1, σ2 + h2, σ3)]

}

a3Dσ3
α
b3
f =
1

2

h3
1−α

Γ (3− α)
{
[1− α21−α][f (1)3 (σ1, σ2, σ3 − 2h3) + f

(1)
3 (σ1, σ2, σ3 + 2h3)]

+ 2f
(1)
3 (σ1, σ2, σ3) + [2

1−α − 2][f (1)3 (σ1, σ2, σ3 − h3) + f
(1)
3 (σ1, σ2, σ3 + h3)]

}

(3.4)

In Eqs. (3.4), the approximations of Caputo’s derivatives discussed by Leszczyński (2011) are
applied on the assumption that the length of the interval over which the partial fractional
derivative is calculated is equal 4hi (the point of interest lays in the middle of this interval cf.

Fig. 1). Other denote: f
(1)
i = ∂f/∂σi – the classical i-th partial derivative of f , Γ – the Gamma

function, and σi – i-th principal value of the stress tensor.

Fig. 1. The concept of fractional plastic flow for the Drucker-Prager model

It is clear that one can chose α, h1, h2, h3 such that the flow directions described by Eqs.
(3.3) and (3.4) are equal (simply by solving the set of uncoupled nonlinear equations obtained
form comparison of components of the classical and fractional flows directions.). In this sense,
utilising the concept of fractional flow, one can obtain a non-associated D-P model without the
necessity of making an additional potential assumption.

Remark 3. On possible fractional flow directions. Please notice that in this particular
example the number of material parameters is greater comparing with the classical model.
However, only few additional material parameters give a vast range of possible flow direc-
tions, where the one equivalent with the classical non-associated D-P model is a particular
case. Thus, we can control the flow directions not only in the meridional plane, but also
in the deviatoric (Π) plane.

Remark 4. Objectivity of fractional flow. It is important to mention that the fractional
gradient of an isotropic scalar value function of a tensorial argument does not lead to
an isotropic tensor function (contrary to the classical gradient operator). In this sense,
from the first sight, the objectivity requirement is violated, what is of course not acceptable
in continuum mechanics. However, if we enforce appropriate transformation rules for the
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intervals (hi) over which the fractional gradient is calculated (cf. Fig. 1) the objectivity
requirement if fulfilled. Thus, the formula for intervals hij in an arbitrary coordinate sys-
tem can be easily deduced from fulfilling classical transformation rules for the second rank
tensors, namely

p̃ij(h̃ij , σ̃ij) = RikRjlpkl(hij , σij) (3.5)

where (̃·) denotes the new coordinate system, and R denotes rigid rotation.
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