
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

52, 3, pp. 605-616, Warsaw 2014

APPARENT MASSES AND INERTIA MOMENTS OF THE PARAFOIL

Grzegorz Kowaleczko

Polish Air Force Academy, Dęblin, Poland

e-mail: g.kowaleczko@chello.pl

This paper presents a useful method of determination of additional forces and moments
which have to be taken into account in analysis of a parafoil or paraglider flight dynamics.
They are produced by apparent masses and apparent inertia moments of the air. These
masses and inertia moments have strong effects on the flight dynamics of a lightly-loaded
parafoil. The equations of motion for the parafoil-payload system are also shortly presented.
An analytical method of calculating of the apparent masses and inertia moments is shown.
Exemplary results are presented.
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1. Introduction

Mutual interaction between a moving object and a fluid is a very important problem when
motion is unstable – large moving objects generate motion of certain fluid mass. When the
object motion is unstable and motion parameters change, motion of the fluid is disturbed.
To calculate forces acting on a moving solid body and its acceleration, it is necessary to

know pressure distribution in fluid stream. This distribution depends on relative fluid velocity
and also on fluid acceleration.
If the fluid is inviscid (an ideal fluid), stable motion of the solid body is continued without

any external force, but this force is necessary in the case of accelerated motion. Experiments and
theoretical investigations show that this force is greater than the force necessary to accelerate
the same body in vacuum. This is due to the fact that any change of body motion simultaneously
generates changes of fluid flow, and the acceleration of the body requires additional forces because
the fluid resists this acceleration. If the fluid motion is disturbed, the inertial forces appear. They
counteract these disturbances. These forces are produced by the changed pressure field on the
body surface. An increase in the pressure is proportional to the body acceleration. Therefore,
the additional forces (and moments) are also proportional to the acceleration and can be taken
into account by increasing the body mass. This additional mass is known as the apparent mass.
The above described an unsteady aerodynamic effect, causing that the moving body can be

treated as the body with greater mass and inertia moment, is called “the apparent mass effect”.
It should be underlined that the additional mass and moment of inertia are not the real mass
and moment of inertia of the fluid moving with the body but represents an additional energy
transported to the fluid during body acceleration. For this acceleration, an additional work is
executed and velocity of the body increases.
The apparent mass effect is significant for flying objects, when the mass of the disturbed

air is greater than the mass of the moving object (Lissaman and Brown, 1993). The crucial
parameter is the wing load factor. If this coefficient is less than 50N/m2, the apparent mass
effect has to be included into analysis of the body flight dynamics.
The moving body acts on various air mass depending on performed motion. Therefore,

apparent masses differ depending on motion direction. A similar effect is observed for angular
motions about different axes. It means that apparent masses and their moments of inertia are not
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scalars. This is symbolically shown in Figs. 1 and 2 for a parafoil. They can be determined using
Computational Fluid Dynamics methods (Barrows, 2002) but simplified approximate analytical
methods are more popular (Barrows, 2002; Gamble, 1998; Lissaman and Brown, 1993; Ochi and
Watanabe, 2011; Toglia and Vendittelli, 2010; Tweddle, 2006) – they give satisfactory accuracy.
Usually, it is assumed that the parafoil has ellipsoidal or rectangular two-dimensional shape.
Next, obtained results are adjusted by a series of constants for three-dimensionality.

Fig. 1. Apparent masses for translational motion (Lissaman and Brown, 1993)

Fig. 2. Apparent masses for rotational motion (Lissaman and Brown, 1993)

2. Apparent masses and moments of inertia

2.1. Basic assumptions

Taking into account the above mentioned remarks, linear momentum and angular momentum
of the air acting on a parafoil will be determined. They will be calculated in the coordinate system
CxCyCzC fixed with the parafoil (Figs. 2, 3). The important problem is to determine centres
of all apparent masses. Barrows (2002) showed that ...In the more general case, it may not be
possible to find a single point at witch the rotational and translational motions are decoupled... .
He proved that less resistance to rotational acceleration is observed for one specific point which
is defined as the apparent mass centre for this rotation. For instance, for the zero thickness
parafoil with circular arc spanwise camber, the confluence point of suspension lines may be
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taken as the centre of apparent mass in the case of rotation about the xC axis (rolling motion).
For rotation about the perpendicular axis yC (pitching motion) the apparent mass and its centre
are different. For rotation about axis zC (yawing motion) the centre of apparent mass is any
point placed at this axis. Finally, it is assumed that (Barrows, 2002):

– motion along the x, y, z axis influences mass mx,my,mz, respectively;

– the point C1 is the center of mass mx;

– the point C2 is the center of masses my and mz.

Fig. 3. Symbolic representation of the apparent mass, its linear momentum and angular momentum

2.2. Linear momentum of apparent masses

The classic formula of linear momentum is as follows

p = mV (2.1)

and it will be used to determine the linear momentum of apparent masses.

The velocity V of the i-th center of apparent mass is equal to (i = 1, 2)

Vi = VC +ΩC × rCi =
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where: VC = [UC , VC ,WC ] is the velocity of the parafoil mass center; ΩC = [PC , QC , RC ] is its
angular velocity. To calculate the linear momentum p = [px, py, pz] one has to:

– for px component, take mx mass and the first component of the vector V at the point C1;

– for py component, take my mass and the second component of the vector V at the
point C2;

– for pz component, take mz mass and the third component of the vector V at the point C2.

Finally, we have

p =
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py
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




(2.3)

The parafoil has lateral symmetry – the Cxczc plane is the symmetry plane. Therefore the
points C1 and C2 are located at this plane. It means that

yC1 = 0 yC2 = 0 (2.4)
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Formula (2.3) is reduced to
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where the matrices are equal to
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
(2.6)

2.3. Angular momentum of apparent masses

The classic formula of angular momentum is as follows

h = h0 + rC × p (2.7)

where h0 = IappΩC is the angular momentum relative to the apparent mass center, and rC is
the vector between this mass center and the fixed point (the parafoil mass center). If we assume
that the main inertia axes are parallel to the axes of the Cxcyczc system, formula (2.7) can be
written as

h =


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(2.8)

Taking into account relation (2.4), one has

h =







Iapp xPC − zCipy
Iapp yQC + zCipx − xCipz
Iapp zRC + xCipy






(2.9)

If we consider formula (2.5), we can obtain an expression for determining the angular momentum
of apparent masses

h =







−zC2myVC + (Iapp x +myz
2
C2
)PC − zC2xC2myRC
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
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where the matrices are as follows
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
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
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





(2.11)

One can notices that IaV = (MaΩ)
T.
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2.4. Final formulas for linear and angular momentums of apparent masses

Formulae (2.5) and (2.10) can be written in the following form
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(2.13)

3. Additional forces and moments generated by apparent masses

Unstable motion of apparent masses generates additional inertia forces and moments. They act
on the parafoil and have to be taken into account in its equations of motion. They can be
determined on the basis of the determined above formulae for linear and angular momentums.

3.1. Inertia force of apparent masses

The inertia force of apparent masses Fc app can be calculated on the basis of the linear
momentum (Eq. (2.5)). It is equal to the global derivative of the linear momentum p taken with
the minus sign

Fc app = −
dp

dt
= −

(d′p

dt
+ΩC × p

)

= −
(

MaV
d′VC
dt
+MaΩ

d′ΩC
dt

)

−ΩC × (MaVVC +MaΩΩC)

(3.1)

where d′/dt is the local derivative (in a moving frame system).

3.2. Moment of inertia forces

The moment of inertia forces of apparent masses Mc app is equal to the global derivative of
angular momentum h (Eq. (2.7)) taken with the minus sign

Mc app = −
dh

dt
= −

(dh0
dt
+
drC
dt
× p+ rC ×

dp

dt

)

(3.2)

All components of this formula are determined bellow.
1. The component dh0/dt is calculated as follows

dh0
dt
=
d′h0
dt
+ΩC × h0 = Iapp

d′ΩC
dt
+ΩC × IappΩC (3.3)

2. The component (drC/dt)× p is equal to

drC
dt
× p =

(d′rC
dt
+ΩC × rC

)

× p =
∣

∣

∣

d′rC
dt
= 0

∣

∣

∣ = (ΩC × rC)× p (3.4)
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Making calculation, one has to remember the relations between apparent masses and particular
points: mx −C1, my − C2 and mz − C2. Finally, we have

drC
dt
× p =






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(
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3. The component rC × (dp/dt) is equal to:

Taking into consideration relation (3.1), one has
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)
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Here, the first component is equal to
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The matrix IaΩ′ is determined by

IaΩ′ =


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
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0 z2C1mx + x

2
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




(3.8)

The second component in (3.6) has the form

rC×(ΩC×p) =
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



PCW0zC2mz −RCU0zC1mx − PCQCxC2zC2mz −QCRCz
2
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





QC(U0xC1mx +W0xC2mz)− V0(PCxC2 +RCzC2)my
+PCRC(z

2
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2
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2
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2
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


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
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=MrΩp

(3.9)

Finally, on the basis of (3.3), (3.5), (3.7) and (3.9), the moment of inertia forces of apparent
masses is equal to

Mc app = −
[

IaV
d′VC
dt
+ IaΩ

d′ΩC
dt
+ΩC × IappΩC +Mr′p +MrΩp

]

(3.10)

where

IaΩ = Iapp + IaΩ′ (3.11)
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4. Equations of the parafoil-payload system

Dynamic properties of the parafoil-payload system can be determined on the basis of the solution
to the set of differential equations describing translatory motion and rotational motion of the
parafoil and of the payload. Because the main goal of this paper is to present the method of
determining apparent masses and forces/moments generated by these masses, a brief description
of motion equations of the system is below presented.

4.1. Equations of the parafoil motion

The basic approach is to assume that the parafoil is a rigid body. Using this assumption, the
equations of motion can be determined using Newton’s second law. For motion of the parafoil
mass centre in the body frame, the force equation is as follows

mc
(d′VC
dt
+ΩC ×VC

)

= Fc a +mcg + Fc R +Fc app (4.1)

where mc is the mass of the canopy, Fc a is the total aerodynamic force acting on the parafoil,
g is the vector of gravity acceleration, Fc R is the force of suspension lines. Using Eq. (3.1),
finally we have

(1mc +MaV )
d′VC
dt
+MaΩ

d′ΩC
dt

= Fc a +mcg + Fc R −mcΩC ×VC −ΩC × (MaVVC +MaΩΩC)
(4.2)

where 1 is the 3× 3 unit matrix.

For rotational motion about the parafoil mass centre, the moment equation has the form

Ic
d′ΩC
dt
+ΩC × (IcΩC) =Mc a +Mc R +Mc app (4.3)

where Ic is the inertia matrix of the canopy, Mc a is the total aerodynamic moment, Mc R is
the moment generated by suspension lines. Using Eq. (3.10) we obtain

IaV
d′VC
dt
+ (Ic + IaΩ)

d′ΩC
dt
=Mc a +Mc R −ΩC × (Iapp + Ic)ΩC −Mr′p −MrΩp (4.4)

4.2. Equations of the payload motion

It is assumed that the payload is a rigid body which performs translatory and rotational
motion. The equation of translation can be written in the form

mc
(d′Vp
dt
+Ωp ×Vp

)

= Fp a +mpg+ Fp R (4.5)

where Vp is the velocity of the payload mass center; Ωp is its angular velocity, Fp a is the
aerodynamic force acting on the payload, Fp R is the force of suspension lines (Fp R = −Fc R).

The balance of moments about the payload mass centre is as follows

Ip
d′Ωp
dt
+Ωp × (IpΩp) =Mp a +Mp R (4.6)

where Ip is the inertia matrix of the payload, Mp a is the aerodynamic moment, Mp R is the
vector of moments generated by suspension lines.
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5. Calculation of apparent masses and location of their centers

In a general case, for any moving body, a value of apparent mass can be calculated using CFD
methods. But this way is not useful for flight dynamic problems of the parafoil, where its spatial
motion is calculated on the basis of a numerical solution to the equations of parafoil motion.
Therefore, more simplified methods of determining apparent mass and moments are desirable.
Usually these methods are dedicated to ellipsoidal or rectangular shapes of the disturbed air.
This assumption substantially simplifies the problem of finding the center of gravity of the fluid.
The three-dimensional effect associated with a finite aspect ratio of the parafoil is obtained by
adjusting two-dimensional results by a series of constants. One of the most popular methods has
been proposed by Lissman and Brown (1993). According to this method, we have the following
formulae

mx = 0.666ρ
(

1 +
8

3
a2
)

t2b my = 0.267ρ[t
2 + 2a2(1− t

2
)]c

mz = 0.785ρ
√

1 + 2a2(1− t
2
)
AR

1 +AR
bc2

Iapp x = 0.055ρ
AR

1 +AR
c2b3

Iapp y = 0.0308ρ
AR

1 +AR

[

1 +
π

6
(1 +AR)ARa2t

2
]

c2b

Iapp z = 0.0555ρ(1 + 8a
2)b3t2

(5.1)

where AR = b2/S is the aspect ratio, a = a/b is the arc-to-span ratio, t = t/c is the thickness-
-to-chord ratio.
A more precise method has been presented by Barrows (2002). It was verified numerically and

it has two stages. Firstly, apparent masses are calculated for a flat parafoil. Next, the curvature
of the parafoil is complied.

5.1. Stage I – the flat parafoil

Apparent masses of the flat parafoil are equal to

mx fl = ρkA
π

4
t2b my fl = ρkB

π

4
t2c mz fl = ρkC

π

4
c2b

Iapp x fl = ρk
∗

A

π

48
c2b3 Iapp y fl = ρk

∗

B

4

48π
c4b Iapp z fl = ρk

∗

C

π

48
t2b3

(5.2)

The correction factors for the three-dimensional flow effect are as follows

kA = 0.848 kB = 0.34 − 1.24 kC =
AR

1 +AR

k∗A = 0.84
AR

1 +AR
k∗B = 1.161

AR

1 +AR
k∗C = 0.848

(5.3)

The factor kB is sensitive to the tip shape. Barrows (2002) showed that kB = 0.33 for an
ellipsoid parafoil with the axis ratio 3:1, kB = 1.0 for a rectangular parafoil with ellipsoidal end
caps, kB = 1.24 for a rectangular parafoil with flat end caps. Formulae (5.2) show that for the
flat parafoil with thickness equal to zero we have mx fl = 0, my fl = 0, Iapp z fl = 0.

5.2. Stage II – the curvilinear parafoil

If the curvature of the parafoil is complex, the apparent masses and moments can be calcu-
lated taking into account the previous results obtained for the flat parafoil from the formulae
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mx = mx fl
(

1 +
8

3
a2
)

my =
1

a21
(R2my fl + Iapp x fl)

mz = mz fl

√

1 + 2a2(1− t
2
)

Iapp x =
a212
a21
R2my fl +

a22
a21
Iapp x fl

Iapp y = Iapp y fl
[

1 +
π

6
(1 +AR)ARa2t

2
]

Iapp z = (1 + 8a
2)Iapp z fl

(5.4)

where

a =
R−R cos ε0
2R sin ε0

=
1− cos ε0
2 sin ε0

=
R(1− cos ε0)

b
(5.5)

The angle ε0 is determined as

ε0 = arcsin
b/2

R
(5.6)

The coefficients a1 and a2 define the position of the points C1 (the center of mass mx) and C2
(the center of masses my and mz) with respect to the joint point O, which is the point of
convergence of the lines a12 is the distance between C1 and C2. This is shown in Fig. 4. They
are equal to

a1 =
R sin ε0
ε0

a2 =
a1my fl

my fl +
Iapp x fl
R2

(5.7)

Fig. 4. Parafoil geometry and location of characteristic points

5.3. Example

To check the described above procedure, exemplary calculations for the parafoil have been
done. The following initial values of parafoil geometry were used: the area S = 21m2, the chord
c = 3m, the span b = 7m, the thickness t = 0.3m. These data give the following constants:
the aspect ratio AR = 2.33, the thickness-to-chord ratio t = 0.1. The apparent masses and
moments of inertia for both the flat and curvilinear parafoil are gathered in Table 1.

For the flat parafoil we have:

• apparent masses: mx fl = 0.51 kg, my fl = 0.09 kg, mz fl = 42.44 kg,

• apparent moments of inertia: Iapp x fl = 145.58 kgm
2, Iapp y fl = 14.99 kgm

2 and
Iapp z fl = 2.1 kgm

2.
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These data are in the first row in Table 1. Analyzing them one can notice that the most significant
is the apparent mass mz fl and the apparent moments of inertia Iapp x fl and Iapp y fl. Values
of the rest are rather small.

For the curvilinear parafoil, calculations were performed for different lengths R of the su-
spension lines. The obtained results are presented in Table 1 and in Figs. 5 and 6. Comparisons
between the data for the flat and curvilinear parafoil give the conclusion that the spanwise cam-
ber fundamentally decreases the apparent moment of inertia Iapp x and increases the apparent
mass my. During the rolling about the confluence point, the apparent moment of inertia Iapp x
decreases because, theoretically, the parafoil with a circular arc and with zero thickness does
not disturb the surrounding air. In this case, the only disturbances are generated by thickness
of the parafoil. In the case of lateral motion, the side projection of the parafoil determines the
amount of the disturbed air – the apparent mass my. For the flat parafoil, only the thickness
influences this effect, but for the curvilinear parafoil, its side projection has to be taken into
account.

Table 1. Apparent masses and moments of inertia for the flat and curvilinear parafoil

R ε0 a1 a2 mx my mz Iapp x Iapp y Iapp z
[m [deg] [m] [m] [kg] [kg] [kg] [kgm2] [kgm2] [kgm2]

Flat parafoil

0.51 0.26 42.44 145.58 14.99 2.10

Curvilinear parafoil

5.0 44.4 4.51 0.19 0.57 7.46 44.16 6.22 15.02 2.80

5.5 39.5 5.07 0.26 0.56 5.96 43.78 7.08 15.01 2.64

6.0 35.7 5.62 0.34 0.55 4.91 43.52 8.26 15.01 2.53

6.5 32.6 6.16 0.43 0.54 4.13 43.33 9.49 15.01 2.46

7.0 30.0 6.68 0.54 0.54 3.54 43.19 10.77 15.00 2.40

7.5 27.8 7.21 0.66 0.54 3.08 43.08 12.07 15.00 2.36

8.0 25.9 7.73 0.79 0.53 2.72 43.00 13.40 15.00 2.32

8.5 24.3 8.25 0.94 0.53 2.42 42.93 14.73 15.00 2.29

9.0 22.9 8.76 1.11 0.53 2.17 42.87 16.07 15.00 2.27

9.5 21.6 9.28 1.29 0.53 1.96 42.82 17.40 15.00 2.25

10.0 20.5 9.79 1.48 0.53 1.79 42.78 18.71 15.00 2.24

6. Conclusions

The obtained results show that for the flat and curvilinear parafoil the apparent mass mz is
many times greater than the other two apparent masses mx and my. The mass mz may be
greater than the mass of the canopy. If the parafoil has spanwise camber, the mass my is also
crucial but smaller than mz. These apparent masses should be included into the equations of
parafoil motion.

For the flat parafoil, the apparent moment of inertia Iapp x is significant but in the case of
the parafoil with spanwise camber its value is equal between 4 and 12 percent of the value for
the flat parafoil. It means that the spanwise camber of the parafoil significantly reduces the
additional effect of the apparent inertia on rolling motion. For the curvilinear parafoil, the value
of apparent moment of inertia Iapp y is almost the same as for the flat parafoil. This moment of
inertia is comparable with the value of the apparent moment of inertia Iapp x for the curvilinear
parafoil.
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Fig. 5. (Location of apparent masses (a); apparent mass: mx (b), my (c), mz (d)

Fig. 6. Apparent inertia moment: Iapp x (a), Iapp y (b), Iapp z (c)

The length R of the suspension lines influences the apparent masses and moments of inertia.
We can see that all of them, except one, desrease. Only the apparent moment of inertia Iapp x
grows for increasing R, and this influence is rather important.

It should be underlined that the presented above analytical method of the apparent masses
and inertia moments calculations is dedicated to the parafoil. For a parachute, one should use
different formulae because of different geometry (Dobrokhodov et al., 2003).
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