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This paper presents a procedure for identifying wave forms and excitation frequencies of
some forces applied on a given complex fluid-structure coupled system by using only its
vibro-acoustic response. The considered concept is called the Independent Component Ana-
lysis (ICA) which is based on the Blind Source Separation (BSS). In this work, the ICA
method is exploited in order to determine the excitation force applied to a thin-film lamina-
ted double glazing system enclosing a thin fluid cavity and limited by an elastic joint. The
dynamic response of the studied fluid-structure coupled system is determined by finite ele-
ment discretization and minimization of the homogenized energy functional of the coupled
problem. This response will serve as the input for the ICA algorithm in order to extract the
applied excitation.

Keywords: fluid-structure interaction, thin-film laminated plate, ICA, excitation force,
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1. Introduction

Laminated and sandwich plates present their advantage when they are used to reduce noise
and vibration due to their high structural damping. In fact, the presence of viscoelastic core or
ultra~thin film gives more rigidity to laminates with a much reduced vibration deflection.

That is why the resolution of direct fluid-structure coupled problems, such as the study of
acoustic transparency of double panel systems, has been carried out in several research works
such as those developed by Cheng et al. (2005), Abdennadher et al. (2005) and Akrout et al.
(2010).

In this work, we deal with a system composed of a thin-film laminated double glazing system
enclosing a thin fluid cavity and limited by an elastic joint, to which we use the ICA concept in
order to extract the applied force.

In fact, the Blind Source Separation (BSS) is an important research area in signal processing
and data analysis.

The first formulation of the problem was made in 1985 by researchers in neuroscience and
signal processing to model biologically coding of motion. In fact, the source separation problem
was developed by Hérault and Ans (1984) and Hérault et al. (1985). Then, Comon (1994) made
the link between the Independent Component Analysis (ICA) and the Blind Source Separation
(BSS).

The independent component analysis (ICA) is one of the major pathways of sources separa-
tion concept (Hyvérinen and Oja, 2000; Antoni, 2005; Zarzoso and Comon, 2008; Abbes et al.,
2011; Akrout et al., 2012b). It extracts from the observed signal components as independent as
possible. In the recent years, this method (ICA) was investigated for extracting signals such as
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excitation forces and internal defaults in mechanical systems (Akrout et al., 2012b; Taktak et
al., 2012).

In this work, dynamical study is carried out in order to model the vibratory excitation of
a vibro-acoustic problem defined by a thin fluid cavity coupled to the thin-film laminated glass
plate structural model developed in our previous work (Akrout et al, 2012a). Then, the ICA
concept is applied to the finite element signals defined by the displacement vector of the studied
system in order to extract the wave form and the excitation frequencies of the external applied
forces. So, the main original contribution of this work is based on the developed fluid-structure
laminated double glazing model which can be exploited for identifying excitation sources by the
inverse method (ICA).

2. Description of the studied fluid-structure coupled system

The studied system is composed of two ultra-thin film laminated glass plates coupled to a thin
fluid cavity and related with an elastic joint, as presented in Fig. 1. kg, k1 and ko represent the
laminate edge stiffness and Fy is the harmonic uniform distributed force applied to thin-film
laminated plate 1.
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Fig. 1. Ultra-thin film laminated double glazing system (the xzz-plane)

3. Resolution of the direct vibro-acoustic problem

3.1. Dynamic equation of the coupled problem

Discretization by the finite element method and minimization of the coupled system energy
functional give the following coupled matrix system (Akrout et al., 2010, 2012a)

Ki+J1+Jo — w?M;y —Joi2 -C U Feet
—JoT12 Ko +Jo+Jg— w2M2 Cy Uy = 0 (3_1)
h
-Ct C3 Sz —kQ)| | P 0

where K1 +J1+4+Jp, Ko+Jo+Jg and Jg1o are the stiffness matrices of the structural part of the
coupled system. M; and M, are the mass matrices of the laminates. C; and Cq are the fluid-
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-structure coupling matrices. H and Q represent the acoustic matrices. hy, py and ky = w/cy
represent the cavity thickness, the fluid density and the acoustic wave number, respectively.
cy and w are the speed of sound and the angular frequency, respectively. Uy, Uz and P are the
nodal response vectors. F¢' = F( exp(—iwt) represent the nodal force vector to be reconstituted
by the developed inverse method (ICA).

The film-laminate finite element presents seven degrees of freedom at each node
(U, Um, Ur, Vo, W, By, By ), whereas the fluid cavity finite element presents one degree of freedom
at each node (pressure p).

3.2. Resolution of the dynamic equation

The resolution of the direct problem defined by equation (3.1) is based on a modal approach
(Akrout et al., 2010, 2012a). Then, the following eigenvalue problems to be solved are considered

(K1+J1+JQ—W2M1)U1 =0 (K2+J2+J0—W2M2)U2=0

hy
pra?
By resolving these equations, three modal bases could be constructed: ®4; for the structure
defined by (laminate 1+joint 14+joint 0), P9 for the structure (laminate 2+joint 2+joint 0) and
® for the fluid cavity. The second step consists on reducing the size of system (3.1) by modal
projection on these modal bases. So, matrix system (3.1) becomes (Akrout et al., 2010, 2012a)

(H-kQP =0 (3.2)

(K1 +J1 + Jo) — w?M, —Jo12 -C U, Fert
—3312 (K2 4+ J2 + Jo) — w?My C, Uyp=< 0
< c; sn@-wQ) [P | o
(3.3)

where (K; +J; +Jo) = ®L(K; + J; + Jo) @4, M; = ®LM;®; (i = 1,2) are respectively the
reduced stiffness and mass matrices of the coupled system. Joi2 = ¢51J012<I>82 is the reduced
stiffness matrix due to the structural coupling between laminate 1 and 2. H = <I>};H<I> ¢ and
Q = <I>};Q<I> ¢ represent the reduced acoustic matrices. C; = q);ficiq) 7 is the reduced fluid-
-laminate (i = 1,2) coupling matrix. U; = ®5,U;, Uy = ®LUy and P = @?P represent the
modal response vectors and F' = &1 Fert is the modal force vector.

The coupled modal basis ®. = [¢1,...,¢n] (N is the number of retained eigenmodes) which
contains the coupled eigenmodes, is obtained from the resolution of the eignemode reduced
coupled problem as presented in our previous works (Akrout et al., 2010, 2012a).

The modal variables «,.(w) of the r-th eigenmode, which are obtained by projecting equation
(3.5) on the coupled eigenmode basis ®., could have the following expression (Akrout et al.,
2010)

2,1
ar(w):g—:[l—(%” r=1,2,...,N (3.4)
where w, = +/k,/m, is the r-th eigenfrequency of the coupled system. k, and m, are the r-th
generalized mass and the r-th generalized stiffness of the coupled system, respectively. f, is the
generalized force of the r-th eignmode.

So, the dynamic response is determined by modal recombination (Hammami et al., 2005;
Akrout et al., 2010)

a1 (w)
Uw) = [¢1,-. 0N 4 ¢ (3.5)

an(w)
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Now, after determining the dynamic response which is defined by the displacement of the studied
structure, we will study the inverse problem. In this case, the dynamic response will serve as the
input for the ICA algorithm in order to determine the wave form of the applied force signal.

4. The concept of the Independent Component Analysis: ICA

4.1. Definition and principle hypothesis

ICA is a statistical technique that aims to break a random signal multivariate X (measu-
red signal) in a multivariable linear combination of independent signals (the source signals) to
highlight the signals as independent as possible from the measured signals.

It was developed by Hérault et al. (1985) and it is defined by the following equation

X(t) = AS(t) (4.1)

where X(t) and S(t) are respectively the observed signals through sensors and the source signals,
A is the mixture matrix.

The source separation principle consists of determining a matrix B in order to estimate N
source signals defined by the vector Y (t) = [Y1(t),...,Yn(t)]T as follows (Antoni, 2005; Abbes
et al., 2011; Akrout et al., 2012b)

Y (t) = BX(t) (4.2)

In order to achieve this goal, general assumptions must be considered (Hyvérinen and Oja, 2000).
The principal assumption is the statistical independency of the source signals. The second one
imposes non-Gaussian distributions on the source signals (Comon, 1991; Moreau and Macchi,
1993). The last one is defined by the principle of uncorrelated sources. In fact two variables
Y1 and Y5 are uncorrelated if their covariance is equal to zero. This can be expressed by the
following relation

EMYs} — E{W1}E{Y2} =0 (4.3)

4.2. Separation concept

The principle object of the presented method is to extract the source signals from a mixture
of the observed signals. In order to achieve this goal, the observed signals of the system should
be centred (substrate its mean vector), then whitened (which consist on eliminating the noise,
so we obtain a new signal with an uncorrelated component and variance equal to unity). So, the
estimated source is defined by Antoni (2005)

Y = WX (4.4)

where WH is the separating matrix, (-)F denotes the conjugate-transpose operator.

In order to guarantee the non-gaussianity of the signals, the estimated sources must maximize
the contrast function. The contrast function utilized in the ICA algorithm is the Kurtosis function
defined by Zarzoso and Comon (2010). This forth order cumulant can be normalized as follows

_ By} — 2% {|y*} — |E{y*}?
EX{ly?}

Finally, after determining the first column of the separating matrix, the deflation approach is
applied in order to extract the corresponding source vector from the original mixture related to
the determined column of the separating matrix.

So, each source will be chosen once with the multiplying factor (Hyvarinen and Oja, 2000).

K () (4.5)
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5. Numerical results

The geometrical and physical features of the ultra-thin film laminated glass panel are given as
follows (Akrout et al., 2010):

e two identical skins (glass) for each laminate:
— Young’s modulus EV' = EY' = EP? — P = 7.2.10* MPa
density o' = pbt = pb? = pb? = 2500 Kg/m?

: . 1 1 2 2
— Poisson’s ratios 1" = b =" =187 =0.22

skin thicknesses for the symmetrical system k2" = hb' = h? = 2% = 3mm

skin thicknesses for the asymmetrical system h?' = hb' = 3mm, h2* = k5 = 4mm

e film stiffness kpyy, = 1.362 - 107 N/mm? (Araldite), kg, = 1.1- 101 N/mm? (Epoxy)

e in-plane (z,y) laminate half dimensions ¢, = 0.6m, ¢, = 0.4m’

The geometrical and physical parameters of the air cavity are given as follows (Akrout et al.,
2010): ¢y = 340m/s, hy = 1mm, p; = 1.2 Kg/m3.
Only the translational joint is considered (Akrout et al., 2012a): kjoins = 0.264- 10'% N/mm?.

5.1. Parametric study

Three configurations for the coupled studied system are considered:

e model 1 defined by two identical laminates (h?' = k5" = h? = hb* = 3mm) with an
ultra-thin film of Araldite (Kkf, = 1.362 - 107 N/mm?)

e model 2 characterized by the same laminates as model 1, but another material is chosen
for the adhesive film (kg = 1.1- 104 N/mm?, Epoxy)

e model 3 distinguished by an asymmetrical double glazing system (laminate 1: h2' = p8! =
3mm, laminate 2: h* = hb* = 4mm, kg, = 1.362 - 107 N/mm?).

For these three different models, two types of loads are applied on laminate 1: the first one is
defined by a uniformly distributed force and the second one is a punctual force.

5.2. Observed signals

For each model defined above, the FE coupled system vibratory responses (transversal di-
splacement on the middle of the first and second laminate: w;, we) are determined and presented
in Figs. 2-7.
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Fig. 2. Model 1: observed signals for a punctual force
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Fig. 7. Model 3: observed signals for a distributed force

Then, after determining the observed signals which represent the displacements in the centre
of the first and the second laminate, the obtained results will serve as the input in the ICA
algorithm.

5.3. Estimated sources

The wave form and excitation frequency of the punctual and distributed forces applied to
the system will be constructed using the ICA algorithm.

The time-evolution of the applied force and the corresponding spectrum (FFT) are presented
in Figs. 8a and 8b, respectively. In this case, we have mentioned that this applied excitation
can be distributed on the whole nodes of laminate 1. So, it can be also reconstituted by the
developed inverse method.

Then, from Fig. 9 to Fig. 14, we present the corresponding ICA results.
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Fig. 8. (a) Time-evolution of the applied excitation source, (b) FFT of the applied excitation source

From Fig. 9 to Fig. 14, we can deduce that the adopted inverse method can be applied to
identify the dynamic excitation (the punctual and distributed forces and their spectrum) for
analyzing the vibro-acoustic behaviour of a fluid-structure coupled system. In this case, the
excitation frequencies of each force are localized and determined.

6. Conclusions

In this paper, one of the major techniques of the Blind Source Separation (BSS) called the
Independents Components Analysis (ICA) is presented and exploited in order to extract the
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force applied to a fluid-structure coupled system composed of a thin-film laminated double

ing system enclosing a thin fluid cavity and limited by an elastic joint. The vibro-acoustic

As a continuation of our previous published works, this method allows us to determine the

wave form of any external or internal forces applied to the structure, so it is a useful method to
study complex fluid-structure coupled systems.
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