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This paper deals with a class of free vibrations for a two-span, two-lane
steel-concrete bridge. The deck structure is modeled as a thin, homogene-
ous, orthotropic plate stiffened by beams running along the longitudinal
direction of the bridge. The method of separation of variables is used
to find exact solutions for a class of free vibrations of the structure. A
comparison between analytical and experimental natural frequencies and
vibration modes of the bridge is presented and discussed.
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1. Introduction

The derivation of accurate mechanical models is one of the main challenges
in modern analysis of structural dynamics. The development of such models
is of great interest in the study of bridge structures, especially for structural
control, damage detection and health monitoring purposes, see (Aktan et al.,
1997; Gentile and Cabrera, 1997; Gentile, 2006; Morassi and Vestroni, 2008;
Dilena and Morassi, 2011). In the context of structural identification based on
dynamic testing, for example, analytical modelling plays a crucial role both in
the interpretation of measurements and in the application of Model Updating
procedures. Moreover, it has been recognized in the Structural Identification
applications that one can hardly obtain anything good without a relatively
simple class of physical models which, however, must be able to describe within
a certain degree of accuracy the behavior of the real system, see, for example,
the papers (Jaishi and Ren, 2005; Gorman and Garibaldi, 2006; Catbas et al.,
2007; Morassi and Tonon, 2008a,b; Marcuzzi and Morassi, 2010).
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This paper deals with the dynamic behavior of the two-span, two-lane
steel-concrete bridge shown in Fig. 1. The bridge belongs to the new high-
way connecting the cities of Pordenone and Conegliano, in the Friuli Venezia
Giulia, a region located in the North East of Italy. Steel-concrete composi-
te structures are largely employed in bridge engineering, especially for bridge
decks where a severe control of deformability is needed under important we-
ights during operation. The bridge under study belongs to the rather common
class of steel-concrete bridges in which the reinforced concrete slab deck is
stiffened transversally by means of steel beams, and these beams, in their
turn, are connected at the ends to longitudinal steel plate girders of large
cross-section.

Fig. 1. Zigana bridge: (a) plan, (b) side view and (c) transversal cross-section
(lengths in meters)
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The object of the present study is twofold. First, to develop a simplified
analytical model able to accurately describe the dynamic behavior of this class
of steel-concrete bridges. Secondly, to derive an exact solution for a class of
free vibrations of the bridge, namely for vibrating modes which are antisym-
metric about the transversal symmetry axis of the bridge (e.g., the x2-axis in
Fig. 3).

In the modeling process, the bridge deck is described as two identical homo-
geneous, orthotropic rectangular plates. Each plate is assumed to be connected
by means of cylindrical hinges along the external edge to a reinforcing beam
and is simply supported along the two orthogonal edges. Moreover, the two
deck plates are connected together by means of cylindrical hinges to the cen-
tral reinforcing beam running along the common edge, which coincides with
the longitudinal bridge axis.

Concerning the plate eigenvalue problem, there is a vast literature on exact
solutions for rectangular plates, see, for example, the paper Leissa (1973) for
a comprehensive treatment of the isotropic case and Li (2000) for exact so-
lutions for multi-step orthotropic shear plates. The determination of exact
solutions for the free vibration of rectangular plates reinforced with beams
running along their boundary has undergone growing interest in the recent
years. The paper by Cox and Benfield (1959) seems to be the first contribu-
tion on this subject. In (Cox and Benfield, 1959), the finite difference method
was used to estimate the first frequencies of a uniform isotropic square pla-
te having pinpoint supports at the four corners and flexible beams along the
edges. Elishakoff and Sternberg (1980) investigated the vibration of a thin,
homogeneous, isotropic, rectangular plate stiffened along two parallel edges
and simply supported along the other two. In their study, the torsional vi-
bration of the beam stiffeners was also considered. Gorman (2003) presented
a comprehensive study of analytical type solutions for the free vibration of a
thin, homogeneous, isotropic corner-supported rectangular plate with symme-
trically distributed reinforcing beams attached to the plate edges. The beam
reinforcement was treated in the most general case in (Gorman, 2003) by ta-
king into account both bending and rotational stiffness of the beams as well
their lateral and rotational inertia.

All these results are valid for a single rectangular plate. In the present case,
the study of the free vibration of the bridge leads to an eigenvalue problem for
a system formed by two uniform, orthotropic rectangular plates. The method
of separation of variables is used to find the exact eigenpairs of the system.
A comparison between the analytical and experimental natural frequencies of
the bridge is also presented and discussed.
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2. Description of the bridge

Zigana bridge is a two-span, two-lane steel-concrete composite structure shown
in Fig. 1. The bridge deck is formed by a reinforced concrete (r.c.) slab, of thick-
ness 0.25m, supported by transverse double-T steel beams of height 0.63m.
The deck has a composite structure and the r.c. slab is connected to transverse
steel beams by means of steel connectors welded on the upper flange of the
beams. The end section of each transverse beam is connected by a bolted joint
to the longitudinal main beams, see Fig. 2b. In fact, the whole bridge deck is
supported by three continuous, two-span double-T girders of height 2.85m.
The cross-section of each girder was obtained by welding the web panel with
the upper and lower flange, and additional flange splices have been inserted to
stiffer the beams on the region around the inner support, see Fig. 2a. Finally,
five beam elements, each 12.64m long, were assembled by means of bolted jo-
ints to obtain longitudinal continuous beams resting on three supports. Each

Fig. 2. Constructional details of Zigana bridge: (a) bolted joint of the longitudinal
plate girders and (b) bolted connection between longitudinal plate girders and
transverse beams. In figure (b), the measures in parentheses are referred to the

central plate girder (lengths in millimeters)

longitudinal beam is supported on steel Polytetrafluoroethylene bearing de-
vices at the ends and at the middle point. The inner support of the central
girder does not allow any longitudinal or transversal displacement, while at
the end supports the transversal (horizontal) movement is constrained. The
longitudinal displacement of the two lateral longitudinal beams is restrained
at the inner support, while the in-plane motions are free at the end supports.
The inner support is on a pile foundation with two or four cast-in-place r.c.
piles of 1.2m diameter and 31.6 m length, for the lateral and the central girder
respectively. The abutments consist of an horizontal r.c. beam of solid square
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cross-section of side 1.3m, mounted on a single pile at both ends and on two
piles on the middle.

Construction of the bridge was completed in the Fall 2004. It was designed
under the Italian Standard Specifications for Highway Bridges in Seismic Areas
(D.M. 4/5/1990, Circ. Min. LL.PP. 34233, 25/2/1991, and others). Dynamic
and static tests on the bridge were carried out in December 2004 and June
2006, respectively.

With reference to Fig. 3, our mechanical modelling of Zigana bridge is
based on the following assumptions:

i) The bridge deck is described as a plate reinforced by a set of equidistant
ribs along the x2-direction (orthotropic plate).

ii) The connections between the deck and the main longitudinal beams are
modeled as ideal continuous cylindrical hinges allowing rotation around
the x1-direction. The hinges are assumed to be located on the vertical
plane containing the shear center line of the main plate girders.

iii) The bridge deck is assumed to be simply supported at the external edges
(parallel to the x2-direction) and at the central line support (x2-axis).

Under the above hypotheses and assuming uniform mechanical properties, the
analytical model of the bridge is symmetric about the x2-axis and, therefore,
the vibrating modes of the vertical free vibrations split into two sets of sym-
metric and antisymmetric modes about the x2-axis. The analysis developed in
this paper will concern with an exact solution for the class of x2-antisymmetric
free vibrations of the bridge.

Fig. 3. Schematic view of the bridge deck. Thick line: longitudinal beams; dashed
line: supports



710 L. Della Longa et al.

3. Formulation of the free vibration problem

Consider the bridge deck structure of Fig. 3 formed by two rectangular plates

Ω+ = {(x1, x2) | 0 < x1 < a, 0 < x2 < b}
(3.1)

Ω− = {(x1, x2) | 0 < x1 < a, − b < x2 < 0}

connected with three beams parallel to the x1-direction. The opposite edges
of the plates Ω+, Ω− parallel to the x2-direction, namely

Σ+0 = {(x1, x2) | x1 = 0, 0 < x2 < b}
(3.2)

Σ+a = {(x1, x2) | x1 = a, 0 < x2 < b} for Ω+

and

Σ−0 = {(x1, x2) | x1 = 0, − b < x2 < 0}
(3.3)

Σ−a = {(x1, x2) | x1 = a, − b < x2 < 0} for Ω−

are assumed to be simply supported. The lateral edges along the x1-direction

Γ+b = {(x1, x2) | 0 < x1 < a, x2 = b}
(3.4)

Γ−
−b = {(x1, x2) | 0 < x1 < a, x2 = −b}

of Ω+ and Ω−, respectively, are connected by cylindrical hinges to two simply-
supported beams. These hinges allow rotation around the x1-direction. More-
over, the two plates Ω+ and Ω− are connected together along the line

Γ0 = {(x1, x2) | 0 < x1 < a, x2 = 0} (3.5)

to the central beam by means of cylindrical hinges allowing rotation around
the x1-direction. The central beam is simply supported at the ends.

The present analysis is restricted to the case when the system undergoes
infinitesimal transversal motion (e.g., in the direction orthogonal to the plane
(x1, x2)). The beams are described within the Euler-Bernoulli bending theory,
whereas an orthotropic Kirchhoff-Love model is used to describe the beha-
vior of the plate deck, see, for example, (Timoshenko, 1959). Accordingly, the
spatial description of the undamped vibrations is governed by the Rayleigh
quotient of the system

R : D→ R (3.6)
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where D is the space of the admissible kinematic configurations. The space D

is defined as the set of functions

(w, v+, v0, v
−) ∈ (H2(Ω+) ∪H2(Ω−))×H2(0, a)×H2(0, a)×H2(0, a) (3.7)

such that

w =

{
v+ on Γ+b
v− on Γ−

−b

w(x1, 0
+) = v0(x1) = w(x1, 0

−) on Γ0

w = 0 on Σ+0 ∪Σ−0 and on Σ+a ∪Σ−a (3.8)

v+(0) = 0 = v+(a) v0(0) = 0 = v0(a)

v−(0) = 0 = v−(a)

Here, Hm(A), with m ­ 1 integer number and A bounded domain in R
n,

n ­ 1, denotes the standard Sobolev space formed by the measurable func-
tions f such that both f and its derivatives (in the sense of distributions)
up to the mth order are square summable functions in A, see (Brezis, 1986).
In Eqs. (3.7) and (3.8), w = w(x1, x2) is the transversal displacement of the
plate and v+ = v+(x1), v0 = v0(x1), v

− = v−(x1) is the transversal deflection
of the beam lying on the interval Γ+b , Γ0, Γ

−

−b, respectively.
On the above assumption, the Rayleigh quotient of the vibrating system

has the following expression

R[w, v+, v0, v
−] =

E

T
(3.9)

where the elastic energy E and the kinetic energy T are given respectively by

E[w, v+, v0, v
−] = −

∫

Ω+∪Ω−

Mαβ(w)w,αβ dx1dx2 +

∫

Γ+
b

J(w′′(x1, b))
2 dx1

+

∫

Γ0

J0(w
′′(x1, 0))

2 ddx1 +

∫

Γ−
−b

J(w′′(x1,−b))2 dx1

(3.10)

T [w, v+, v0, v
−] =

∫

Ω+∪Ω−

ρpw
2 dx1dx2 +

∫

Γ+
b

ρbw
2(x1, b) dx1

+

∫

Γ0

ρb0w
2(x1, 0) dx1 +

∫

Γ−
−b

ρbw
2(x1,−b) dx1



712 L. Della Longa et al.

In the above expressions, M11(w), M22(w) are the bending moments
and M12(w) = M21(w) are the torsional moments of the plate associated
to the transversal deflection w. The following constitutive equations can be
assumed for Mαβ

M11(w) = −(D11w,11+D1w,22 )
M22(w) = −(D22w,22+D1w,11 ) (3.11)

M12(w) = −2D12w,12
where the constants D11 > 0, D22 > 0, D12 > 0 are the two flexural and
the torsional rigidity of the orthotropic plate, respectively, and D1 > 0 is
the term which takes into account the transverse contraction of the plate, see
(Timoshenko, 1959). In Eq. (3.10), J and J0 are the uniform bending stiffness
of the two lateral longitudinal beams and of the central beam, respectively.
Further, ρp, ρb, ρb0 are the surface mass density of the plate, the linear mass
density of the two lateral beams and of the central beam, respectively.
The differential formulation of the free vibration problem for the system is

obtained by imposing the stationarity of Rayleigh quotient (3.9) on the set D

defined by Eqs. (3.7) and (3.8), see (Weinberger, 1965). The eigenvalue pro-
blem consists in determining the eigenpair {ω2 > 0; w ∈ H4(Ω+)∪H4(Ω−)},
with w(x1,±b) ∈ H4(0, a) and w(x1, 0) ∈ H4(0, a), such that

D11w,1111+2Hw,1122 +D22w,2222 = ω
2ρpw in Ω+ ∪Ω−

w,22= 0 on Γ+b ∪ Γ−−b ∪ Γ0
[[w]] = 0 on Γ0

H̃w,112+D22w,222=

{
Jw,1111−ω2ρbw on Γ+b
−(Jw,1111 −ω2ρbw) on Γ−

−b

(3.12)

H̃[[w,112 ]] +D22[[w,222 ]] = −(J0w,1111−ω2ρb0w) on Γ0

w = 0 on Σ
+
0 ∪Σ

−

0 ∪Σ
+
a ∪Σ

−

a

w,11= 0 on Σ
+
0 ∪Σ

−

0 ∪Σ
+
a ∪Σ

−

a

where H = 2D12 + D1, H̃ = 4D12 + D1, [[w]] ≡ w(x1, 0+) − w(x1, 0−),
[[w,112 ]] ≡ w,112 (x1, 0+) − w,112 (x1, 0−). Here, Σ+0 = [0, b]. From the me-
chanical point of view, boundary condition (3.12)2 expresses the vanishing of
bending moment and conditions (3.12)4−6 express the equilibrium of the forces
acting in the direction transversal to the plane (x1, x2) along the lines Γ

+
b ,

Γ−
−b, Γ0, respectively.
The differential operator governing eigenvalue problem (3.12) is a self-

adjoint compact operator in D and, therefore, by general results (see Brezis,
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1986) (i) there exists a countable number of real eigenvalues ω2n, n = 1, 2, . . .,
with ω2n > 0, and such that limn→∞ ω

2
n = ∞; (ii) eigenfunctions associated

to distinct eigenvalues are orthogonal with respect to the mass distribution;
(iii) there exists a countable base of the space D formed by the eigenfunctions
of the problem. It is worth noticing that if w(x1, x2) is an eigenfunction of
boundary value problem (3.12), then it can be extended as

w(−x1, x2) = −w(x1, x2) (x1, x2) ∈ Ω+ ∪Ω− (3.13)

to obtain the corresponding x2-antisymmetric mode shape of the whole bridge
structure in the rectangle [−a, a]× [−b, b], see Fig. 3.

4. Exact free vibration solutions

The exact solutions to eigenvalue problem (3.12) will be determined by means
of a variant of the method of separation of variables, see, e.g., (Voigt, 1893). It
is assumed that a non-trivial solution to boundary-value problem (3.12) can
be found in the form

w(x1, x2) = X(x1)Y (x2) (4.1)

By substituting Eq. (4.1) into Eq. (3.12)1 and dividing by w, it follows that

D11
XIV

X
+ 2H

XII

X

Y II

Y
+D22

Y IV

Y
= ω2ρp (4.2)

where ϕI denotes the first derivative of the function ϕ with respect to its
argument. Taking the partial derivative of Eq. (4.2) with respect to x2, it
follows that

2H
XII

X

(Y II

Y

)I
+D22

(Y IV

Y

)I
= 0 (4.3)

which can be separated, yielding

XII + βX = 0 in (0, a) (4.4)

where β is the separation parameter. The non trivial solutions to differential
equation (4.4) subject to boundary conditions (3.12)7, e.g.

X(0) = 0 = X(a) (4.5)

are given by

Xn(x1) = sin
nπx1
a

βn =
(nπ
a

)2
n = 1, 2, . . . (4.6)
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It is worth noticing that the eigensolutions Xn(x1) satisfy also boundary con-
ditions (3.12)8, since X

II
n (0) = X

II
n (a) = 0. Moreover, from Eq. (4.4) one

has
XIVn = −βnXIIn = β2nXn in (0, a) (4.7)

Therefore, by Eq. (4.2), the function Y ∈ H4(−b, 0) ∪ H4(0, b) must satisfy
the ordinary differential equation

D22Y
IV − 2HβnY II + (D11β2n − ω2ρp)Y = 0 in (−b, 0) ∪ (0, b) (4.8)

the boundary conditions at x2 = ±b
D22Y

III(b)− H̃βnY I(b) = (Jβ2n − ω2ρb)Y (b)
D22Y

III(−b)− H̃βnY I(−b) = −(Jβ2n − ω2ρb)Y (−b) (4.9)

Y II(b) = 0 Y II(−b) = 0
and the boundary and jump conditions at x2 = 0

Y II(0+) = 0 Y II(0−) = 0

[[Y ]] = 0 (4.10)

D22[[Y
III ]]− H̃βn[[Y I ]] = −(J0β2n − ω2ρb0)Y (0)

where [[Y ]] ≡ Y (0+)− Y (0−).
Again, by general results, see Brezis (1986), eigenvalue problem (4.8)-

(4.10) has a countable number of real, positive eigenvalues for every given n,
n = 1, 2, . . ., with the accumulation point at infinity. Therefore, the eigenfunc-
tions of problem (3.12) can be written as

wn,m(x1, x2) = Xn(x1)Ym(x2)
n = 1, 2, . . .
m = 1, 2, . . .

(4.11)

Looking for solutions of the form Y (x2) = exp(qx2), the characteristic equ-
ation for differential equation (4.8) becomes

f(z) = z2 − 4Az +B = 0 (4.12)

where

z = q2 A ≡ Hβn
2D22

> 0 B ≡ D11β
2
n − ω2ρp
D22

(4.13)

To find the roots of f(z), one has to distinguish the following cases

i) B > 0 “low” frequency case

ii) B < 0 “high” frequency case

iii) B = 0 “limit” case

(4.14)
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Case i). When B > 0, the following three subcases have to be considered

i1) 4A2 −B > 0
i2) 4A2 −B < 0
i3) 4A2 −B = 0

(4.15)

i1) If 4A2 − B > 0, then there exist two real positive roots of f(z) such
that

0 < z1 < 2A < z2 (4.16)

Therefore
{qj}4j=1 = {−

√
z1,
√
z1,−
√
z2,
√
z2} (4.17)

and the solution to differential equation (4.8), on each interval (−b, 0),
(0, b), can be written in the form

Y (x2) = C1 sinh(
√
z1x2) + C2 cosh(

√
z1x2)

(4.18)
+C3 sinh(

√
z2x2) + C4 cosh(

√
z2x2)

where Ci, i = 1, . . . , 4, are real constants of integration.

i2) When 4A2 − B < 0, the equation f(z) = 0 has two complex conjugate
roots

z1 = Rez1 + i Imz1 z2 = z1 Imz1 6= 0 (4.19)

Therefore, putting q ≡ a+ ib such that q2 = z1, one has

{q1, q2, q3, q4} = {a+ ib,−(a+ ib), a− ib,−(a− ib)} (4.20)

The solution of the differential equation (4.8) can be written on each
interval as

Y (x2) = e
ax2 [C1 cos(bx2)+C2 sin(bx2)]+e

−ax2 [C3 cos(bx2)+C4 sin(bx2)]
(4.21)

with four constants of integration C1, C2, C3, C4.

i3) For 4A2 = B, the function f(z) has a double root at z = 2A and the
solution of Eq. (4.8) is of the form

Y (x2) = C1 sinh(
√
2Ax2) + C2x2 sinh(

√
2Ax2)

(4.22)
+C3 cosh(

√
2Ax2) + C4x2 cosh(

√
2Ax2)

with Ci, i = 1, . . . , 4, constants of integration.
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Case ii). When B < 0, the roots of f(z) = 0 are always real and such that
z1 < 0 and z2 > 2A. Therefore, putting q1 = −i

√−z1, q2 = i
√−z1,

q3 = −
√
z2, q4 =

√
z2, the general solution to Eq. (4.8) is

Y (x2) = C1 cos(
√
−z1x2) +C2 sin(

√
−z1x2)

(4.23)
+C3 cosh(

√
z2x2) + C4 sinh(

√
z2x2)

with four constants of integration Ci, i = 1, . . . , 4.

Case iii). Finally, when B = 0 there are two real solutions z1 = 0 and
z2 = 4A, and the general solution to Eq. (4.8) is of the form

Y (x2) = C1 +C2x2 + C3 cosh(2
√
Ax2) + C4 sinh(2

√
Ax2) (4.24)

with Ci, i = 1, . . . , 4, constants of integration.

By substituting the general solution to equation (4.8) (e.g., the expression
(4.18), (4.21), (4.22), (4.23), (4.24) for cases i1), i2), i3), ii), iii), respectively)
into the eight boundary and jump conditions (4.9) and (4.10), a homogene-
ous linear system of eight equations for Ci, C

′
i, i = 1, . . . , 4, is obtained,

e.g. M(ω2)c = 0. To find non-trivial solutions for Y (x2), the determinant
detM(ω2) of the corresponding matrix should be set equal to zero.

The above analysis can be simplified by adopting suitable symmetry con-
siderations. Because of the symmetry of the eigenvalue problem with respect
to the x1-axis, the eigenfunctions of the system (4.8)-(4.10) split into the two
sets of x1-symmetric, S, and x1-antisymmetric, A, eigenfunctions, namely

S = {Y (x2) eigenfunction | Y (−x2) = Y (x2), x2 ∈ (−b, b)}
(4.25)

A = {Y (x2) eigenfunction | Y (−x2) = −Y (x2), x2 ∈ (−b, b)}

By way of an example, it will be shown how the analysis simplifies in case i1)
(B > 0, 4A2 −B > 0). Symmetric eigenfunctions have the expression

Y (x2) =





C1 sinh(
√
z1x2) +C2 cosh(

√
z1x2)

+C3 sinh(
√
z2x2) + C4 cosh(

√
z2x2) in (0, b)

−C1 sinh(
√
z1x2) + C2 cosh(

√
z1x2)

−C3 sinh(
√
z2x2) + C4 cosh(

√
z2x2) in (−b, 0)

(4.26)
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where the four constants C1, C2, C3, C4 can be determined by imposing
the four linearly independent boundary conditions (4.9)1,3 and (4.10)1,3. The
corresponding 4× 4 coefficient matrix MS(ω2) is




q21 sinh(q1b) q21 cosh(q1b) q22 sinh(q2b) q22 cosh(q2b)
m21 m22 m23 m24
0 q21 0 q22

2q31 − H̃βnq1 J0β2n − ω2ρb0 2q32 − H̃βnq2 J0β2n − ω2ρb0


 (4.27)

where q1 =
√
z1, q2 =

√
z2 and

m21 = (D22q
3
1 − H̃βnq1) cosh(q1b)− (Jβ2n − ω2ρb) sinh(q1b)

m22 = (D22q
3
1 − H̃βnq1) sinh(q1b)− (Jβ2n − ω2ρb) cosh(q1b)

(4.28)
m23 = (D22q

3
2 − H̃βnq2) cosh(q2b)− (Jβ2n − ω2ρb) sinh(q2b)

m24 = (D22q
3
2 − H̃βnq2) sinh(q2b)− (Jβ2n − ω2ρb) cosh(q2b)

Similarly, and always in case i1), the antisymmetric eigenfunctions can be
written in the form

Y (x2) =






C1 sinh(
√
z1x2) +C2 cosh(

√
z1x2)

+C3 sinh(
√
z2x2) + C4 cosh(

√
z2x2) in (0, b)

C1 sinh(
√
z1x2)−C2 cosh(

√
z1x2)

+C3 sinh(
√
z2x2)− C4 cosh(

√
z2x2) in (−b, 0)

(4.29)

and four constants of integration Ci, i = 1, . . . , 4, will be determined from
boundary conditions (4.9)1,3, (4.10)1,3. The corresponding 4 × 4 coefficient
matrix MA(ω

2) is




q21 sinh(q1b) q
2
1 cosh(q1b) q

2
2 sinh(q2b) q

2
2 cosh(q2b)

m21 m22 m23 m24
0 1 0 1
0 q21 0 q22


 (4.30)

Remaining cases i2), i3), ii), iii) have been studied analogously.
Finally, in order to determine the natural pulsations as roots of the cha-

racteristic equations detMS(ω
2) = 0, detMA(ω

2) = 0, a numerical procedure
was used. The essential steps of the algorithm can be summarized as follows.

To fix the ideas, the case of x1-symmetric eigenfunctions will be considered.
Let the x1-wave number βn be given, e.g. βn = (nπ/a)

2, n = 1, 2, . . .. Once
a value for ω was set, say ω̃, fourth order polynomial equation (4.12) in the
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variable q =
√
z, was solved and the expression of the general solution to

ordinary differential equation (4.8) was determined. Next, by imposing the
boundary conditions, the value of detMS(ω̃

2) was calculated. By repeating
this procedure for ω̃ + ∆ω, where ∆ω is a proper increment, a graph of
detMS(ω

2) was reconstructed in the given frequency interval. Eigenfrequency
values were evaluated by a bisection method applied between two consecutive
values of the ω variable corresponding to the change of sign of detMS(ω

2).
For each eigenfrequency value, after solving MScS = 0, the vector cS of the
constants of integration was calculated and, therefore, the corresponding mode
of vibration was determined.

5. Application to Zigana bridge

The analysis presented in the preceding Section was applied to determine a
class of eigenpairs of Zigana Bridge, namely the vibrating modes antisymme-
trical about the x2-axis in Fig. 3.

Fig. 4. Dimensional details of Zigana bridge: (a) longitudinal lateral double-T steel
beams, (b) longitudinal central double-T steel beam, (c) transverse double-T steel

beam (lengths in millimeters)

In Table 1, the geometrical, inertial and mechanical parameters of the
bridge are presented. In particular, by neglecting the effect of transverse con-
traction, see (Timoshenko, 1959), the rigidities of the deck are calculated by
means of the expressions
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D11 =
Ech

3

12(1 − ν2c )
D22 =

EsI
(hom)
s

a1
(5.1)

D12 =
Gch

3

12
+
C

2a1

Table 1. Geometrical, inertial and mechanical parameters of Zigana bridge

Parameter Symbol Value

Span length a 31m

Deck width b 13m

Plate thickness h 0.25m

Spacing between stiffeners a1 2.528m

Young’s modulus of steel Es 2.1 · 1011 Nm−2
Young’s modulus of concrete Ec 3.0605 · 1010 Nm−2
Homogenization factor steel-concrete n = Es/Ec 5.833

Poisson’s ratio for steel νs 0.3

Poisson’s ratio for concrete νc 0.2

Mass density of steel ρs 7850 kgm−3

Mass density of concrete ρc 2450 kgm−3

Plate bending stiffness (x2-axis) D11 4.89 · 107 Nm
Plate bending stiffness (x1-axis) D22 7.41 · 108 Nm
Plate torsional stiffness D12 1.97 · 107 Nm

In the foregoing formulas, Ec, Es are Young’s moduli of concrete and steel,
respectively; Gc is the shear modulus of concrete; νc is Poisson’s coefficient
of concrete; h is the plate thickness; a1 is the spacing of the steel transversal

beams in the x1 direction. In Eq. (5.1), I
(hom)
s is the moment of inertia, for unit

length, of the section formed by the r.c. slab and one stiffener evaluated for the
whole section homogenized to steel (with homogenization factor n = Es/Ec),
see Fig. 4. The quantity C is the torsional rigidity of a single transversal steel
beam and it has been evaluated accordingly to classical theories for thin walled
beams with open cross sections, see, for example, (Timoshenko, 1959).
In Table 2, for every value of n, n = 1, . . . , 5, the natural frequencies

of the first four free x1-symmetric and x1-antisymmetric vibration modes
of the bridge are collected. As an example, the shape of vibrating modes
corresponding to the lower six natural frequencies are presented in Fig. 5 for the
whole bridge deck. Generally speaking, lowest vibration modes are influenced
by deformation of the longitudinal plate girders. In the first mode wS1,1, at
f = 3.23Hz, the deformed shape of all the three longitudinal beams is similar



720 L. Della Longa et al.

Table 2. Theoretical values of natural frequencies of x1-symmetric modes
wSn,m and of x1-antisymmetric modes w

A
n,m of Zigana bridge, for n,m =

= 1, . . . , 4

n m
Frequency Frequency
wSn,m [Hz] w

A
n,m [Hz]

1 1 3.23 4.13
2 5.40 14.89
3 19.86 46.96
4 54.11 99.07

2 1 8.77 9.70
2 19.79 24.78
3 30.35 49.54
4 57.59 100.04

3 1 11.26 11.53
2 34.25 37.81
3 55.09 65.03
4 74.62 104.55

4 1 13.56 13.65
2 40.36 41.71
3 78.52 85.50
4 109.76 125.28

to the first bending mode of the continuous two-span beam. The second mode
wA1,1, at f = 4.13Hz, has torsional character since the vertical deflection of
the central girder is negligible and the two lateral beams vibrate out-of-phase
following the fundamental mode of the simply supported two-span continuous
beam. In the third mode wS1,2, at f = 5.40Hz, the two lateral girders vibrate
in-phase according to the fundamental mode of the simply supported two-
span beam, whereas the central girder has a similar shape but opposite phase.
Higher modes have more pronounced wavy character.

Table 3. Comparison between experimental and theoretical values of the first
natural frequencies. Error = 100 · (f theor − f exp)/f exp

Experimental Experimental Theoretical Theoretical
Error

mode order value [Hz] mode order value [Hz]

1 3.13 wS1,1 3.23 3.19

2 4.00 wA1,1 4.13 3.25

5 6.04 wS1,2 5.40 −10.60
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Fig. 5. 3D view of the first six theoretical x2-antisymmetrical mode shapes of
Zigana bridge

Finally, Table 3 compares the computed and experimental frequencies of
the lower modes of the bridge. The latter were extracted from frequency re-
sponse measurements carried out on Zigana bridge by means of a stepped-sine
technique, see (Morassi and Tonon, 2008b) for more details on dynamic te-
sting. In brief, the bridge was excited with an electro-mechanical actuator
mounted in the vertical direction on the bridge deck, at one fourth of the mid
span of the lateral side, see Fig. 6. The transversal motions of the deck we-
re measured by using twelve accelerometers and four seismometers. Based on
this experimental set-up, the frequency response functions (FRFs) of the brid-
ge deck were simultaneously determined within the frequency range 0-15Hz
with resolution 0.1Hz in 1.0-2.5 Hz, 0.02Hz in 2.5-9.0 Hz and 0.04Hz for fre-
quencies greater than 9.0Hz. Each FRF term was computed according to the
stepped-sine technique, and formally it was obtained as the ratio between the
discrete Fourier transform (DFT) of the accelerometer output signal and the
DFT of the force input signal. Figure 7 shows an example of measurements.

Modal components and natural frequencies were extracted from the measu-
red FRFs evaluated between the excitation point and the response points by
means of a multiple curve-fitting modal analysis technique, see Ewins (2000).
The curve fitting procedure assumes a FRF term given as the ratio between
the numerator polynomial and the denominator polynomial of a suitable or-
der. A numerical algorithm based on an iterative least-squared method was
used to obtain the optimal values of the modal parameters, see, as an example,
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Fig. 6. Instrumental layout and bridge supports

Fig. 7. Zigana bridge: example of comparison between measured (continuous line)
and synthesized (dashed line) point inertance
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Fig. 7. More precisely, five, three and five vibrating modes were identified in
the frequency intervals 2.5-7 Hz, 7-9Hz and 9-15Hz, respectively.

The experimental mode shapes in Fig. 8 correspond to linear interpolation
of the measured modal components. Visual comparison and Modal Assurance
Criterion allow one to confirm the correspondence between the first (3.13 Hz),
second (4.00Hz) and fifth (6.04Hz) experimental modes and the theoretical
modes wS1,1, w

A
1,1, w

S
1,2, respectively, as it is shown in Table 3. The results of

Table 3 show that the percentage differences between the experimental and
theoretical natural frequency values are rather small, even when compared
with the refined finite element model of the whole bridge developed by Mo-
rassi and Tonon (2008b). Therefore, the analytical model of the bridge can be
considered satisfactory for practical engineering applications.

Fig. 8. 3D view of the first six experimental mode shapes of Zigana bridge

6. Concluding remarks

In this paper, a class of free vibrations of a two-span, two-lane steel-concrete
bridge has been studied. The eigenvalue problem concerns with vibration of
two thin, homogeneous, orthotropic, rectangular plates connected by cylindri-
cal hinges to a reinforcing beam running along the common edge. Each plate
is stiffened along the external edge parallel to the common edge and simply
supported along the other two orthogonal edges. This combination of boun-
dary and jump conditions seems not to be considered in the literature before.
The classical method of separation of variables has been used to find a class
of exact eigenpairs of the system. Analytical values of the first lower natural
frequencies agree well with those obtained in dynamic tests carried out on the
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real bridge. The analytical model of the bridge will be of valuable importance
in the design of new bridges of the same class and on its use as the reference
model for future structural identification analyzes.
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Dokładne rozwiązania zagadnienia drgań swobodnych konstrukcji mostu
stalowo-betonowego

Streszczenie

Praca dotyczy analizy pewnej klasy drgań swobodnych dwuprzęsłowego, dwujez-
dniowego mostu stalowo-betonowego. Przęsło zamodelowano jako cienką, jednorod-
ną, ortotropową płytę usztywnioną belkami zamocowanymi w kierunku wzdłużnym
mostu. Do znalezienia dokładnych rozwiązań problemu drgań swobodnych modelu
zastosowano metodę rozdzielenia zmiennych. Na koniec zaprezentowano i przedysku-
towano porównanie częstości własnych i postaci drgań własnych modelu z wynikami
zarejestrowanymi na rzeczywistej konstrukcji.
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