
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

53, 1, pp. 151-166, Warsaw 2015
DOI: 10.15632/jtam-pl.53.1.151

NONLINEAR DYNAMIC ANALYSIS OF A RECTANGULAR PLATE
SUBJECTED TO ACCELERATED/DECELERATED MOVING LOAD

Ahmad Mamandi

Department of Mechanical Engineering, Parand Branch, Islamic Azad University, Tehran, Iran

e-mail: am 2001h@yahoo.com

Ruhollah Mohsenzadeh

Department ofMechanical andAerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

Mohammad H. Kargarnovin

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

In this paper, nonlinear dynamical behavior of a rectangular plate traveled by a moving
mass as well as an equivalent concentrated force with non-constant velocity is studied. The
nonlinear governing coupled partial differential equations (PDEs) of motion are derived by
energy method using Hamilton’s principle based on the large deflection theory in conjunc-
ture with the von-Karman strain-displacement relations. Then Galerkin’s method is used to
transform the equations of motion into a set of three coupled nonlinear ordinary differential
equations (ODEs) which then is solved in a semi-analytical way to get the dynamical respon-
se of the plate. Also, by using the Finite Element Method (FEM) with ANSYS software, the
obtained results in nonlinear form are verified by FEM results. Then, a parametric study
is conducted by changing the size of moving mass/force and the velocity of the traveling
mass/force with a constant acceleration/deceleration, and the outcome nonlinear results are
compared to the results from linear solution.
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1. Introduction

The theoretical and experimental investigation of the dynamic behavior of structural elements
such as string, beams, plates and shells under influence of moving loads have been the subject
of study of many researchers since last decades. Structures subjected to moving loads are often
encountered in engineering practice. Some examples of such applications can be addressed as
ropes of transporting systems, weapon firing barrels, overhead cranes, machining operations in
milling and turning and plates used in road or airfield traveled by moving ground vehicles or
aero vehicles, respectively. These structures may be exposed to much larger displacements than
when they are under static loads. For small oscillations, the response of deformable bodies like
plates can be suitably explained by linear equations. If the amplitude of oscillation increases
then nonlinear effects appear. The cause of nonlinearity may be material, geometric and inertial
in nature. For such cases, certainly accurate calculation of the dynamic response is necessary
for reliable design and hence better performance. Most recent articles in this topic deal with the
linear behavior of plates subjected to moving masses and forces whereas in reality such systems
naturally have nonlinear behavior.
Many simple moving load problems and their analytical solutions were studied by Fryba

(1999). The extensive studies of nonlinear dynamical characteristics of thin or thick beams un-
der moving masses/forces were investigated in several works (Mamandi et al., 2010a,b, 2013;
Mamandi and Kargarnovin, 2011a,b, 2013, 2014). A procedure incorporating the finite strip
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method together with a spring system was developed and applied to treat the response of rec-
tangular plate structures resting on an elastic foundation due to moving accelerated loads by
Huang and Thambiratnam (2001). The effect of initial moving velocity, acceleration and initial
load position on the response was discussed. Wu (2003) studied dynamic response of a rectan-
gular plate subjected to multiple forces moving along a circular path. A technique to predict
dynamic responses of a two-dimensional rectangular plate traveled by a transverse moving line
load using the one-dimensional equivalent beam model or the scale beams subjected to a moving
concentrated load was presented by Wu (2005). The elastodynamic response of a rectangular
Mindlin plate subjected to a distributed moving mass was investigated by Gbadeyan and Dada
(2006). The set of governing PDEs of motion that include the effect of shear deformation and
rotary inertia was expressed in a dimensionless form. A finite difference algorithm was employed
to transform the differential equations into a set of linear algebraic equations. The dynamic
response of the beam-slab type bridge deck under influence of moving loads was obtained apply-
ing the Hamilton principle with modal superposition by Law et al. (2007). Wu (2007) studied
the linear dynamical response of an inclined plate subjected to moving loads and including also
the effects of the inertial, Coriolis and centrifugal forces. It has been reported that the effects
of Coriolis force and centrifugal force become more significant at higher speed of the moving
mass. Ghafoori et al. (2010) used a semi-analytical method to calculate the dynamic response
of a rectangular plate due to a moving oscillator. The dynamic response of angle-ply laminated
composite plates traversed by a moving mass or a moving force was investigated by Ghafoori and
Asghari (2010) using finite element method based on the first-order shear deformation theory.
Similarly, Mohebpour et al. (2011) presented a finite element model based on the first order shear
deformation theory to investigate the dynamic behavior of laminated composite plates traversed
by a moving oscillator. A new finite element which can be used in the analysis of transverse
vibrations of plates under a moving point mass was presented by Esen (2013). An eigen-function
expansion method was employed to solve the constitutive equation of motion of a rectangular
plate under various boundary conditions and the motion of a traveling mass. Vaseghi Amiri et
al. (2013) studied the dynamic response of an undamped moderately thick plate with arbitrary
boundary conditions under motion of a moving mass. The FSDT (first-order shear deformation
plate theory or Mindlin plate theory) was selected as venue to derive the governing equations
of motion. Combined application of the Ritz method, the Differential Quadrature (DQ) method
and the Integral Quadrature (IQ) method to vibration problems of rectangular plates subjected
to accelerated traveling masses was investigated by Eftekhari and Jafari (2012).

In the present study, the effect of geometric nonlinearity caused by stretching of the
mid-plane of a rectangular plate with immovable simply supported on all edges and un-
der motion of accelerated/decelerated moving mass/force on the plate dynamic respon-
ses is investigated. Based on Hamilton’s principle, the nonlinear governing coupled PDEs
of motion are derived and solved applying Glarkin’s method using the Adam-Bashforth-
-Moulton integration method via the MATLAB solver package to obtain the dynamic response
of the plate.

2. Mathematical modeling

2.1. Problem statement

In Fig. 1 an isotropic and homogenous elastic rectangular plate of sides a and b (length a
and width b) simply supported on all edges with density ρ, uniform thickness h, mass per unit
area µ = ρh, modulus of elasticity E, Poisson’s ratio ν, bending stiffness D = Eh3/12(1 − ν2)
and subjected to a moving mass me with velocity V and constant acceleration/deceleration A
is shown. As can be seen in Fig. 1, the origin of the Cartesian coordinate system xoy is placed
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at the lower left corner of the plate. In our upcoming analysis it is assumed that the moving
mass travels along a straight line at the middle of the plate width, i.e. y = b/2 (see Fig. 1).
It should be mentioned that in our upcoming analysis when the moving mass enters the left
side of the plate at time t = 0, zero initial conditions are assumed. Moreover, in our analysis it
has been assumed that the moving mass during its travel never loses its contact with the plate
surface under it. In this study, the nonlinear dynamic behavior for the coupled longitudinal
and transversal in-plane and out of plane displacements of a uniform rectangular plate under
the action of moving mass/force is considered. It is assumed that the damping behavior follows
the viscous nature. Moreover, the plate deforms within the linear elastic range and, therefore,
Hook’s law is prevailing.

Fig. 1. A rectangular plate of sides a and b simply supported on all edges subjected to a traveling
mass me with velocity V and constant acceleration/deceleration A

2.2. Formulation

According to the von-Karman nonlinear strain-displacement relations, the normal strains εx
and εy and the shearing strain γxy of the middle surface for the plate shown in Fig. 1 are
expressed as follows (Nayfeh and Mook, 1995)

εx = u,x +
1

2
w2,x εy = v,y +

1

2
w2,y γxy = u,y + v,x + w,xw,y (2.1)

in which u(x, y, t), v(x, y, t) and w(x, y, t) represent the time dependent displacements of an
arbitrary point located on the middle surface of the plate in the x, y and z directions, respectively
measured from the equilibrium position when unloaded. Also, in our notation the subscripts
(, x), (, y) and (, t) stand for the derivative with respect to the spatial coordinates x and y
and time t, respectively. To obtain the nonlinear governing differential equations of motion by
applying Hamilton’s principle, the kinetic energy T of the rectangular plate under consideration
is (Meirovitch, 1997; Nayfeh and Mook, 1995)

T =
1

2
ρh

a
∫

0

b
∫

0

(u2,t + v
2
,t + w

2
,t) dx dy (2.2)

and according to Kirchhoff’s plate hypothesis, the strain energy U of the plate is given by
(Meirovitch, 1997)

U =
1

2

a
∫

0

b
∫

0

h/2
∫

−h/2

(σxεx + σyεy + τxyγxy) dx dy dz (2.3)
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where σx, σy and τxy are normal and shear in-plane stresses, respectively, and for the plate under
consideration can be obtained by Hook’s law given by (Timoshenko, 1959; Ugural, 1999)

σx =
E

1− ν2 (εx + νεy) σy =
E

1− ν2 (εy + νεx) τxy =
E

2(1 + ν)
γxy (2.4)

Now, we can establish the Lagrangian function of the system as: L = T − (U −We). Applying
Hamilton’s principle on L, yields to (Meirovitch, 1997)

δ

t2
∫

t1

L dt = 0 ⇒ δ

t2
∫

t1

(U − T ) dt =
t2
∫

t1

δWe dt (2.5)

in which the total external virtual work done δWe by the gravity and the traveling mass acting
on the plate at the location x = x0(t) and y = y0(t) = b/2 is (Meirovitch, 1997)

δWe = −
b
∫

0

a
∫

0

me(g+w,tt+2V w,xt+V
2w,xx+Aw,x)δw

∣

∣

∣

x0(t)=
1

2
At2+V t+x0, y0(t)=

b

2

dx dy (2.6)

in which, mew,tt, 2meV w,xt, meV
2w,xx and Aw,x are inertial, Coriolis, centrifugal and accele-

ration/deceleration induced forces acting on the elastic surface of the plate, respectively due to
motion of the mass.
After substitution of Eqs. (2.2), (2.3) and (2.6) into equation (2.5), performing integration

and doing some mathematical simplifications one would get the nonlinear governing coupled
PDEs of motion (EOMs) as follows:
— the force relation in the x direction

u,xx+w,xw,xx+ ν(v,xy +w,yw,xy) +
1

2
(1− ν)(u,yy + v,xy +w,xw,yy +w,yw,xy) =

1

c2p
u,tt (2.7)

— the force relation in the y direction

u,yy +w,yw,yy + ν(u,xy +w,xw,xy) +
1

2
(1− ν)(u,xy + v,xx+w,xw,xy +w,yw,xx) =

1

c2p
v,tt (2.8)

— the force relation in the z direction

1

12
h2∇4w − u,xw,xx −

1

2
w2,xw,xx − v,yw,yy −

1

2
w2,yw,yy

− ν
(

v,yw,xx +
1

2
w2,yw,xx + u,xw,yy +

1

2
w2,xw,yy

)

− (1− ν)(u,yw,xy + v,xw,xy + w,xw,yw,xy) +
c

c2pρh
w,t

=
1

c2p
(w,xu,tt + w,yv,tt − w,tt)−

me
c2pρh

δ (x− x0(t)) δ (y − y0(t))

· (w,xxV 2 + w,tt + 2w,xtV + w,xA+ g)
∣

∣

∣

x0(t)=
1

2
At2+V t+x0, y0(t)=

b

2

(2.9)

in which c2p = E/[ρ(1 − ν2)] and operator ∇4 =
(

∂4

∂x4 + 2
∂4

∂x2∂y2 +
∂4

∂y4

)

. Furthermore,

δ(x − x0(t))δ(y − y0(t)) represents two dimensional Dirac’s delta function in which x0(t) and
y0(t) are the instantaneous positions of the moving mass traveling on the plate. In the case the
mass is traveling with velocity V and constant acceleration/deceleration A on a straight path
along the trajectory parallel to the side a at the middle of the plate width, i.e. y = b/2, then its
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instantaneous position is given by x0(t) = At
2/2+V t+x0 and y0(t) = b/2, where x0 represents

the initial position of the mass at the start of its motion. In addition, c (or cmn) coefficient is
internal viscous damping of the plate related to modal damping ratio, namely ζmn expressed by
ζmn = cmn/[2(λmnωmn)] (Amabili, 2004), where ωmn is the natural frequency of the mth-nth
mode of vibration and λmn is the modal mass of this mode given by λmn = ρhab/4 (Amabili,
2004).

3. Solution method

In this study, Galerkin’s method is chosen as a powerful mathematical tool to analyze vibrations
of the plate. Based on the separation of variables technique, the response of the plate in terms
of the linear free-oscillation modes can be assumed as follows (Amabili, 2004):

u(x, y, t) =
m
∑

i

n
∑

j

pij(t)φij(x, y) = P (t)Φ
T(x, y)

v(x, y, t) =
n
∑

k

m
∑

l

qkl(t)ψkl(x, y) = Q(t)Ψ
T(x, y)

w(x, y, t) =
M
∑

v

N
∑

z

rvz(t)θvz(x, y) = R(t)Θ
T(x, y)

(3.1)

where P (t), Q(t) and R(t) are vectors listing the generalized coordinate pij(t), qkl(t) and rvz(t),
respectively, and φ(x, y), Ψ(x, y) and Θ(x, y) are some vectorial functions collecting the first
mode shapes (eigen-functions) of φij(x, y), ψkl(x, y) and θvz(x, y), respectively. In the next step,
primarily we substitute Eqs. (3.1) into Eqs. (2.7), (2.8) and (2.9), then on the resulting relations,
pre-multiplying both sides of Eq. (2.7) by ΦT(x, y), Eq. (2.8) by ΨT(x, y) and Eq. (2.9) by
ΘT(x, y), integrating over the interval (0, a) and (0, b) and imposing the orthogonality property
of the vibration modes of the plate along with the properties of the two dimensional Dirac delta
function, the resulting nonlinear coupled modal ODEs of motion in matrix form are as follows
(i = l = 2, 4, . . . ,m, j = k = 1, 2, . . . , n, v = 1, 2, . . . ,M , z = 1, 2, . . . , N)

1

c2p

m,n
∑

i,j

I7,ij p̈ij(t)−
m,n
∑

i,j

[

I1,ij +
1

2
(1− ν)I5,ij

]

pij(t)−
1

2
(1 + ν)

n,m
∑

k,l

m,n
∑

i,j

I3,klijqkl(t)

−
M,N
∑

v,z

m,n
∑

i,j

[

I2,vzij +
1

2
(1 + ν)I4,vzij +

1

2
(1− ν)I6,vzij

]

r2vz(t) = 0

1

c2p

n,m
∑

k,l

I14,klq̈kl(t)−
n,m
∑

k,l

[

I8,kl +
1

2
(1− ν)I12,kl

]

qkl(t)−
1

2
(1 + ν)

m,n
∑

i,j

n,m
∑

k,l

I10,ijklpij(t)

−
M,N
∑

v,z

n,m
∑

k,l

[

I9,vzkl +
1

2
(1 + ν)I11,vzkl +

1

2
(1− ν)I13,vzkl

]

r2vz(t) = 0

M,N
∑

v,z

( me
c2pρh

I34,vz +
1

c2p
I31,vz

)

r̈vz(t) +
M,N
∑

v,z

(

2meV I35,vz +
cvz
c2pρh

I31,vz
)

ṙvz(t)

(3.2)

+
M,N
∑

v,z

[h2

12
(I15,vz + 2I16,vz + I17,vz) +

meV
2

c2pρh
I33,vz +

meA

c2pρh
I35,vz

]

rvz(t)

−
M,N
∑

v,z

{1

2
[I19,vz + I21,vz + ν(I23,vz + I25,vz)] + (1− ν)I28,vz

}

r3vz(t)
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+
m,n
∑

i,j

M,N
∑

v,z

{

[I18,ijvz + νI24,ijvz + (1− ν)I26,ijvz]pij(t) +
1

c2p
I29,ijvz p̈ij(t)

}

rvz(t)

+
n,m
∑

k,l

M,N
∑

v,z

{

[I20,klvz + νI22,klvz + (1− ν)I27,klvz]qkl(t) +
1

c2p
I30,klvz q̈rs(t)

}

rvz(t)

=
meg

c2pρh

M,N
∑

v,z

I32,vz

in which the dot mark over any parameter indicates the derivative with respect to time,
i.e., t. All matrices I1 to I35 appearing in the above relations are given in Appendix A. It is
clear that Eqs. (3.2) are three nonlinear coupled second-order ordinary differential equations
(ODEs). The boundary conditions for a plate with immovable simple supports on all edges are
(Timoshenko, 1959; Ugural, 1999):
— essential BCs

u = v = w = 0 at x = 0, x = a

u = v = w = 0 at y = 0, y = b
(3.3)

— natural BCs

Mx = 0 → w,xx = 0 at x = 0, x = a

My = 0 → w,yy = 0 at y = 0, y = b
(3.4)

Moreover, the initial conditions (ICs) for the plate are

ICs: u(x, y, 0) = u,t(x, y, 0) = v(x, y, 0) = v,t(x, y, 0) = w(x, y, 0) = w,t(x, y, 0) = 0 (3.5)

The equations of motion for a plate subjected to an equivalent concentrated moving force F
of magnitude meg can be derived from the equations of motion for a plate subjected to a moving
mass by neglecting the inertial effect of the traveling mass. For this system, Eqs. (2.9) and (3.2)3
are rewritten as follows (i = l = 2, 4, . . . ,m, j = k = 1, 2, . . . , n, v = 1, 2, . . . ,M , z = 1, 2, . . . , N)

1

12
h2∇4w − u,xw,xx −

1

2
w2,xw,xx − v,yw,yy −

1

2
w2,yw,yy

− ν
(

v,yw,xx +
1

2
w2,yw,xx + u,xw,yy +

1

2
w2,xw,yy

)

− (1− ν)(u,yw,xy + v,xw,xy + w,xw,yw,xy) +
c

c2pρh
w,t

=
1

c2p
(w,xu,tt + w,yv,tt − w,tt)−

meg

c2pρh
δ (x− x0(t)) δ (y − y0(t))

∣

∣

∣

x0(t)=
1

2
At2+V t+x0, y0(t)=

b

2

M,N
∑

v,z

1

c2p
I31,vz r̈vz(t) +

M,N
∑

v,z

cvz
c2pρh

I31,vz ṙvz(t) +
M,N
∑

v,z

h2

12
(I15,vz + 2I16,vz + I17,vz)rvz(t)

−
M,N
∑

v,z

{1

2
[I19,vz + I21,vz + ν(I23,vz + I25,vz)] + (1− ν)I28,vz

}

r3vz(t)

+
m,n
∑

i,j

M,N
∑

v,z

{

[I18,ijvz + νI24,ijvz + (1− ν)I26,ijvz]pij(t) +
1

c2p
I29,ijvz p̈ij(t)

}

rvz(t)

+
n,m
∑

k,l

M,N
∑

v,z

{

[I20,klvz + νI22,klvz + (1− ν)I27,klvz]qkl(t) +
1

c2p
I30,klvz q̈rs(t)

}

rvz(t)

=
meg

c2pρh

M,N
∑

v,z

I32,vz

(3.6)
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where Eqs. (2.7), (2.8), (3.2)1 and (3.2)2 remain unchanged.

In order to solve Eqs. (3.2), all entries in the matrices listed in Appendix A should be
calculated. It can be seen that the following functions (mode shapes) for φij(x, y), ψkl(x, y) and
θvz(x, y) will satisfy both the linearized equations of motion and boundary conditions of the
plate with immovable simpe supports on all edges (Vaseghi et al., 2013)

φij(x, y) = sin
iπx

a
sin

jπy

b
i = 2, 4, . . . ,m, j = 1, 2, . . . , n

ψkl(x, y) = sin
kπx

a
sin

lπy

b
k = 1, 2, . . . , n, l = 2, 4, . . . ,m

θvz(x, y) = sin
vπx

a
sin

zπy

b
v = 1, 2, . . . ,M, z = 1, 2, . . . , N

(3.7)

Now, we use Eq. (3.7) to calculate all matrix quantities given in Appendix A. In the next
step, these evaluated matrices will be used in Eqs. (3.2), and later, the set of equations will
be solved numerically using the Adams-Bashforth-Moulton integration method via MATLAB
solver package to obtain values of pij(t), qkl(t) and rvz(t). By back substitution of pij(t), qkl(t)
and rvz(t) into Eqs. (2.7) to (2.9), u(x, y, t), v(x, y, t) and w(x, y, t) can be obtained, respectively.
Subsequently, after obtaining values for u(x, y, t), v(x, y, t) and w(x, y, t) the dynamic response
of the rectangular plate under the effect of three types of mass motion: (a) accelerating, (b) de-
celerating and (c) constant velocity motion are obtained. The obtained results for the plate
response under each of those three types of mass/force motions are shown separately in Figs. 4
to 6. The detailed kinematical discussions of the above different motions are described below
(Mamandi et al., 2010a, 2013):

(a) In the case of constant accelerating type of motion (x0(t) = 0.5Aact
2 + V0t + x0,

Aac = const > 0), it is assumed that the plate is at rest when the mass me enters
the plate at x0 = 0 and t0 = 0, and with initial velocity V0 = 0 and it arrives at the other
end of the plate, i.e. x = a with final velocity V . The total traveling time in the plate
span t1 and mass exit velocity V will be: t1 = 2a/V , V =

√
2Aaca.

(b) In the case of constant decelerating type of motion (x0(t) = 0.5Adet
2 + V0t + x0,

Ade = const < 0), it is also assumed that the plate is at rest when the mass me enters the
plate at x0 = 0 and t0 = 0 and with entrance velocity V0 (non-zero initial velocity), and
it stops (V = 0) at the other end of the plate, i.e. x = a. The total traveling time in the
plate span t2 and mass entrance velocity V0 will be: t2 = 2a/V0, V0 =

√

2|Ade|a.
(c) In the case of uniform velocity type of motion (x0(t) = V t+ x0), it is also assumed that
the plate is at rest when the mass me enters the plate at x0 = 0 and t0 = 0 with mass
constant velocity V , and it reaches the other end of the plate, i.e. x = a at the instant t3.
The total traveling time in the plate span will be: t3 = a/V .

4. Verification of the results and case studies

As mentioned in the introduction, at the moment no specific results exist for the problem under
consideration in the literature. Therefore, to verify the validity of the results obtained in this
study, we primarily consider some special cases by which our results can be compared with those
existing in the literature.

4.1. Verification of the results in linear analysis

In the first attempt, we neglect the higher order terms in Eqs. (2.7) to (2.9) and structural
damping for the plate, i.e., c = 0 and A = 0. This will lead us to a set of new relations for
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u(x, y, t), v(x, y, t) and w(x, y, t) representing the linear form of governing EOMs of a plate
subjected to a moving load with constant velocity V . By doing this, Eq. (2.9) is decoupled from
Eqs. (2.7) and (2.8) and transformed into a linear form as follows (Leissa, 1969)

∇4w + ρh

D
w,tt = −

F

D
δ (x− x0(t)) δ (y − y0(t))

∣

∣

∣

x0(t)=V t, y0(t)=
b

2

(4.1)

To verify the validity of the obtained results out of our analysis, we consider a simply supported
rectangular plate traveled by a moving force F with the data given by Eftekhari and Jafari
(2012): a = b = 10m, E = 200 · 109 Pa, ρ = 7850 kg/m3, F = 3.13N, ρh/D = 0.0001 kg/(Nm3),
y0(t) = b/2, V = 5m/s, ν = 0.3, c = 0Ns/m2 and A = 0. By employing Eqs. (4.1) and (3.6)2
and based on the above data, the computer code was run for this case and the variation of
vertical dynamic displacements w of the central point of the plate vs. time t were calculated.
The outcome results are depicted and compared with other existing results in Fig. 2. A close
inspection of the curves in Fig. 2 indicates very good agreements between the two outcome
results.

Fig. 2. Time history for the vertical displacement of the central point of the simply support plate
subjected to the moving force F

4.2. Verification of the results in nonlinear analysis

As described earlier, in this study, to extend checking on the validity of our obtained results
we prepared appropriate APDL (ANSYS Parametric Design Language) routine in the environ-
ment of ANSYS software to simulate the response of the moving force on the plate. Then, the
linear and nonlinear FEM solutions have been compared with those obtained by the linear and
nonlinear analytical solutions applying the mode summation technique. In the modeling of the
plate, we used shell63 element defined in this software which is suitable for analyzing shell type
structures. This element is a 3-D 4-noded shell element having 6 DOFs with 3-translational
DOF in the x, y and z directions and 3-rotational DOF in each node about above the mentioned
axes. Moreover, this element is adopted to exert both in-plane and out of plane (normal) loads
and suitable for large deflections. Now, to establish our calculations, we consider a plate with
geometry and mechanical properties listed as: a = 4m, b = 2m, h = 0.01m, E = 200 · 109 Pa,
ρ = 7850 kg/m3, g = 9.81m/s2 and ν = 0.3.

Figure 3 illustrates the variation of the central point vertical deflection w [m] of the plate with
all edges simply supported using the above mentioned data vs. time t at velocity ratio of α = 1
for the traveling force of F = 0.25µgab [N] under influence of constant velocity motion using
FEM and analytical analysis, respectively. From this figure, one can conclude that the results for
the plate central point vertical dynamic displacement obtained by FEM and analytical solutions
using nonlinear or linear analysis are almost the same which shows very good agreement between
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these analytical results obtained via the mode summation technique and FEM analysis. The
suitable number of elements which has been used for the plate to converge the linear/nonlinear
results is 288 elements with 24 elements used in the length a and 12 elements used in the width b
of the plate. It should be mentioned that the maximum relative difference between the obtained
results for the plate central point vertical deflection using linear and FEM solutions is 4.8% at
the instant 0.073 s, and also the maximum relative difference between the obtained results using
nonlinear analysis and FEM solution is 1% at the instant 0.09 s.

Fig. 3. Variation of the vertical deflection of the central point w [m] vs. time t [s] for the simply
supported plate affected by the moving force F = 0.25µgab [N] under constant velocity motion at α = 1

using analytical and FEM analysis for linear and nonlinear solutions

5. Results and discussions

After being satisfied about the validity of the solution technique, the plate central point instan-
taneous dynamic vertical deflection is calculated in the next step. In obtaining these results,
a steel plate with the same specifications as mentioned above in Section 4.2, but in addition
having ζ = 0.033 (Mamandi et al., 2010a,b) is considered.
It should be mentioned that all deflection variations vs. moving mass instantaneous posi-

tion are given in a non-dimensional form that is wmax/w0. Moreover, it has to be pointed out
that based on the conducted convergence study related to the linear and nonlinear analyses,
9 modes of vibration are taken into account for steady state answers for u(x, y, t), v(x, y, t) and
w(x, y, t).
To clarify the results and in order to have a better insight into interpreting the variation of the

obtained results, we tried to present the results in dimensionless forms. So, we begin with defining
the normalized maximum dynamic vertical deflection of the central point of the plate to its
maximum static response at the same point. The static downward deflection of the plate central
point under a concentrated mass applied at the same point is equal to w0 = 0.01651mega

2/D
(Timoshenko, 1959). Moreover let us define the velocity ratio as α = T1/T = V/Vp in which
Vp = a/T1 = (ωna)/(2π), where T1, T and Vp denote the first natural period (fundamental period
of transverse motion) of the plate, the total time taken by the moving load to cross from one
side to the opposite side of the plate and the velocity of the reference load that would take the
time of T1 to traverse the plate of length a, respectively. Moreover, ωn is the natural frequency
of the plate given by (Leissa, 1969)

ωn = ωij = π
2
[( i

a

)2
+
(j

b

)2]
√

D

ρab
i, j = 1, 2, . . . , n

It should be pointed out that in conjuncture with the stretching effect of the mid-plane of the
plate, the geometric nonlinearity behavior of the plate also depends on the ratio of the weight of
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the moving mass as well as amplitude of the equivalent concentrated moving force to the plate
weight. For sure, we have done this study before any further calculation. It has been noticed
that when this ratio is usually greater than 0.1, the nonlinear geometric effects come into play.

Figures 4 and 5 show the variation of the dimensionless dynamic vertical deflection
(wmax/w0) vs. dimensionless time t/ti (i = 1, 2, 3) at the central point of the simply supported
rectangular plate traversed by the moving mass of me = 0.25µab [kg] and an equivalent concen-
trated force of F = 0.25µgab [N], respectively with different velocity ratios (α = 1, 2, 3, 4) under
the influence of three types of motion using linear and nonlinear solutions, respectively. As can

Fig. 4. Variation of the dimensionless dynamic vertical deflection (wmax/w0) at the central point of the
plate vs. normalized time (t/ti) for the simply supported rectangular plate traversed by the moving
mass of me = 0.25µab [kg] with different velocity ratios (α = 1, 2, 3, 4) under influence of three types of

motion; (a) accelerated motion, (b) decelerated motion, (c) uniform velocity motion;
(—) nonlinear analysis, (- - -) linear analysis

be seen from Figs. 4 and 5, in the accelerating and decelerating types of motion by increasing
the velocity ratio α up to α = 3 and 2, respectively, the value of maximum nonlinear dynamic
downward deflection increases and the reverse trend prevails afterwards, whereas in uniform ve-
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Fig. 5. Variation of the dimensionless dynamic vertical deflection (wmax/w0) at the central point of the
plate vs. normalized time (t/ti) for the simply supported rectangular plate traversed by the moving
force of F = 0.25µgab [N] with different velocity ratios (α = 1, 2, 3, 4) under influence of three types of

motion; (a) accelerated motion, (b) decelerated motion, (c) uniform velocity motion;
(—) nonlinear analysis, (- - -) linear analysis

locity motion the reduction trend of the maximum dynamic downward deflection is always seen
no matter what type of analysis is used. It is noticed that in the accelerating type of motion,
the maximum dynamic deflection is reached at a much later time than the other two cases.
Moreover, in the decelerating type of motion, the range of variation of the maximum dynamic
deflection is larger with respect to the other two types of motion. Also, it can be seen from
Figs. 4 and 5 that for a higher velocity ratio, i.e. α = 4, in uniform velocity motion, the vertical
dynamic displacement of the plate central point yields a smaller value at the time of leaving
the plate, which means the plate does not have enough time to respond accordingly against the
fast speed of the moving mass/force. In addition, from these figures, it can be seen that in the
decelerating type of motion in lower velocity ratios, i.e. α = 1 and 2, there is a reverse (upward)
displacement for the central point which occurs usually when the load leaves the plate. It can be
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Fig. 6. Variation of the dimensionless dynamic vertical deflection (wmax/w0) at the central point of the
plate vs. normalized time (V t/a) for the simply supported rectangular plate traversed by the moving
mass of me for different velocity ratios in the constant velocity type of motion; (a) α = 0.75, (b) α = 1,

(c) α = 1.25, (d) α = 1.5
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observed in Figs. 4 and 5 that the obtained results from nonlinear solution have almost smaller
values that those calculated by linear solution. In addition, from Figs. 4 and 5, it is concluded
that the maximum difference for the plate central point deflection between nonlinear and linear
solutions happens primarily in the decelerating motion and with a smaller difference in the case
of uniform velocity and then in the accelerating type of motion, respectively.
To study the effect of weight of the moving mass to generate the nonlinearity behavior of the

plate, Fig. 6 shows the variation of the dimensionless dynamic vertical deflection (wmax/w0) of
the simply supported rectangular plate for different velocity ratios (α = 0.75, 1, 1.25 and 1.5)
traversed by different moving masses me (me = cmµab [kg], cm = 0.5, 1, 2, 3 and 4) vs. the nor-
malized instantaneous mass position, i.e. V t/a using nonlinear analysis in the constant velocity
type of motion. It can be seen from this figure that when α increases up to the velocity ratio
α = 1.25, the maximum value of instantaneous dynamic deflection increases and decreases after-
wards. The maximum dynamic deflection for all cases in this figure occurs at me = 0.5µab [kg]
at α = 1.25.

6. Conclusions

Three nonlinear coupled partial differential equations of motion for the in-plane and out-of-plane
displacements of a rectangular plate subjected to an accelerated/decelerated traveling mass as
well as an equivalent concentrated force are solved, and the results are following:
• It can be seen that in the accelerating type of motion, the maximum dynamic deflection
is reached at a much later time than in the other two types of motion.

• It is concluded that in the decelerating type of motion, the range of variation of the
maximum dynamic deflection is larger with respect to the other two types of motion.

• For higher velocity ratios in the uniform velocity motion, the vertical dynamic displacement
of the plate central point yields a smaller value at the time of leaving the plate.

• It is seen that in the moving mass/force problem in three types of motion, the obtained
results by nonlinear solution have almost smaller values than those calculated by linear
solution.

• It is observed that in conjuncture with the stretching effect of the mid-plane of the plate
when the ratio of the weight of the moving mass as well as the amplitude of the equivalent
concentrated moving force to the plate weight is usually greater than 0.1, the geometric
nonlinearity behavior of the plate comes into play.

• It is concluded that the maximum difference for the plate central point deflection between
nonlinear and linear solutions happens primarily in the decelerating motion and with a
smaller difference in the case of uniform velocity and then in the accelerating type of
motion, respectively.

Appendix A

The definition of different matrices used in calculation of the nonlinear coupled ODEs of modal
relations Eqs. (3.2) are

I1,ij =

b
∫

0

a
∫

0

d2φij(x, y)

dx2
φij(x, y) dx dy I2,vzij =

b
∫

0

a
∫

0

dθvz(x, y)

dx

d2θvz(x, y)

dx2
φij(x, y) dx dy

I3,klij =

b
∫

0

a
∫

0

d2ψkl(x, y)

dxdy
φij(x, y) dx dy I4,vzij =

b
∫

0

a
∫

0

dθvz(x, y)

dy

d2θvz(x, y)

dxdy
φij(x, y) dx dy
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I5,ij =

b
∫

0

a
∫

0

d2φij(x, y)

dy2
φij(x, y) dx dy I6,vzij =

b
∫

0

a
∫

0

dθvz(x, y)

dx

d2θvz(x, y)

dy2
φij(x, y) dx dy

I7,ij =

b
∫

0

a
∫

0

φ2ij(x, y) dx dy I8,kl =

b
∫

0

a
∫

0

d2ψkl(x, y)

dy2
ψkl(x, y) dx dy

I9,vzkl =

b
∫

0

a
∫

0

dθvz(x, y)

dy

d2θvz(x, y)

dy2
ψkl(x, y) dx dy I10,ijkl =

b
∫

0

a
∫

0

d2φij(x, y)

dxdy
ψkl(x, y) dx dy

I11,vzkl =

b
∫

0

a
∫

0

dθvz(x, y)

dx

d2θvz(x, y)

dxdy
ψkl(x, y) dx dy I12,kl =

b
∫

0

a
∫

0

d2ψkl(x, y)

dx2
ψkl(x, y) dx dy

I13,vzkl =

b
∫

0

a
∫

0

dθvz(x, y)

dy

d2θvz(x, y)

dx2
ψkl(x, y) dx dy I14,vzkl =

b
∫

0

a
∫

0

ψ2kl(x, y) dx dy

I15,vz =

b
∫

0

a
∫

0

d4θvz(x, y)

dx4
θvz(x, y) dx dy I16,vz =

b
∫

0

a
∫

0

d4θvz(x, y)

dx2dy2
θvz(x, y) dx dy

I17,vz =

b
∫

0

a
∫

0

d4θvz(x, y)

dy4
θvz(x, y) dx dy I18,ijvz =

b
∫

0

a
∫

0

dφij(x, y)

dx

d2θvz(x, y)

dx2
θvz(x, y) dx dy

I19,vz =

b
∫

0

a
∫

0

(dθvz(x, y)

dx

)2 d2θvz(x, y)

dx2
θvz(x, y) dx dy

I20,klvz =

b
∫

0

a
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dy

d2θvz(x, y)

dy2
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∫
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(dθvz(x, y)

dy
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dy2
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I22,klvz =

b
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0
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dψkl(x, y)

dy

d2θvz(x, y)
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∫
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b
∫
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dx
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dy2
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b
∫
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a
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dy2
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b
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I28,vz =

b
∫

0

a
∫

0

dθvz(x, y)

dx

dθvz(x, y)

dy

d2θvz(x, y)

dxdy
θvz(x, y) dx dy

I29,ijvz =

b
∫

0
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∫

0

dθvz(x, y)

dx
φij(x, y)θvz(x, y) dx dy

I30,klvz =

b
∫

0
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∫

0

dθvz(x, y)

dy
ψkl(x, y)θvz(x, y) dx dy

I31,vz =

b
∫

0

a
∫

0

θ2vz(x, y) dx dy I32,vz = θvz(x = x0(t), y = b/2)

I33,vz =
d2θvz(x = x0(t), y = b/2)

dx2
θvz(x = x0(t), y = b/2)

I34,vz = θ
2
vz(x = x0(t), y = b/2) I35,vz =

dθvz(x = x0(t), y = b/2)

dx
θvz(x = x0(t), y = b/2)
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