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A method to extract energy from an excitation which is stochastic in nature is presented. The
experimental rig comprises a pendulum, and a vertical excitation is provided by a solenoid.
The control input assumed in the form of a direct current motor, and another motor, used in
reverse, acts as a generator. The stochastic excitation has been achieved by varying the time
interval between switching the RLC circuit on and off according to a random distribution.
Such non-linear vertical excitations act on an oscillatory system from which a pendulum is
pivoted. The Pierson-Moskowitz spectrum has been chosen as the random distribution while
an inverse transform technique has been used for generation of the random excitation signal
in LabVIEW environment. Moreover, a bang-bang control algorithm has been implemented
to facilitate rotational motion of the pendulum. Experimental observations have been made
for various noise levels of vertical excitations, and their implication on energy generation
has been discussed. A positive amount of energy has been extracted for a minimal amount
of the control input.
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1. Introduction

Energy in form of mechanical vibration generally exists everywhere, all the time, and its source
can be natural (e.g. sea wave) or artificial (e.g. automobile vibration). While some vibrations
may be regarded as useful and necessary, other vibrations can be suppressed or their energy
can be converted into electrical energy by means of a harvester. For an instance, it can be used
to vertically excite a parametric pendulum, which in turns rotates the pendulum and drives
a generator to produce electrical energy. That form of vertical excitation can be chaotic or
stochastic in the characteristic. Though both chaotic and stochastic excitations appear to be
random and irregular, the chaotic excitation is deterministic while the stochastic excitation is
characterized by using probability theory.
Various investigations have been performed on the dynamics of a parametric pendulum

subjected to the stochastic excitation. For example, a stochastic forcing of Gaussian distribution
was added to the forced pendulum model (Blackburn et al., 1995) and its effect in stabilizing
and destabilizing the periodic motion of the parametric pendulum was studied by Blackburn
(2006). Influence of the Wierner phase noise in the chaotic regime of a parametrically excited
pendulum was numerically studied by Litak et al. (2008). A numerical study was conducted to
investigate how stable rotational modes of a parametric pendulum were affected by introducing
a stochastic forcing of Gaussian distribution by Horton and Wiercigroch (2008). Rotation of
a parametric pendulum system subjected to an excitation with the Pierson-Moskowitz wave
spectrum was studied by Najdecka (2013). Rotational motion of the Mathieu equation subjected
to a narrow band excitation was investigated by Yurchenko et al. (2013). The stochastic response
of a rotating pendulummounted on a single degree-of-freedom (SDOF) base, which was subjected
to narrow band excitation, was explored numerically by Yurchenko and Alevras (2013) and
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Alevras and Yurchenko (2014). Stochastic synchronization of rotating pendula mounted on a
mutual elastic SDOF base subjected to narrow band excitation were numerically investigated by
Alevras et al. (2014). Moreover, the parametric pendulum has been a subject of chaotic analysis
as well. Influence of a nonlinear oscillator on an attached pendulum in the main parametric
resonance region was studied by Warminski and Kecik (2006). The behavior of a parametric
pendulum pivoted on a mass-spring-damper system was investigated analytically, numerically
and experimentally around the principal resonance region by Warminski and Kecik (2009). The
dynamics of an autoparametric pendulum-like system with a nonlinear suspension subjected to
kinematic excitation was numerically and experimentally investigated by Kecik and Warminski
(2011). The dynamics of a pendulum suspended on a forced Duffing oscillator was numerically
explored by Brzeski et al. (2012).

As the rotational motion of parametric pendulum is advantageous for energy harvesting,
it is desired to maintain that motion when it is subjected to any excitations. A few control
strategies have been proposed for the purpose of sustaining rotational motion of the parametric
pendulum. A time-delayed feedback method was employed to initiate and stabilize rotational
motion of the pendulum by a feedback perturbation proportional to the difference between the
present and a delayed state of the pendulum (Yukoi and Hikihara, 2011a). The tolerance of
time-delayed feedback method with mistuned delay was experimentally investigated by Yukoi
and Hikihara (2011b). The extended time-delayed feedback was proposed to maintain rotating
solutions of the parametric pendulum to avoid bifurcations that destabilize the rotating orbit
(De Paula et al., 2012). The robustness and sensitivity of the time-delayed feedback method
with respect to varying excitation parameters and added noise was investigated by Vaziri et al.
(2014). In addition, a velocity control method was proposed to effect a control torque about the
angular axis if the angular velocity of the pendulum droped below a threshold (Najdecka, 2013).
Alternative methods of control, such as a LQR method (Dadone et al., 2003) were deployed
mainly for a pendulum-type system without continuous rotations.

The objective of this paper is to show an alternative mean of implementing an experimental
stochastic process for facilitating investigations on the parametric pendulum for energy harve-
sting. In particular, the observation of rotational state of the pendulum under such an excitation
is of interest in the current study. The proposed setup could exert a non-linear electromechanical
force to the pendulum by means of an AC solenoid, which is powered by a solid-state-relay(SSR)-
coupled RLC circuit, and it was previously reported to exhibit period-1 rotations, period-1 oscil-
lations and period-2 oscillations (Teh et al., 2015). The type of the parametric pendulum system
considered belongs a special class of autoparametric systems; it has a mass-spring-damper system
as the base and a pendulum is attached to it. Unlike the stochastic excitation of the parametric
pendulum as the above-mentioned, the implementation of a stochastic excitation to the pendu-
lum system in the current study is achieved by a random distribution of the input signal with
respect to the duration of switching on and off the solenoid. In addition, a bang-bang control
algorithm is tailored to address the problem of escaping the potential well when the noise is
sufficiently destructive for positive energy generation. To implement the control algorithm and
monitor potential energy generation, the experimental parametric system is enhanced with a
control system by adding a rotational actuator, a generator and some necessary transducers.
The main aim of this paper is to show that for stochastic energy sources commonly found in
real life it is possible to introduce a minimal amount of the control input, while still harvesting
more energy. This is an improvement to the previous work on periodic excitation by Teh et al.
(2015).

The paper is organized in the following manner. The enhanced version of the experimental
setup is first described in Section 2 together with its dynamic equations. The implementation of
stochastic excitation for the experimental setup of the current study is described in Section 3.
The bang-bang control algorithm that assists the pendulum motion is proposed in Section 4.
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Some results on the pendulum system subjected to different levels of stochasticity are presented
in Section 5. Finally, the paper is summarized and concluded in Section 6.

2. Experimental setup

The experimental setup of the parametric pendulum system given by Teh et al. (2015) has
been extended to further investigation on rotations of the pendulum in the present work. The
parametric pendulum system assembled for the experimental study on pendulum rotations under
stochastic excitation is depicted in Fig. 1a. This configuration of the parametric pendulum
system was previously described by Teh et al. (2015) regarding the functions and connections
among the components. In the current study, the pendulum assembly has been modified by
adding a L-bracket to mount the motor and the generator on to the pendulum assembly. The
motor and generator are connected in parallel with the pendulum pivot by means of spur gears.
The gear ratio among the pendulum pivot, motor and generator is 2:2:1. The overall assembly
is suspended by means of a mechanical hook at the aluminium base plate.

Fig. 1. (a) Experimental rig of the present work; (b) schematic of (a)

The schematic of the experimental setup is illustrated in Fig. 1b. The interface between the
mechanical and electrical part of the system by Teh et al. (2015) has been enhanced in the
present work to derive more information from the parametric pendulum setup while outputting
commands simultaneously. Vertical oscillation of the pendulum assembly is achieved by exerting
an electromagnetic force on the metal bar within the solenoid. The solenoid is connected in series
with an external power supply and a capacitor to fulfill such forcing requirement, as depicted
in Fig. 1b. It is effectively a RLC circuit and it is built in a similar way to Mendrela and
Pudlowski (1992). A solid state relay is coupled with the RLC circuit to switch the solenoid
on and off according to the input signal generated from the computer system. A non-linear
electromechanical excitation of the pendulum assembly is generated by repeatedly switching the
solenoid on and off, and a linear tension spring is used to complement the vertical oscillatory
motion.
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Four transducers are employed to scavenge useful data from the experimental system. The
angular displacement of the pendulum is measured using an Autonics incremental optical encoder
(Model: E6B2-CWZ1X), and the signal is fed to monitoring system via National Instrument (NI)
universal motion interface (Model: NI UMI-7774). Besides, the vertical motion of the pendulum
assembly is measured using a Brüel & Kjær piezoelectric accelerometer (Model: 4518-001). Two
Allergo hall-effect based linear current sensors (Model: ACS711EX and ACS711LC) are used to
respectively measure the electric current of the circuit of Crouzet DC motor (Model: 82800502)
and Cytron DC generator (Model: SPG50-100K). The charge amplifier function of a NI data
acquisition module (Model: NI USB-4432) is used to amplify the electrical signal generated
by the accelerometer before being fed to the monitoring system. On the other hand, the analog
voltage measurement function of the same data acquisition module is used to measure the voltage
difference generated by the linear current sensors before being fed to the monitoring system.

The monitoring and logging of the experimental data is performed using NI PXI-embedded
computer system (Model: NI PXI-8106). NI PXI-embedded computer system is also capable of
simultaneously generating a signal for switching the solid state relay on-and-off and performing a
control action on the pendulum axis based on the measured real-time data. LabVIEW is usedt o
design a graphical user interface that could perform the above tasks based on NI PXI-embedded
computer system. The NI motion controller module (Model: NI PXI-7350) of the computer
system is used to generate a digital signal which is software-timed by a graphical user interface
under a specific algorithm for switching the solid state relay on-and-off. Besides, the NI motion
controller module is used to generate a hardware-timed pulse-width modulation (PWM) signal
according to the computed control action, which is in the form of motor input voltage. The
PWM signal is received by the Cytron DC motor driver card (Model: MD10C) and it draws
electric current from a DC power supply to drive the DC motor according to the PWM signal.

In addition to the equations of motion for the mechanical system as well as governing equ-
ations describing the electrical circuit of the solenoid (Teh et al., 2015), the variation of current
flowing through the DC motor are expressed as follows

LM
dIM

dt
= UM −RMIM −KM θ̇ TM = KMIM (2.1)

where LM is the motor inductance, RM is the motor resistance,KM is the motor torque constant,
UM is the voltage applied to the motor armature, and IM is the motor current. Finally, the
dynamics of the DC generator is expressed using the following equations

LG
dIG

dt
= ηKGθ̇ −RGIG TG = KGIG (2.2)

where LG is the motor inductance, η is the gear ratio between the pendulum pivot and the
generator, RG is the motor resistance, KG is the motor torque constant, and IG is the motor
current.

3. Stochastic excitation modeling

Implementation of a stochastic excitation in the parametric pendulum system of this work is
described in this Section. As aforementioned, the vertical excitation of the pendulum assembly is
achieved by repeatedly switching the solenoid circuit on and off via a solid state relay. Variation of
the timing for switching the solenoid on and off according to a random distribution could generate
a stochastic excitation on the pendulum system. An example of the input signal of the solid state
relay with varying on and off timing is shown in Fig. 2. The time interval between each peak of
the input signal is different, and these values are generated from a random number generator.
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A frequency range from 1.2Hz to 7.0Hz is selected, in the first instance, as a basis for a random
time period generator. The reciprocal of the upper and lower limit of frequency determines the
corresponding limits of the time interval between peaks of the input signal. This frequency range
has been selected such that these values can be implemented in the experiment such that the
pendulum is rotated. This could maximize the transmission of vertical translational energy to the
pendulum as it experiences an autoparametric resonance with the electromechanically-excited
mass-spring-damper system.

Fig. 2. Example of the input signal generated in a stochastic manner

The profile of the random distribution can be selected such that the random time period
is generated according to either a set of discrete frequencies or a continuous variation of the
frequency with respect to the frequency range of interest. Nonetheless, it is intended in this
work to attempt emulating stochastic oscillatory motion of the pendulum assembly that could
represent the sea wave excitation. The sea wave can be modeled as a stochastic process with a
continuous function that can represent the state of the sea in the form of an energy spectrum; the
wave spectrum. The Pierson-Moskowitz spectrum (Pierson and Moskowitz, 1964) is considered
in the current study as the profile of the random distribution for the random number generator.
It has been developed under the concept of a fully developed sea, and it is a one-parameter
spectrum. The formulation of the Pierson-Moskowitz spectrum is given by

S(ω) = A
g2

ω5
exp
(

−
16π3

ω4T 4z

)

Tz = B

√

Hs

g
(3.1)

where A = 0.081, B = 11.1, ω is the frequency, and Hs is the significant wave height which
is defined as one third of the highest wave observed. From Eqs. (3.1), the profile of the wave
spectrum depends solely on the parameter Hs. The same formulation was used by Najdecka
(2013) to reconstruct the time history of the wave for stimulating the response of the pendulum
system subjected to the sea wave excitation by means of an electro-dynamical shaker.
Figure 3a depicts the non-dimensionalized Pierson-Moskowitz spectrum.It is computed using

Eqs. (3.1), and it features an asymmetric bell-shaped curve with a positive offset. It peaks at
a nominal frequency, and that frequency can be expressed explicitly by equating to zero the
derivative of S(ω) with respect to ω, which yields the following expression

ω =
2

B

√

2g

Hs

4

√

π3

5
(3.2)

Rearranging Eq. (3.2), one obtain an expression for Hs in terms of other parameters

Hs =
8πg

ω2B2

√

π

5
(3.3)
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Fig. 3. Non-dimensionalized Pierson-Moskowitz wave spectrum; (b) cumulative distribution function of
the Pierson-Moskowitz wave spectrum

The value of the parameter Hs can thus be determined in order to match the nominal frequency
of the wave spectrum as close as possible to the operating frequency of the pendulum system.
Generation of a random time period based on the Pierson-Moskowitz spectrum is performed

by using the inverse transform technique in this work. The inverse transform technique, also
known as the Smirnov transform, is useful for generating random variates with an arbitrary
continuous distribution function (Devroye, 1986). To utilize this technique, the selected random
distribution is first integrated and then rescaled to obtain its cumulative distribution function F ,
such that it maps a number in the domain to a probability between [0, 1], as illustrated in Fig. 3b.
This technique works as follows. A random number u is generated from the standard uniform
distribution in the interval of [0, 1]. The generated u is then interpolated with the rescaled
cumulative distribution function to locate the frequency ω. In other words, the inverse function
of F is sought to determine the frequency ω that corresponds to the generated random number u,
with their relationship being expressed as follows

ω = F−1(u) ∆t =
2π

ω
− T0 Tnew = T0 + C1∆t (3.4)

In Eq. (3.4)2, the random time period is decomposed into two components, namely the nominal
time period T0 and the offset time period introduced by the wave spectrum ∆t. T0 is also the
inverse of the nominal frequency of the wave spectrum. Finally, a factor within the range of
[0, 1] C1 is introduced to control the stochasticity of the random time period in Eq. (3.4)3, which
yields the new time period for that cycle.

To generate a train of square pulses with different timing for switching the solenoid on and
off in the experiment continuously, the above procedure can be repeated in a timer loop. For
each iteration, the timer will start counting once a new time period is generated, and a square
wave and the command signal will be computed based on that time period. The command signal
generated by the computer system can be written as

a =







1 if t(mod Tnew) <
1

2
Tnew

0 otherwise
(3.5)

where the units of the timer time t, the new time period Tnew is in seconds. By using the
equations above, the generated input signal will be a train of square pulses with a fixed duty
cycle of 50%. The timer will be reset automatically once the timer counts until Tnew. The time
period for each iteration is then different, and so the on-and-off timing for each square wave in
the pulse train, which is illustrated in Fig. 2. LabVIEW environment is used to program the
above algorithm in this work.
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Figure 4a depicts the time history of the vertical displacement of the pendulum support
generated by the proposed stochastic excitation. It is observed at a root-mean-squared variac
voltage of 110Vrms. The nominal frequency of the spectrum is set to be 1.9Hz, such that the
corresponding value of Hs is 0.011m. The pendulum is constrained at its downright position
during the measurement, and C1 is set to 1 to utilize the full scale of the Pierson-Moskowitz
spectrum. From Fig. 4a, the amplitude of oscillation and time interval between two peaks is
observed to be varying with time, which suggests that an irregular oscillation of the mass-
spring-damper system could be generated by using the proposed stochastic excitation. The FFT
spectrum of the time history (line 1) in Fig. 4b suggests that the vertical oscillation is stochastic
in nature. The energy content of the vertical oscillation lies within a range of 1.2Hz to 6Hz,
and it also resembles a bell-shaped curve with a positive offset. The spectrum is smoothened
(line 2) and it displays a major peak in close vicinity of the nominal frequency of the Pierson-
Moskowitz spectrum. By comparing it with the Pierson-Moskowitz spectrum (line 3), it can
be seen that the smoothened spectrum of the time history is in good correspondence with the
desired power density profile with mild slight discrepancy between the shapes of the spectra,
which is representative of many vibratory systems. The above observations show the viability
of the excitation mechanism in the current study to attempt emulating a stochastic excitation
on a solenoid-powered mass-spring-damper system.

Fig. 4. (a) Time history of the vertical support excitation using the proposed stochastic excitation for
V = 130Vrms and ω0 = 1.9Hz; (b) FFT spectrum of (a) compared with the Pierson-Moskowitz wave

spectrum generated for Hs = 0.011m

4. Rotation control of pendulum

A bang-bang control is suggested in the current study to promote rotational motion of the
pendulum as it is subjected to a random excitation. The objective of control is to assist motion
of the pendulum despite randomness of the vertical excitations. The nature of the control strategy
is intuitive; while the pendulum is rotating, a control torque will be exerted along the rotational
direction if the control system senses that the pendulum is experiencing a destructive coupling
torque arisen from the pendulum support that opposes the current motion of pendulum. The
real-time information of the angular displacement and velocity of the pendulum and the vertical
acceleration of the pendulum support are assigned as the feedback signal of the controller and
some conditions are defined based on those signals to exert control action. The function of each
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signal is detailed as follows. The signal of angular displacement of the pendulum indicates the
position of the pendulum from its downright equilibrium position. On the other hand, the signal
of angular velocity of the pendulum indicates the direction and the rate at which the pendulum
moves. Lastly, the signal of vertical acceleration of the pendulum support indicates the direction
of the summation of forces acting on the pendulum support.
The rotating plane of the pendulum splits up into two halves, namely left-half plane and

right-half plane, and they form control envelopes. The conditions for activating the control action
is different for each plane. For the left-half plane (i.e. 2nπ < θ < (2n+ 1)π, n ∈ N)

UM (t) =



















k1 + k2 sin θ if z̈ > 0 ∧ 0 ¬ θ̇ < θ̇min

−k3 if z̈ < 0 ∧ −θ̇min < θ̇ < 0

0 otherwise

(4.1)

where UM is the input to the DC motor, k1 and k2 are control parameters applied when the
pendulum is climbing from its downright equilibrium, and k3 is the control parameter applied
when the pendulum is falling from its upright equilibrium position. Suppose that the pendulum
is rotating in the left-half plane. The coupling torque will be destructive in that plane if the pen-
dulum support is suddenly accelerated upwards while the pendulum is rotating in the clockwise
direction, and this may cause the pendulum to lose angular velocity and fall to its downright
equilibrium position. Hence, a control torque will be exerted along the clockwise direction if
the pendulum support is accelerated upwards and the rate at which the pendulum is rotating
is lower than the threshold angular velocity θ̇min, as stated in the first condition of Eq.(4.1).
A sinusoidal term is added to compensate for the torque due to gravity while the pendulum
is climbing from its downright equilibrium position. On the other hand, the coupling torque
will also be destructive in the left-half plane if the pendulum support is suddenly accelerated
downwards while the pendulum is rotating in the counter-clockwise direction. A control torque
of the counter-clockwise direction will then be exerted if the pendulum support is accelerated
downwards and the rate at which the pendulum is rotating is greater than the negative thre-
shold angular velocity, as stated in the second condition of Eq. (4.1). The control action will
otherwise not be exerted in the left-half plane if the above conditions are not met. Likewise, for
the right-half plane (i.e. (2n + 1)π < θ < 2(n + 1)π, n ∈ N)

UM (t) =



















−(k1 + k2 sin θ) if z̈ > 0 ∧ − θ̇min < θ̇ < 0

k3 if z̈ < 0 ∧ 0 ¬ θ̇ < θ̇min

0 otherwise

(4.2)

Due to an inequality condition at θ̇ = 0, the control algorithm is also capable of initiating
pendulum motion regardless of the initial conditions besides maintaining the rotation state of
the pendulum, which is to be shown in Section 5.

5. Pendulum rotation subjected to the proposed stochastic excitation

The experimental rig, as described in Section 2, is used to implement the proposed method of
varying the on-and-off timing of the solenoid to induce stochastic excitations on the pendulum
system. The pendulum system is tested at different levels of stochasticity by varying the on-
and-off timing, and the observation of rotational state of pendulum under such excitation is
particularly of interest in view of energy scavenging. The control algorithm, as described in
Section 4, is used to drive the rotational actuator in attempting to assist the rotation of the
pendulum when it could not be sustained.
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An AC supply voltage of 130Vrms and a nominal frequency of 1.9Hz is chosen to generate
experimental results in the current study. The selected parameters lie within the resonance area
of the pendulum system, which is advantageous for generating rotation of the pendulum. The
pendulum system is first excited by switching the RLC circuit of the solenoid on-and-off with a
regular time interval. The control algorithm is then activated and the pendulum is actuated from
its downright equilibrium position to yield period-1 rotation. A buffer period of approximately
30 s is required to let the pendulum motion settle to period-1 rotation. After that, stochasticity
is introduced to the excitation and the level of noise is controlled by manipulating C1 in Eq.
(3.4)3. The pendulum system is run for a period of 300 s, and useful experimental data is logged
simultaneously. As the rotational process is stochastic, the measurement for the same noise
level is to be repeated for another 9 sets to obtain the average accumulated net energy. The
control parameters k1, k2, k3 and θ̇min are experimentally optimized and fixed at 8, 4, 1 and 7.5,
respectively, for all noise levels throughout the experiment.

Fig. 5. (a) Time response of the pendulum system for C1 = 0; (b) FFT spectrum for vertical support
excitation generated using experimental results; (c) phase portrait of the pendulum axis

Figure 5a demonstrates a sample time history of the pendulum system when C1 = 0 for a
period of 21 s. In this case, the noise is disabled in the timer loop and the solenoid is switched on
and off in a regular time interval, which is 0.526 s. Thus, the pendulum exhibits period-1 rotation
as it experiences an autoparametric resonance with the vertical support excitation, which is also
periodic, after it is actuated from its rest position. The quality of the periodic excitation can be
assessed via its FFT spectrum, which, see Fig. 5b, shows a considerably discrete spectrum with
a major peak at the fundamental frequency and subsequently minor peaks at its integer multiple
with reducing the magnitude. On the other hand, it can be seen from the phase portrait of the
pendulum axis in Fig. 5c that the pendulum rotates with fluctuating angular velocity, which is
bounded within the range of [7.9, 17.2] rad/s, under the regular excitation from the pendulum
support. As the source of energy to maintain stable rotation is solely from the vertical support
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excitation, no control action is required from the DC motor. The power of the generator will
thus be the only contributor to the accumulated net energy at the end of the measurement,
which serves as a benchmark for comparison with the accumulated net energy at higher noise
levels.

The period-1 rotation of the pendulum system ceases to be stable when C1 is increased up
to 0.04. Hence, control assistance is necessary when C1 is set to be within the range of (0.04, 1] in
order to maintain the rotational state of the pendulum. In the next case, the sample of the time
history of the pendulum system when it is subjected to stochastic excitation in a moderate scale
(C1 = 0.3) is illustrated in Fig. 6a. The time interval that the solenoid is switched on-and-off is
varied, in this case, within the range of [0.411, 0.617] s. Period-1 rotation could still be observed
most of the time, as the occurrence of the moments when the vertical support excitation is less
destructive. Consequently, less control effort is required in this case with only four instances of
the control voltage input observed in this interval of the experimental data. FFT spectrum of
the vertical support excitation in Fig. 6b reveals that the spectrum is no longer discrete, and it
is stochastic in nature. The amplitude of the vertical excitation at the fundamental frequency
becomes one-fourth of its periodic counterpart. The energy is slightly spread in the vicinity of
the fundamental frequency as a consequence of slight variation in the on-and-off time interval.
The shape of the spectrum, on the other hand, is somewhat similar to that of the Pierson-
Moskowitz wave spectrum with a narrower and sharper peak, as illustrated by the smoothened
curve (line 2). The angular velocity at which the pendulum rotates, fluctuates within the range of
[4.8, 19.4] rad/s as depicted in Fig. 6c. It is wider than its periodic counterpart. The occasional
randomness of the excitation causes the pendulum rotation to lose angular velocity at some
instances, which is then rectified by the control action, and hence the lower limit of angular
velocity range is extended when stochasticity is introduced to the excitation.

Fig. 6. (a) Time response of the pendulum system for C1 = 0.3; (b) FFT spectrum for vertical support
excitation generated using experimental results; (c) phase portrait of the pendulum axis
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The sample time history of the pendulum system when C1 = 1 is illustratedin Fig. 7a. In
this case, the full scale of the Pierson-Moskowitz spectrum is used, and the time interval that
the solenoid is switched on-and-off varies within the range of [0.143, 0.830] s. It can be observed
from the vertical axis data that the vertical support excitation is irregular at higher level of
noise, which causes the pendulum trajectory to be intermittently distracted from its rotation
attractor. This necessitates frequent control actions to assist the pendulum in regaining angular
momentum and synchronizing again with the vertical support excitation. Accordingly, more
control efforts are required at a higher level of noise, which is seen in the fifth row of Fig. 7a
with 15 instances of the control voltage input observed in this interval of the experimental data.
The contents of irregularities can be assessed via the FFT spectrum of the vertical support
excitation in Fig. 7b. The smoothened spectrum (line 2) depicts a curve, and the shape of
the spectrum is similar to that displayed in Fig. 3a. The spectrum peaks at the fundamental
frequency, and the amplitude of the vertical support excitation at the fundamental frequency is
lesser than in the previous cases. This is expected as the energy of the vertical excitation has
been spread over a wider frequency range due to the maximum difference of 0.687 s in varying
the time interval. The vertical support excitation does not possess enough energy in the vicinity
of the fundamental frequency to sustain the pendulum rotation. This prompts the pendulum to
lose its angular velocity and almost stall at some point in time before the controller is alerted
to react to sudden disturbances. This is seen in the phase portrait of the pendulum axis, where
the fluctuation range of angular velocity is widened to [3.6, 19.8] rad/s.

Eaccumulated = ηKG

t2
∫

t1

IGθ̇ dt−KM

t2
∫

t1

IM θ̇ dt (5.1)

Fig. 7. (a) Time response of the pendulum system for C1 = 1; (b) FFT spectrum for vertical support
excitation generated using experimental results; (c) phase portrait of the pendulum axis
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Energy generation is measured via current measurement from the generator, and the accu-
mulated net energy is computed using Eq. (5.1) in real time during the course of the experiment
in all the above cases. In Eq. (5.1), t1 is the time when computation of the accumulated net
energy begins and t2 is the time when computation of the accumulated net energy ends. Figure 8
illustrates sample time histories of the accumulated net energy for the above three cases compu-
ted over a period of t2 − t1 = 300 s. In the case when the noise is disabled (C1 = 0), pendulum
rotation is sustainable without interference from the controller. Hence, the power generated from
the DC generator is the sole contributor to computation of the accumulated net energy, and it
can be seen from Fig. 8 that the accumulated net energy for C1 = 0 increases steadily as the
experiment progresses. The average accumulated net energy at the end of 300 s, obtained using
10 sets of data, is 24.51 J for C1 = 0. On the other hand, in the cases when noise is added to the
vertical excitation, control effort is required to sustain the pendulum rotation for maximizing the
energy output from the generator. Therefore, energy is invested for exerting the control effort
by means of actuation of the DC motor and this is taken into consideration while computing
the accumulated net energy. For the case when a moderate level of noise is introduced to the
excitation (C1 = 0.3), occasional control torque is required to maintain the pendulum rotation
and some energy is invested to achieve this purpose. The average accumulated net energy at the
end of 300 s is 14.01 J for C1 = 0.3, which is 57.16% of its periodic counterpart. For the case
when the full scale of Pierson-Moskowitz spectrum is introduced to the excitation (C1 = 1), the
accumulated net energy is observed to be the least. Its average accumulated net energy at the
end of 300 s is calculated as 4.67 J, which is 19.05% of the case when C1 = 0. This is expected
as more control input is necessary to prevent the pendulum motion from losing angular velocity
when the pendulum is frequently subjected to the destructive vertical excitation.

Fig. 8. Comparison of time histories of accumulated net energy for C1 = 0, C1 = 0.3 and C1 = 1

6. Conclusion

An experimental pendulum system, which exerts a non-linear vertical excitation on a pendulum
via a RLC-circuit powered solenoid is used to conduct investigations on pendulum rotation
subjected to a stochastic excitation. The pendulum system, which was previously reported in
the open literature, is enhanced with a control system by adding a rotational actuator and some
necessary transducers. In addition, a generator is mounted in parallel to the pendulum axis for
extracting energy out of rotating motion of the pendulum.

The stochastic excitation of the pendulum system is accomplished by a variable time interval
for switching the RLC-circuit on and off according to a random distribution. In particular, the
Pierson-Moskowitz wave spectrum is selected as the random distribution, and the generation of
the random time interval is implemented in the experiment using an inverse transform technique.
On the other hand, a bang-bang control algorithm is tailored to assist rotational motion of the
pendulum as it is subjected to the random excitation. The main inputs of the controller are
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the displacement and velocity of the angular axis and the acceleration of the vertical axis. The
output is the command signal to the rotational actuator.
Using the proposed method of stochastic excitation and control scheme, the experimental

results are illustrated for various levels of noise introduced to the vertical support excitation.
The observations demonstrate the viability of the pendulum system in emulating a random
excitation, which is similar to that of the sea wave excitation in experimental investigations
of a vertical pendulum. The enhanced version of the experiment apparatus takes advantage of
the rotational actuator and generator to respectively assist the pendulum motion and benefit
from motion itself when it is excited vertically. In addition, the proposed control scheme can
effectively retain the rotational state of the pendulum for all the above cases without suffering
an energy deficit. The energy cost of the control increases with the level of noise introduced to
the vertical excitation.
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