JOURNAL OF THEORETICAL
AND APPLIED MECHANICS
53, 4, pp. 911-923, Warsaw 2015
DOI: 10.15632/jtam-pl.53.4.911

PAYLOAD MAXIMIZATION FOR MOBILE FLEXIBLE MANIPULATORS
IN ENVIRONMENT WITH AN OBSTACLE

HAMIDREZA HEIDARI
College of Mechanical Engineering, Malayer University, Malayer, Iran

e-mail: hr.heidari@malayeru.ac.ir

MoHAMMAD HAGHPANAHI, MOHARAM HABIBNEJAD KORAYEM

College of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

A mobile flexible manipulator is developed in order to achieve high performance require-
ments such as high-speed operation, increased high payload to mass ratio, less weight, and
safer operation due to reduced inertia. Hence, this paper presents a method for finding the
Maximum Allowable Dynamic Load (MADL) of geometrically nonlinear flexible link mobile
manipulators. The full dynamic model of a wheeled mobile base and the mounted flexible
manipulator is considered with respect to dynamics of non-holonomic constraint in environ-
ment including an obstacle. In dynamical analysis, an efficient model is employed to describe
the treatment of a flexible structure in which both the geometric elastic nonlinearity and
the foreshortening effects are considered. Then, a path planning algorithm is developed to
find the maximum payload that the optimal strategy is based on the indirect solution to
the open-loop optimal control problem. In order to verify the effectiveness of the presented
algorithm, several simulation studies are carried out for finding the optimal path between
two points in the presence of obstacles. The results clearly show the effect of flexibility and
the proposed approach on mobile flexible manipulators.

Keywords: flexible link, nonholonomic mobile manipulator, optimal control, obstacle, path
planning

1. Introduction

Mobile manipulators that are required to have a long reach, fast motion and reduced weight
typically also possess significant structural flexibility. For example, mobile flexible manipulators
have important application in space stations, manufacturing automation, nuclear contaminated
environments, and many other areas. A common task for mobile robots is handling heavy loads
from one place to another, particularly for wheeled mobile flexible manipulators when operating
in high speeds with long arms. For such systems, to make an effective use of robotic systems, it
is important to consider the path planning of the system for finding full-load motion in point-
-to-point maneuvers since it increases the productivity and economic usage of robotic systems.
However, kinematic and dynamic analysis of such a nonholonomic wheeled mobile robot (WMR)
is challenging due to complex wheel/manipulator interactions, flexibility and kinematic constra-
ints. An efficient model should be employed to describe the treatment of a flexible structure in
which both the geometric elastic nonlinearity and the foreshortening effects are considered.

In this investigation, the optimal strategy is based on the indirect solution to the open-loop
optimal control problem. In the open loop optimal control, in spite of the closed-loop ones, many
difficulties like process nonlinearities and all types of constraints can be explicitly considered
because of the off-line computation of optimal trajectories. On the other hand, the indirect
solution method appears to be a well suited approach for this kind of problems, which is based
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on Pontryagin’s minimum principle. Combining this approach with an iterative algorithm, the
optimal paths and maximum load for WMM in the presence of obstacles can be achieved.

Many researchers have studied the problems of mobile manipulators for the last few years.
The dynamic model for links in most of these researches is often based on rigid or small deflec-
tion theory, but for applications like light-weight links, high-precision elements or high speed
maneuver, it is necessary to capture the deflection caused by nonlinear terms. Seraji (1998) re-
ported a simple on-line approach for motion control of mobile manipulators using the augmented
Jacobian matrix. Yamamoto and Yun (1994) focused their research on the modeling and com-
pensation of the dynamic interaction between the manipulator and the mobile platform of a
mobile manipulator, and developed a coordination algorithm based on the concept of a prefer-
red operating region. Korayem et al. (2012) and Xi and Fenton (1991) designed an algorithm for
motion planning of flexible manipulators in quasi-static operations. A concise motion expression
for flexible manipulators was developed to reflect the contributions of joint motions and link
deflections to the motion of the end effector by three respective Jacobians. It was found that the
algorithm was efficient and accurate for motion planning of flexible link manipulators. Damaren
and Sharf (1995) presented and classified different types of inertial and geometric nonlinearities
in the dynamical equation for flexible multibody systems. They observed that for sufficiently fast
maneuvers of the flexible-link manipulators, the ruthlessly linearized approximation completely
inadequate.

Several papers tried to give an answer to the path planning problem and calculate the MADL
for rigid and flexible manipulators. For instance, Wang et al. (2001) developed an algorithm that
maximized the robot payload while taking into account realistic constraints such as joint torque
limits and velocity bounds. The governing optimal control problem was converted into a direct,
SQP parameter optimization in which the joint trajectories were defined by B-spline polynomials
along with a time-scale factor. Park (2003) presented a method for generating the path of a
redundant flexible manipulator which significantly reduced residual vibration in the presence of
obstacles. The proposed method was based on an optimized path that was constructed from
a combined Fourier series and polynomial with coefficients of each harmonic term selected to
minimize the residual vibration.

One of the most popular methods for obstacle avoidance is the artificial potential field method
(Castro et al. 2002). In contrast to many methods, the robot motion planning through artificial
potential fields (APF) is able to take into account simultaneously the problems of obstacle
avoidance and trajectory planning. The first use of the APF concept for obstacle avoidance
was presented by Khatib (1986). He proposed the force involving an artificial repulsion from
the surface which should be non-negative, continuous and differentiable. More recently, a new
version such as the repulsive artificial potential field has been proposed (Agirrebeitia et al.,
2005). In most of the previous works, flexibility and nonholonomic constraints of the wheeled
mobile manipulator in the path planning problem have not been considered. Hence, this paper
proposes a method for planning the trajectory of the nonholonomic mobile flexible manipulator
for determining the maximum allowable load and considering the effect of flexibility to achieve
the specified point to point maneuver in the presence of an obstacle.

2. Kinematic and dynamic model of the mobile flexible manipulator

In this Section, for the sake of modeling and analysis, a mobile flexible manipulator comprising
a manipulator flexible arm mounted on a nonholonomic mobile base is considered, as shown
in Fig. 1. The motion of the system has to be decomposed into the motion of the flexible
manipulator and the motion of the base. The unidirectional platform shown in Fig. 2 is a typical
example of a nonholonomic WMR, which has two rear driving wheels and two castor wheels.
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The two driving wheels are powered by DC motors and have the same wheel radius r. The
point P, is the origin of WMR axis, which is located at the intersection of the longitudinal
r-axis and the lateral y-axis. Ly and b are length and width or WMR body, respectively. The
origin of the inertial frame {X,Y} is shown as O and as such allows the position of the WMR
to be completely specified through the following vector of generalized coordinates with respect
to {X, Y}, ap = [Xp, Vs, 0, 0,,0;], where X}, and Y}, are the coordinates of the center of mass.
The orientation of the WMR frame from the inertial frame is denoted by . 0, and 6; are the
angular displacements of the right and left driving wheel, respectively. Due to the nonholonomic
nature of the system, the constraint equation obeys the ideal no-slip condition. The rolling and
the knife edge constraint equations for this system can be found in Yamamoto and Yun (1994).
In the next Section, these constraints will be explained.

trajectory of end-effector

driving wheel \_\9 \ ;“’ F (xfﬂf)
A
Py(zy,yp,0) h
e “J
b
o X

Fig. 2. Nonholonomic wheeled mobile robot platform

The global position vector of the end-effector r can be defined by appropriately considering
the position vector of the corresponding local coordinate in the global reference system as

r+u
ri:rb—i—rm/b:rb—i—?flr—i—R v (2.1)
w

where ry is the position of the mobile platform, R is the transformation matrix and u, v, w
denote the longitudinal and transverse displacements.

The analysis of the flexible link can be modeled by slender elastic beams. In this investiga-
tion, a more efficient computationally model is employed, in which both the geometric elastic
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nonlinearity and the foreshortening effects are considered. The model takes into account the
distinction between the longitudinal displacement due to axial deformation, denoted as s, and
the longitudinal displacement that can occur due to the foreshortening effect, denoted by u ..
The longitudinal displacement caused by transverse deflection of the neutral axis of the beam
can be expressed as (Korayem et al., 2012)

x

1 Ov\ 2 Oow\ 2
ure=—3 [[(Go) + (5) ] do (22)

0

The assumed field of displacements for u can be written as

U S+ ufs
u= |v| = v (2.3)
w w

The general expression of the strain energy is written in terms of s,v and w, as below (Korayem
et al., 2012)

EAlé?? Ellc’922 E]l822
S IO S (I (S

(2.4)

where E, A, I, and [ denote Young’s modulus, cross-sectional area, moment of inertia of the
cross section, and length, respectively. This formulation brings nonlinear inertia terms and a
constant stiffness matrix in the equations of motion.

The Lagrangian method is utilized to formulate the dynamic equations governing the motion
of mobile flexible manipulator systems. In order to derive dynamic equations, the kinetic energy
and the potential energy are computed for the entire system. The kinetic energy for the overall
system is obtained by computing the kinetic energy for each element ij and then by summing
over all the elements. The potential energy of the manipulator is obtained by computing the
strain energy for each element ij due to elasticity and gravity of any link. After calculation
of these energies, by applying the Lagrangian multipliers procedure and performing some alge-
braic manipulations, the compact form of the governing equations of a two-link flexible mobile
manipulator can be obtained from

My, My, Myr || Go Co(qv @ af+ by dm» 4f) Gv(qvs am» q5) F,— A% (q)A
Mmb Mym Mmf Qm + Cm(QbananaCjban’(jf) + Gm(Qban’Qf) = Fp,
be Mfm Mff qf Cf(vaQma%‘vaanan) Gf(qb7Qm7qf) 0
(2.5)
where M is the nonlinear mass matrix, C is the vector of Coriolis and centrifugal forces, G de-

scribes the gravity effects, and A denotes the nonholonomic constraints. The generalized coor-
dinates q and the generalized force F are the following vectors

q= [%,CJm,Qf] = [Xf7Yf7@70r7617017027qf17--- 7an] (2 6)
F:[Fvam70]:[0707077_’1117‘77—111177—177—2707'"70] '

The WMRs are called nonholonomic mobile robots because of their no-slip kinematic constra-
ints. The vehicle is prevented from sliding sideways relative to its instantaneous heading, and
each drive wheel is assumed to roll without slipping. These three independent nonholonomic
constraints are represented as

chosgo—stinap—dap:O
Yf sin<p+Xf cos p + by = 10, (2.7)
stingo—i—Xfcosap—bgb:rél
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The compact form of the nonholonomic constraints can be written as

A(q)q=0 (2.8)
and
—sing cosp —d 0 0 0 O O 0
A= |—cosp —sinpg —b r 0 0 0 0 0 (2.9)
—cosp —sinp b 0 r 0 0 O 0

where r is the radius of the driving wheel, b is the distance of two wheels and d is the distance
between the front and rear wheels.

By defining the matrix B(q) , which is the null space of the matrix A(q), the Lagrange
multipliers can be eliminated

A(q)B(q) =0 (2.10)

One choice of B(q) is as follows

[(r/2b)(bcos p — dsing) (r/2b)(bcosp +dsing) 0 0 0 0]
(r/2b)(bsin ¢ + dcos @) (r/2b)(bsin<p—dcos<p)n 000 0
(r/2b) —(r/2b) 0 00 0
1 0 0 0 0 0
0 1 0 0 0 0
B= 0 0 1 0 0 0 (2.11)
0 0 01 0 0
0 0 0 0 1 0
: : N (
I 0 0 000 0 1
as well as q can be expressed as follows
d=Blav (2.12)
where
Vv =10r,00. 01,602,451, dpal (2.13)
By differentiating equation (2.12)
d =B(q)v + B(q)v (2.14)

after performing some algebraic manipulations, the dynamic equation of the mobile flexible
manipulator is

B"(q)M[B(q)V + B(q)v] + B"(q)(C + G) = B (q)F (2.15)

Finally, the dynamic equations in the state space are as follow

X =

Bv 0
(BﬁMBrW—Bﬁva—Bﬁml+LBﬁwBr45‘ (2.16)

By using these equations, the optimal trajectory planning problem can be formulated.
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3. Optimization strategy

Path planning in the case of a mobile flexible manipulator is complex due to flexibility of the
manipulator arm. In this Section, an indirect solution to the optimal control problem is applied
for the off-line global trajectory planning of the mobile flexible manipulator. The purpose of
the optimal control problem is to determine the control w(t) that minimizes the performance
index J(u). In this investigation, the specific objective functional .J is to obtain the optimal paths
with minimum effort and vibration. The general expression which minimizes the cost functional
means that (Wang et al., 2001)

. 1 1 1
minJ = [ LX(0,U(0),1) dt = 5| XulRy, + 5 Xelldv, + 501 (3.1)

Here, the integrand L(-) is a smooth differentiable function in the arguments, X(¢) and U(¢)
denote the state space form of the generalized coordinate and the joint torque, respectively.
[X||% = XTKX is the generalized squared norm, Wp, Wy are symmetric, positive semi-
-definite (k x k) weighting matrix, and R is the symmetric, positive definite (k x k) matrix. The
designer can decide on the relative importance among the angular position, angular velocity,
vibration amplitude and control effort by the numerical choice of penalty matrices Wp, Wy
and R. In order to minimize the objective function subjected to the nonlinear dynamic equations,
the well-known Pontryagin minimum principle is used. By introducing the cost vector 1), the
Hamiltonian function of the system can be defined as

H(X,U,¢,t) = L(X,U)+9TX (3.2)

The PMP then implies that the necessary condition for a local minimum is that H be minimized
with respect to u(t) at all times. If it is assumed that the set of admissible inputs is bounded

U~ <uf < UZ~+, this condition is equivalent to

. OH . —0H oH
X — = — = .
oY 0X 0 ou (33)
The considered boundary conditions are
X(ti) =X, X(ty) =Xy (3.4)

where X(t;) and X(ty) represent positions and velocities of the links at the beginning and at
the end of the maneuver. The optimal trajectory is then obtained by solving the 2n differential
equations

i*(t) = %—f(x*(t),u*(t),p*(t)vt)
pr(t) = —%—Z(x*(t),u*(t),p*(t%t) .

H (2" (), u" (1), p"(8), 1) < H(2*(t), u(t),p"(t),1)

The control values are limited with the upper and lower bounds. One of the most commonly
used motors for actuating the joints of small and medium size mobile robots are permanent
magnet DC motors. Typical speed-torque characteristics of DC motors in which the relationship
between speed and torque is linear are defined as below (Wang et al., 2001)

U K, —Kyq U%) — Ky - Ksq (3.6)

allow allow
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where

T s Ts1 Ts2 Tsm T
Klz{’rsl Ts2 .. Tsm ngdlag w1 wg m}
the stall torque (torque generated by the motor when fully “ON” but unable to move) and no-
-load speed (output speed of the motor when running without load) are denoted by 75 and wyy,,
respectively.

3.1. Maximum payload algorithm

The set of dynamic equations, the governing optimal control problem and the boundary
conditions lead to the standard form of a two-point boundary value problem (TPBVP). The
collocation method is one of the basic ways of solving TPBVP. The method iterates on the
initial values of the co-state until the final boundary conditions are satisfied by the following
desired accuracy

1 1
h(X(ty),tr) = I1Xa(ty) = Xufllv, + 51Xa(ty) — Xosliy, <e¢ (3.7)
2 2

In this Section, an algorithm is proposed to find the maximum payload shown in Fig. 3. The
proposed method considers torque bounds and is based on increasing the payload until one point

{Select the objective function 1

v

‘ Develop the TPBVP

Select the ¢, e, s and mp min

v

Set i=1, k=1, my =y min

'

Solve the TPBVP
> for (k,1)
or myp

F=ht1

N (k1) =14
o m‘(lf.l):m;/\ 1,i-1)

=1

Yes
=i+1

mg{'j):m%k”H)Jrcs/k

(k1)

Mpmaz=—"Mp

Fig. 3. The algorithm for calculation of the maximum payload

of one of the actuators torque reach the upper or lower torque bounds. As shown in Fig. 3, the
proposed algorithm includes two stages; the first stage index 7 increases the tip mass mp until the
actuators torque reach the upper or lower torque constraints. The desired accuracy € in TPBVP
solution must be satisfied for the payload in each step. A further increase in the payload exceeds
the torque limits. Consequently, the desired accuracy ¢ in TPBVP solution could not be satisfied
and the boundary conditions at yhe final time may be obtained incorrectly. At this status, while
one point of one of the actuators torque reach the upper or lower torque bounds; the second stage
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index k decreases the payload until the maximum payload for the supposed penalty matrices is
obtained with the accuracy €. The accuracy of the maximum payload mpy,q. calculation depends
on the value e. The iteration number is denoted by s symbol in this algorithm.

3.2. Path planning in the presence of an obstacle

In order for mobile flexible manipulators to successfully carry out tasks, especially in carrying
heavy loads on different trajectories, the Artificial Potential Fields (APFs) is used throughout
the robot workspace with each point in the workspace having an associated potential. The idea
used in APF-based obstacle avoidance is to position a mobile manipulator in the workspace
such that the overall potential encountered by the mobile manipulator is minimized while still
accomplishing the desired task. A repulsive potential formulation based on the distance between
parts of the WMM and obstacles is used in the cost function for obstacle avoidance. The most
commonly used repulsive potential takes the form (Khatib, 1986)

1 1 1
LY pgam) <

U,ep =1 2 \p(q:90bs) PO (3.8)
0 it p(q, qobs) > po

where 7 is a positive weighting matrix, p(q, g.ps) denotes the minimal distance from the robot ¢
to the obstacle, g5 denotes the point on the obstacle such that the distance between this point
and the robot is minimal between the obstacle and the robot, and pg is a positive constant
denoting the distance of influence of the obstacle.

The obstacle avoidance problem is formulated in terms of collision avoidance of the base,
links and joints with the obstacles. In order to add the penalty function to the performance
index in order to guarantee free-collision motion of the mobile body, the distance between the
center of the mobile base and the center of the obstacle will be

Pb = HPObs - PbH - \/(Xobs - Xb)2 + (Yobs - Yb)2 (39)

By assuming the links as lines, the minimal distance between ij link and the center of the
obstacle can be calculated as

1
pij =
\/(Xj = Xi)? 4 (Y; = Yy)?

(3.10)

X~ X; Xops — X;
det ] 2 oo0s 1
[Xj —Xi Yope — Yz“|

The position of parts in the workspace is denoted by X,; and Y;. Therefore, the objective function
to guarantee the free-collision motion can be defined as

ty
1 1 1
Jw) = [ LU0 dt = S XalRy, + 51 XalRy, + 51U +
to

11 1
2l =50

(3.11)

The new objective function is used to obtain the trajectory optimization problem to avoid
collision of the WMM parts with the obstacles. Figure 4 shows the wheeled mobile robot in the
presence of an obstacle.

4. Simulation results

A simulation study has been carried out to investigate further the validity and effectiveness of
the mobile flexible manipulators in finding the optimal path between two points with different
objective functions. A two-link planar manipulator is considered. It is mounted on a differentially
driven mobile base at point F' on the main axis of the base (Fig. 4). The parameters of the mobile
flexible manipulator are given in Table 1.
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(xob& yobs)
obstacle

_..-._end-effector path

Ny ©

Fig. 4. WMM in the presence of an obstacle

Table 1. Simulation of parameters

‘ Parameter | Value (base) | Value (manipulator) |
Length [m] LO =04 L1 = LQ =1
Mass [kg] my = 94 mp =mg =3, mp=0.5

Cross section area [m?] = A=Ay =4-107%
Moment of inertia [m?] Iy =6.609 | I =0.416, I = 0.0625
— Ey = E,=2-10"

Young’s modulus of the material [N/m?]

4.1. First case study: optimal path for minimum effort

The motion planning problem is to find the optimal trajectory with minimum effort. The
main motivation behind the minimum effort is to find a path to reduce the amount of torques
and hence to lower energy consumption. According to the algorithm presented in Fig. 3, the
general solution method is based on increasing the payload from its minimum value mp,;, up
to the maximum payload can be found. Therefore, in this case, the initial payload, initial values
of the co-state vector, accuracy values, and penalty matrices are considered as follows

MPmin = 0.5 kg »(0) =0 e=0.1 e = 0.0001

| (4.1)
W,=Wy, =0 R = diag(1)

This cost function is typical for systems that need to conserve energy during a particular ope-
ration. The actuator constants are given as follows

T
Klz[zo 20 50 50} N-m
N (4.2)
K, = diag [1.5 15 25 2.5} -
rad

The system is initially at rest, thus the mobile base is initially at the point (zp = 0.75m,
yr = —0.5m, ¢ = 0°) and moves to its final position (rr = 1.6 m, yp = —0.2m, ¢ = 15°). The
initial conditions of the manipulator are 61(0) = 1.5rad, 62(0) = 2rad, 6;(0) = 0, 62(0) = 0
(point A in Fig. 5a) and the final conditions are 61 (ty) = —0.86rad, 02(t¢) = 1.09rad, 01 (tr) =0,
05(t;) = 0 (point B in Fig. 5a) during the overall time ¢ty = 1.9s (see Fig. 5a) and also the
remaining boundary conditions are equal to zero.

A comparative study is carried out between the rigid model and flexible models (linear and
nonlinear models) as shown in Fig. 5b. The optimal angular positions of the link and wheels,
corresponding to the minimum effort are shown in Figs. 6a and 6b.
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Fig. 5. The optimal paths between point A and B via minimum effort (a) and for different models (b)
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Fig. 6. The optimal angular positions of the first and second joints (a) and the right and left wheels (b)

The simulation results presented in Fig. 7 illustrate the optimal controls to carry the maxi-
mum payload, which also show the upper and lower bounds of the actuator torque capacity. By
increasing the payload from mp..in t0 MpPmaz, the required torque grows until one point of one
of the actuators torque reach the upper or lower torque bounds. It can be seen that, the second
motor reaches its maximum capacity. In this case study, the maximum payload is obtained to
be mpmar = 2.45 kg, while by considering the rigid link and Nikoobin’s method (Korayem et al.,
2012), the maximum payload is found to be mp,., = 8.25 kg. This difference is due to flexibility
of the link which increases the oscillation of torque curves.

(a) . — torque 1 (b) — torque 2
= 30 ———__ |~ upper bound| — 40n_— up}?er bound |
2 20 " /Awf/ —= 10}\'&31‘ bound 28 30—~ lower bound I
— 10 ~
) ®
x :
o o
& -10 P =
B VA \*\\ ih A
-20 VAN / V(/ \
-30 -30

0 04 08 12 16 20 0 04 08 12 16 20

Time [s] Time [s]

Fig. 7. Minimum effort of the first and second motors within upper and lower acceptable boundaries

4.2. Second case study: minimum vibration trajectory

In the motion planning of flexible robots, obtaining the minimum vibration trajectory is
one of the most frequently encountered problems. The optimization objective is to minimize the
vibration excitation during motion. By increasing the weighting factors corresponding to the
derivative of flexural displacements (Gf1,...,qfn), the vibrational motions will be suppressed.
The bounds of the motor capacity are not considered. Hence, the proper penalty matrices are
selected to be R = diag(0.01) and W, = 0, Wy = diag(0,0,1,...,1). The load must be
carried from the initial point with coordinate (z, = 0.5m, y. = —0.08 m) to the final point with
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coordinate (z. = 3.31m, y. = —0.25m). The optimal trajectory between these two points during
the overall time t; = 1.9 is desired for the rest-to-rest maneuver. The other conditions remain
the same with the previous case study. The characteristics of the parts are shown in Table 1.

04
= 0.3
'i' 02
>~ 0.1
0 /
-0.1 >
-02 i
-0.3 // Ir**small :
—8.4 4 — large |
5 : 7
0.6

05 1.0 15 20 25 30 35

X [m]

Fig. 8. The optimal paths via minimum vibration

() .05 (®) 0.025
= = 0.020
= 0.04 = 0,015
£'0.03 $'0.010
0.0 0_008
0.01 -0.005
0 -0.010
0.015

VO 5T 05 13 16 20 00057085 12 16 20

Time [s] Time [s

Fig. 9. The optimal flexural deflections of the first link (a) and the optimal flexural displacements of the
second link (b)

The simulation results (small and large models) are illustrated in Fig. 8. The obtained optimal
flexural deflections, corresponding to the minimum vibration are shown in Figs. 9a and 9b. The
simulation results show that a significant reduction in manipulator vibration can be achieved by
employing the proposed optimization procedure. As expected, it can be seen, by decreasing the
amplitude vibration, that the linear and nonlinear models come closer together. Also, it is shown
that application of the proper input torque may decrease the end effector vibration significantly.

4.3. Third case study: trajectory optimization in the presence of an obstacle

Recently, there has been a great deal of interest in path planning for autonomous mobile
manipulators in the presence of an obstacle because of their ability to replace objects in a wide
workspace. Hence, the problem is how to find a feasible trajectory for all components in order
to carry the maximum payload in environment with an obstacle. The characteristics of the non-
holonomic mobile manipulator, penalty matrices, accuracy value, and the actuator constants
are the same as in the first case study. Moreover, the augmented functional obstacle avoidance
is considered in the cost function. The task is considered to move the end effector from the
initial point py = (0.5, —=0.08) to the final configuration py = (3.31, —0.25) for the rest-to-rest
maneuver during the overall time ¢; = 1.9s. Also, there is an obstacle with r,,, = 0.05m at a
point with coordinates pops = (Tops = 1.1m, yops = —0.55m). The simulation parameters are
shown in Table 1.

In this condition, the maximum payload is found to be 2.05kg. To avoid the obstacle, the
manipulator moves far from it and causes a decrease in the allowable payload. The schematic of
the obstacle and the obtained optimal paths of the end-effector and the mobile base are shown in
Fig. 10a. A comparative study is performed between the rigid model and flexible models (linear
and nonlinear models) as shown in Fig. 10b.
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Fig. 10. The schematic view of obtained optimal paths in the presence of an obstacle (a) and the
obtained optimal paths of the end-effector and mobile base for different models (b)

5. Conclusions

The main objective of this investigation is to determine the trajectory optimization for cal-
culating the MADL of flexible-link mobile manipulators in the point-to-point maneuver in the
presence of an obstacle, based on the indirect solution to the optimal control problem. The effect
of dynamic interaction between the flexible manipulator and the mobile platform is considered
to characterize the motion of a nonholonomic mobile manipulator with the compliant link capa-
ble of large deflection, in which both the geometric elastic nonlinearity and the foreshortening
effects are considered. This model leads to a constant stiffness matrix and makes the formula-
tion particularly efficient in computational terms and numerically more stable than alternative
geometrically nonlinear formulations based on lower-order terms. Pontryagin’s minimum prin-
ciple is used to obtain the optimality conditions, which leads to a standard form of a two-point
boundary value problem. An augmented objective function based on an artificial potential field
is considered to avoid the obstacle during point-to-point maneuvers. Several simulation studies
on a nonholonomic wheeled mobile manipulator are carried out for finding the MADL and opti-
mal paths with different objective functions like minimum effort and minimum vibration. The
numerical results indicate the effect of employing trajectory optimization in the performance
improvement of the mobile flexible manipulator. It is shown that the presence of the obstac-
le causes the manipulator moves far from it; therefore, it reduces the maximum load-carrying
capacity. Moreover, in this method, the designer can compromise between different objectives
by considering proper penalty matrices, and may choose the proper trajectory between various
paths. The obtained results illustrate the power and efficiency of the model in overcomming
the highly nonlinear nature of the large deflection and optimization problem, which with other
methods may be very difficult or impossible to achieve.
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