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The paper deals with the multiobjective and multiscale optimization of heterogeneous struc-
tures by means of computational intelligence methods. The aim of the paper is to find opti-
mal properties of composite structures in a macro scale modifying their microstructure. At
least two contradictory optimization criteria are considered simultaneously. A numerical ho-
mogenization concept with a representative volume element is applied to obtain equivalent
macro-scale elastic constants. An in-house multiobjective evolutionary algorithm MOOP-
TIM is applied to solve the considered optimization tasks. The finite element method is
used to solve the boundary-value problem in both scales. A numerical example is attached.
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1. Introduction

Composites are structural materials which are increasingly used and constantly gain in popula-
rity due to their properties. In particular, the favourable strength/weight ratio causes them to
displace traditional structural materials such as metals and their alloys in many areas of tech-
nology. Their properties depend on such parameters as the properties of constituent materials,
volume fraction of the constituents as well as shape and location of the reinforcement. Proper
manipulation of such parameters allows obtaining the desired behaviour of composite structures.

In order to obtain the best (for given criteria) properties, optimization methods have to be
applied. Since the application of conventional, typically gradient-based, optimization methods for
composites may encounter difficulties due to multimodality and discontinuity of the objective
function, it is reasonable to use global optimization methods, like bio-inspired optimization
algorithms, e.g. evolutionary algorithms, artificial immune systems or particle swarm optimizers
(Michalewicz and Fogel, 2004; De Castro and Timmis, 2002; Kennedy and Eberhart, 2001).

In real optimization problems, it is very often necessary to consider more than one criterion at
the same time. If the criteria are contradictory, the optimization task belongs to multiobjective
ones. The dedicated implementations of bio-inspired global optimization methods can be applied
to solve multiobjective optimization tasks. A survey of the state of the art of the multiobjective
evolutionary algorithms can be found in Zhoua et al. (2011).

Proper determination of the effect of micro-structure of heterogeneous materials on their
behaviour at the macro level allows the optimal design of heterogeneous materials. Multiscale
optimization allows designing materials in one scale level to obtain the desired properties of the
material on different scale(s). Different homogenization methods are typically applied to perform
calculations in more than one scale in a reasonable time (Kouznetsova, 2002; Buryachenko, 2007;
Zohdi and Wriggers, 2005).

There are numerous approaches to the multiscale modelling. Analytical or semi-analytical
methods are typically used to determine the equivalent material constants for inclusions or voids
of regular shape, e.g. circular, elliptical or spherical (Eshelby, 1957; Bensoussan et al., 1978).
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The applied in the present paper attitude is based on numerical homogenization methods
belonging to so-called upscaling methods. Simulation in this group of homogenization methods is
carried out hierarchically in different scales utilizing the representative volume element attitude.
The computational intelligence methods have been successfully applied by the authors to multio-
bjective optimization problems of composite structures at the macro scale only, see e.g. Beluch
et al. (2008). The application of computational intelligence methods for the single-objective mul-
tiscale identification of material constants in heterogeneous materials was presented by Beluch
and Burczynski (2014).

2. Multiscale modelling

Many structural materials like composites, porous materials or polycrystalline materials are non-
homogeneous on a certain observation level. In order to model such materials more precisely,
considerations in a macro scale only may be insufficient. Taking into account different scales
allows modelling different geometric and material properties of the structures. A macro-scale
model may contain various types of external loads (mechanical, thermal, electrical, etc.). Meso
and micro scales make it possible to consider such elements as discontinuities or imperfections,
like cracks, voids, inclusions or surface roughness (Nemat-Nasser and Hori, 1993; Vernerey and
Kabiri, 2014). A nano-scale level includes e.g. crystal lattice defects while an atom-scale le-
vel allows incorporating molecular mechanics effects (Burczynski et al., 2007). The number of
considered scales depends on the required accuracy of the model (Ilic and Hackl, 2009).

The proper determination of the influence of the micro-structure of heterogeneous materials
on their behaviour at the macro level allows optimal designing of them. An appropriate selection
of the component materials, geometry and volume ratio of constituents allows creating mate-
rials with desired properties, including those which cannot be obtained with the application of
homogeneous materials only (Takano and Zako, 2000).

The direct application of more than one scale in numerical calculations by means of nu-
merical methods such as the finite element method (FEM) (Zienkiewicz and Taylor, 2000) or
boundary element method (BEM) (Brebbia and Dominiguez, 1989) leads to systems with such
large numbers of degrees of freedom that they are very hard or even impossible to be solved.
In order to overcome this problem, different homogenization techniques are employed. In the
present paper, numerical homogenization techniques are applied to find the parameters of the
equivalent material for composite structures. The behaviour of heterogeneous media is described
by differential equations with discontinuous coefficients like elastic constants in linear-elastic pro-
blems. The aim of the numerical homogenization is to determine continuous, effective coefficients
of differential equations which are applied to a higher scale. A typical attitude in the numeri-
cal homogenization consists in the determination of constitutive relation between averaged field
variables, like stresses and strains (Ptaszny and Fedelinski, 2011).

2.1. Numerical homogenization of heterogeneous materials

Numerical homogenization techniques belong to upscaling methods which perform hierar-
chical simulation in particular scales and make use of the representative volume element (RVE)
concept (Hill, 1963). They allow obtaining macroscopically homogeneous, equivalent materials
which behave in the macro scale as microscopically heterogeneous ones.

RVEs are used for globally or locally periodical structures. RVE represents the structure
of the whole medium or its part, so it has to include all information required for a thorough
description of the structure and properties of the medium (Hashin, 1964).
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Numerical homogenization can be performed under certain conditions:
a) The principle of the scales separation requires that RVE size Igy g must be significantly
greater than the microstructure characteristic dimensions /.o and considerably smaller
than the characteristic dimensions l,,qcr0 in the macro scale (Zohdi and Wriggers, 2005)

lmicro < lRVE < lmacro (21)

It is commonly assumed that the RVE is the smallest possible volume representing the
entire medium or its part. RVE should meet two conflicting criteria: be large enough to
be representative of the entire structure and as small and uncomplicated (geometrically
and materially) as possible in order to carry out its precise numerical analysis (Madi
et al., 2006). In the case of fully regular structures (commonly used for fiber-reinforced
composites), RVE may contain only one centrally placed core. Such an RVE is called a
unit cell.

b) Averaging is performed according to the relation
1
0= [0 22)
v

where (-) is the averaged value of the field under consideration, V' — RVE volume.

¢) The condition specifying the equality of the average energy density in the micro scale and
the macroscopic energy density at the point of macrostructure corresponding to the RVE
(Hill condition) has the form (Kréner, 1972)

(0ijeij) = (0ij)(€ij) (2.3)

where: 0;; and ¢;; are stress and strain tensors in the micro scale.

d) Appropriate boundary conditions, e.g. periodic boundary conditions (Kouznetsova, 2002):
periodic displacements and anti-periodic tractions on opposite faces of the RVE, as shown
in Fig. 1, are

uf =y VredV: nf=-n; (2.4)
th=—t; VredV: nf=-n;
ont
e oS
ovy |[HH T avst
oV

Fig. 1. RVE boundaries for periodic boundary conditions

In addition to the boundary conditions, strain boundary conditions from the higher scale are
imposed on every RVE (localization). If FEM is applied to solve the boundary-value problem in
both scales, the RVE is assigned to each integration point in the micro scale (Kuczma, 2014).

Averaged stresses, calculated according to Eq. (2.2), are obtained as a result of numerical
computations in the micro scale (homogenization). Averaged stresses are transferred to the
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higher scale in order to calculate homogenized material parameter values at the macro scale
taking into account the constitutive equation for the homogenized material. Assuming that the
considered composites can be treated as orthotropic materials in the plane strain state, the
constitutive equation in the Voight notation has the form (Gibson, 2012)

(o11) Qu Q2 0 (e11) E l—v v 0 (e11)

(022)| = Qa2 0 | [(e22)| = l-v 0 (e22)

o) Lo Qu) )] QPO 05— )
(2.5)

where Q;; are the elements of the resultant elastic constants tensor Q, 7,7 = 1,2, 3.

In the considered case, determination of the Q matrix elements requires performing of 3
independent analyses in the micro scale for each RVE. If the material is linear and fully periodic,
only one RVE has to be analysed for the whole structure.

Having determined the components of the Q matrix, the elastic constants of the equivalent
material are calculated according to Eq. (2.5).

3. Formulation of the optimization problem

In many engineering optimization problems, more than one optimization criterion have to be
taken into account simultaneously. Moreover, the considered criteria are often contradictory,
which leads to multiobjective optimization (MOO) tasks. MOO results in a set of trade-off
solutions instead of only one optimal solution in single-objective optimization tasks.

The aim of the two-scale multiobjective optimization of composite structures is to find some
of its properties in the micro scale (represented by the RVE) which optimize the behaviour of
the structure in the macro scale. To solve the boundary value problem in the macro and micro
scales, the commercial FEM software MSC Marc and MSC Nastran has been applied. In order
to combine MOOPTIM with FEM software, appropriate programming interfaces have been
developed. The block diagram of the multiobjective and multiscale evolutionary optimization is

presented in Fig. 2.
$ START

Design variables RVE FEM homogenization
(micro scale)
MOOPTIM J/
Fitness function
values FEM calculations in macro scale

Multiobjective optimization block Fitness function calculation block

Termination
condition

Fig. 2. A block diagram of the multiobjective and multiscale evolutionary optimization
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3.1. Definition of the multiobjective optimization task

A MOO problem can be treated as a search for a vector x € D, where D is a set of admissible
solutions being a subset of design space X (Deb, 2001)

X = [21, T2, ..., 2] T (3.1)
which minimizes the vector of k£ objective functions

f(X) = [fl(x)va(x)v s 7fk(x)]T (32)

The vector x has to satisfy m inequality constrains g;(x) > 0, ¢ = 1,2,...,m and p equality
constrains h;(x) =0,i=1,2,...,p.

There exist many attitudes to the multi-objective optimization problems (Laumann et al.,
2004). A priori methods are based on the transformation of a multiobjective problem into a
single-objective one (Collette and Siarry, 2003). The most popular methods from this group are:
i) weighted sum method in which each criterion has its own weight value; and ii) e-constraint
method in which the optimization is performed for a chosen criterion while the remaining criteria
are treated as constrains. The advantage of the a priori methods is that single-objective methods
can be applied, but the drawback is that some very often unrealistic assumptions of the objectives
have to be made before the optimization starts.

The second group state interactive methods, which demand an interaction with the decision-
maker (DM) during the optimization to achieve additional information (Luque et al., 2011).
There exist many multi-criteria decision-making principles. For example, in Phelps and Koksalan
(2003), a pair-wise comparison of solutions is used to include DM’s preference. The guided
multiobjective evolutionary algorithm (G-MOEA) uses a modified definition of dominance (see:
Section 3.2) which has been modified based upon the DM’s preference information (Branke and
Deb, 2004).

Both aforementioned groups of methods result in one solution of the optimization process.
In the a posteriori methods, a set of compromise (trade-off) solutions is determined in the first
step of the optimization procedure. The DM is required to choose the most preferred solution
in the second step.

3.2. Pareto concept in multiobjective optimization of composites

An attitude belonging to a posteriori methods is employed in the present paper. The multio-
bjective optimization is performed using the Pareto concept of non-dominated solutions (Ehr-
gott, 2005). If the minimization problem is considered, a solution x is strongly dominated by
the solution x* if

Vie{1,2,...,k}: fi(x®) < fi(x) (3.3)
The solution x is weakly dominated by the solution x* if

Vie{1,2,...,k}: filx®) < filx) A
J5 €{1,2,...,k}: fi(x*) < fi(x)

An example of domination areas for an arbitrary point (solution) A for a two-objective
minimization problem is presented in Fig. 3. The set of non-dominated solutions is called the
Pareto front.

In the present paper, a multi-objective optimization problem is solved by means of the
proposed multiobjective evolutionary algorithm MOOPTIM, which belongs to bio-inspires global
optimization methods (see: Section 4).

(3.4)
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Fig. 3. An exemplary Pareto front and domination areas for point A

The real-value coding of the design variables is applied in MOOPTIM. The vector of the
design variables (chromosome) has the form

x = [lrvE, Em, E¥] (3.5)

where [y g is the characteristic dimension of the RVE, E,,,, £y — Young’s moduli for the matrix
and fibre materials, respectively.

3.3. Optimization criteria

The following optimization criteria have been considered simultaneously:

1. The minimization of the (dimensionless) structure cost C
argmin{C(x); x € D} C(x) = psCrVi(x) + pmCmVin(x) (3.6)

where py, py, are fibre and matrix densities, V}, V,,, — fibre and matrix volumes, C¢, Cp,
— fibre and matrix unit costs per kilogram.

2. The minimization of the complementary energy of the structure II, being a measure of
the averaged susceptibility of the structure (Burczynski, 1995)

arg min{IT,(x); x € D} T, (x) = / W(o) de2 — / pu® dIy (3.7)
(% I

where W (o) is the stress potential related to a volume unit, {2 — a domain occupied by the
body, I} — part of the boundary on which the function pug is defined, p, ug — tractions
and displacements on I7.

4. Multiobjective evolutionary algorithm

An in-house multiobjective evolutionary algorithm MOOPTIM based on the Pareto concept is
used for solving optimization tasks (Dlugosz, 2010). Some ideas in MOOPTIM are inspired by
Deb’s NSGAII algorithm (Deb et al., 2002). Similarly as in NSGAII, the proposed algorithm
uses a non-dominated sorting procedure to classify individuals in the population and a crowding
coefficient to preserve diversity in the population. The main differences between MOOPTIM and



Multiobjective and multiscale optimization of composite materials...

403

NSGA 1II are: i) application of a different number and different types of evolutionary operators
and ii) selection mechanism.

Two types of mutation (uniform and Gaussian ones) and two crossover operators, in form of a
simple crossover and an arithmetical one, are used. As previously tested, the Gaussian mutation
operator has significant influence on the effectives of searching ability of the algorithm. This
operator requires an extra parameter, called the mutation range, which can take values from 0
to 1. It is observed that higher values of the mutation range usually improve the convergence of
the algorithm, especially for difficult optimization tasks (Dtugosz, 2013).

Instead of binary tournament selection in NSGA-II, in MOOPTIM, individuals are selected
on the basis of a non-domination level as well as the crowding coefficient.

A pseudo code of the algorithm is presented in Fig. 4. In the initialization step, besides
determining all settings of the algorithm, the populations @); and P; of the same size are gene-
rated, and the fitness functions are evaluated for the population @);. In the main loop, after the
evaluation of the fitness functions values for P;, the populations ); and P; are combined into
a set R;. Next, the selection procedure is performed on the set R;. The individuals from the
population R; are selected to P;;1 on the basis of the non-domination level and the crowding
coefficient. Individuals from P;;; are copied to @Q;+1 and then, evolutionary operators modify
the individuals in the population P, to obtain new possible solutions.

MOOPTIM algorithm
begin
10
randomly generate population @;
evaluate objective functions for Q;
randomly generate population F;
while (not termination condition) do
begin
evaluate objective functions for p;
join populations @Q); and P; (R; =Q; + F;)
use selection (choose P;y; from R;)
copy Pit1 to Qs
apply evolutionary operators for P,y
i—i+1
end
end

Fig. 4. The pseudo code of the MOOPTIM algorithm

MOOPTIM has been tested on several benchmarks typical for the multiobjective problems
like: SCH, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, CONSTR, SRN, TNK (Deb, 1999; Zitzler and
Thiele, 1999). The results obtained using MOOPTIM in most cases are better in comparison
with the results obtained by means of NSGA-II. The advantage of using MOOPTIM (instead
of NSGA-II) especially appears in the case of functions difficult to optimize, i.e. having strong
multimodality, non-convex or a discontinuous Pareto front. Functionals defined for engineering
problems, which are solved by using FEM, are usually strongly multimodal and, sometimes,
design variables are discontinuous.

The ability of finding global solutions by the optimization algorithm for such problems is
essential. The application of the proposed algorithm to solve different optimization tasks has
shown its superiority on NSGAII in many cases (Dlugosz, 2010, 2013). Moreover, MOOPTIM
has been successfully applied in the optimization of parameters for porous microstructures in
two-scale thermoelastic problems (Dlugosz, 2014).
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5. Numerical example

A box beam structure of dimensions 200 x 80 x 60 mm made of a composite material is considered
(Fig. 5). The thickness of each side is constant and equal to 2mm. The structure is fixed on one
end and loaded by a pair of nodal forces of value P = 300 N each. The structure is divided into
700 Quad4 finite elements having linear shape functions.

Fig. 5. A box beam — dimensions, mesh and boundary conditions

Global periodicity of the structure is assumed and, as a result, the structure can be fully
represented by a RVE containing a single centrally positioned fibre (unit cell) of dimension equal
to 15 pm. The volume fraction of the fibre can vary within the range 4%-45%, which is achieved
through different sizes of the RVE (RVE side length [ry g = 60-20 um), as presented in Fig. 6.
Regardless of the fibre volume fraction, each RVE is divided into 820 Quad4 four-node finite
elements.

(a) 1 [

]
/ \ ANy

[ \

Fig. 6. Exemplary RVEs with mesh for fibre volume fractions: (a) 4% (RVE; = 60 um),
(b) 45% (RVE; = 20 pm)

The matrix of the composite is an epoxy resin, while different types of fibres may be applied as
reinforcement. The fibres are characterized by some parameters, like Young’s modulus, Poisson’s
ratio, density and unit price. The selected parameters of the matrix and fibres materials are
collected in Table 1.

It is assumed that the fibre material cost is dependent on material Young’s modulus. Two
cases are considered:

i) the fibre material cost is approximated by a polynomial function of Young’s modulus, as
presented in Fig. 7. This attitude assumes the possibility of designing the fibre material
that has the desired properties;
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Table 1. Parameters of the composite constituent materials

ii) the fibre material cost is taken from the database of material parameters (materials 1-5

Each chromosome which is a design variable vector consists of two genes representing:

. E v | Density | Unit price
to | Moterd! (GPal | 1] | lg/en®] | [6/kg

1 | E glass (fibre) 72 ] 0.22 2.54 1.5
2 | S-2 glass (fibre) 87 | 0.22 2.49 5

3 | HS carbon (fibre) 230 | 0.2 1.8 25
4 | IM carbon (fibre) 285 | 0.2 1.8 55
5 | HM carbon (fibre) 400 | 0.2 1.8 175
6 | Epoxy resin (matrix) | 2.4 | 0.35 1.14 8

from Table 1.

i) size of the RVE and Young’s modulus of the fibre (case i);

ii) size of the RVE and the fibre material number (case ii).

Two variants of the case i) are taken into consideration, as presented in Fig. 7:

i) only carbon fibres are considered (solid line);

ii) carbon and glass fibres are taken into account (dashed line).

The results of the optimization in form of Pareto frontiers for cases i) and ii) are presented

200
g“ 180 7
¥ 160 /
% 140
8 y:0.002912—0.9633z+91.578/
2120 /
5 100
30
60 /
40 //
20 S - 5 —
PP -~ [y=4E-06z TO.00091‘+0‘.09231—0.639I9
0 100 200 300 400 500
E [GPa)

Fig. 7. Young’s modulus of the fibre — unit cost diagrams for polynomial approximation

in Fig. 8.

As revealed from Fig. 8, the best optimization results have been obtained for a wider search

space (glass and carbon fibres).

The design variables values, fibre volume fractions and fitness function values for exemplary
points 1-4 for carbon and glass fibres with different approximations are collected in Table 2.

The following parameters of MOOPTIM are assumed:

probability of the Gaussian mutation pg,, = 0.7;

probability of the uniform mutation p,,, = 0.1;

probability of the simple crossover ps. = 0.1;

probability of the arithmetic crossover p,. = 0.1;

number of chromosomes n., = 70;

number of generations n, = 70.
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Table 2. Multiobjective optimization results for the box beam

Fig. 8. Box beam — results of multiobjective optimization for case i)

Design variable Fitness function
Point | RVE length [um]/fibre | E of the fibre | Structure unit | Complementary
volume fraction [%] [GPa] cost [-] energy [Nm)]
1 20/45 70 0.848 1541.43
2 20/45 204.6 1.754 1454.38
3 20/45 400 12.429 1431.94
4 58.0764/5.24 70 0.941 3736.95

The multiobjective optimization results for case ii) (the choice of the material from the
database) compared to the results obtained for case i) (carbon and glass fibres, polynomial

approximation, also shown in Fig. 8), are presented in Fig. 9.

The information obtained from the results for the approximated cost values may be used
to search for or for designing materials the cost of which is a function of selected parameters.
The multiobjective optimization in the case where materials are chosen from the database of
the available materials is more practical, but typically gives worse optimization results due to
narrower search space.
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Fig. 9. Box beam — results of multiobjective optimization for cases i) and ii)
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6. Final conclusions

The multiscale and multiobjective optimization of heterogeneous structures has been performed.
Periodic fibre-reinforced composite structures have been examined. The RVE concept has been
employed to perform numerical homogenization. FEM calculations have been performed to solve
boundary-value problems in both scales. Two contradictory optimization criteria have been
considered to obtain the optimal behaviour of the macrostructure modifying the volume fraction
of the fibre and the fibre material in the micro scale. An in-house multiobjective evolutionary
algorithm MOOPTIM has been applied to solve the multiobjective optimization problems.

The proposed approach enables designing of composite microstructure based on the criteria
defined in the macro scale. The paper presents an example with a unchangeable (circular) shape
of the reinforcement. In that case, the optimization was to determine the reinforcement material
and its volume fraction in the RVE.

The optimization results have been presented in form of Pareto frontiers of non-dominated
solutions and in graphical form of optimal microstructures for selected non-dominated solutions.
Graphical presentation of the non-dominated solutions also carries information about the nature
of the conflict between the criteria. For instance, the frontier presented in Fig. 8 for variant i)
(carbon fibres) has two distinct areas merging at an approximately straight angle, while the
front for variant ii) (carbon and glass fibres) does not have clearly demarcated sub-areas. These
places at the Pareto front, where a small change in the value of one of the objective function
results in a large change in the value of other objective functions (area A in Fig. 8) require
particular attention in the design process.

The application of the MOOPTIM algorithm to the considered multiobjective problems
proves that the proposed algorithm is useful. The defining and using of the optimization criteria
other than those presented in this paper do not pose problems in the proposed approach.
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