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In this study, the hybrid approach of the Quadrature Element Method (QEM) has been
employed to generate solutions for point supported isotropic plates. The Hybrid QEM tech-
nique consists of a collocation method with the Galerkin finite element technique to combine
the high accurate and rapid converging of Differential Quadrature Method (DQM) for effi-
cient solution of differential equations. To present the validity of the solutions, the results
have been compared with other known solutions for point supported rectangular plates. In
addition, different solutions are carried out for different type boundary conditions, different
locations and number of point supports. Results for the first vibration modes of plates are
also tested using a commercial finite element code, and it is shown that they are in good
agreement with literature.

Keywords: Quadrature Element Method, point support, plates, free vibration

1. Introduction

In the applications of modern structures, i.e. carousers, building floors, bridge decks, solar panels,
aircraft and ship industries, bolted, riveted or spot-welded plate bodies are used. Designers have
to know how these components change the dynamic characteristic of the structures. These types
of engineering problems are known as point supported plate problems and they are frequently
encountered in practice. Both analytical and numerical methods have been developed for the
analysis of these problems. Although there are no exact solutions for these problems, various
numerical approaches have been utilized. For example, Cox and Boxer (1960) used a finite
difference method, Damle and Feeser (1972) used the finite element method, Fan and Cheung
(1984) used the spline finite strip method, Huang and Thambiratnam (2001a) used the finite
strip method, Guiterrez and Laura (1995) used dthe ifferential quadrature method, Zhao et al.
(2002) used the discrete singular convolution method to solve the mentioned plate vibration
problems. Because of its high accuracy, the Rayleight-Ritz method has been the most frequently
used analytical method to appeal for vibration analysis of plates, as Narita and Hodgkinson
(2005) did. Also Gorman (1991) and Bapat and Suryanarayan (1989) utilized the superposition
method and the flexibility function approach as analytical techniques, respectively.
Several functions are used for the analysis of free vibration of point supported rectangular

plates. These include vibrating beam functions (Kerstens, 1979), B-spline functions (Mizusawa
and Kajita, 1987)] and orthogonal polynomial functions (Kim and Dickinson, 1987). On the
other hand, Liew and Lam (1994) applied a set of orthogonal plate functions generated by using
the Gram-Schmidt orthogonality relationship to elastic point supported rectangular plates. Lee
and Lee (1997) used a new type of the admissible function. Kitipornchai et al. (1994) and Liew
et al. (1994) applied the Lagrange multiplier method and the constrain function method to
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point supported Mindlin plates. Cheung and Zhou (1999, 2000) used the static beam function
to composite plates and used the finite layer method to layered rectangular plates with point
supports. Saadatpoure et al. (2000) studied vibration of plates having a general shape with
internal point and line supports using the Galerkin method. Huang and Thambiratnam (2001b)
applied a procedure incorporating the finite strip method together with spring systems for
treating plates on elastic intermediate supports. Zhou (2002) used a set of static tapered beam
functions which were the solutions of a tapered beam under a Taylor series of static loads
developed as admissible functions for vibration analysis of point-supported rectangular plates
with variable thickness in one or two directions. Again, Zhao et al. (2002) studied the problem
of plate vibration under complex and irregular internal support conditions using the discrete
singular convolution method. Kocatürk et al. (2004) used Lagrange equations to examine the
steady state response to a sinusoidally varying force applied at the centre of a viscoelastically
point-supported orthotropic elastic plate of rectangular shape with considered locations of added
masses.

The Differential Quadrature Method (DQM) was proposed by Bellman and Casti (1971) in
the early 1970’s as an efficient numerical method to solve non-linear partial differential equ-
ations and applied to many areas of engineering problems. Especially, the Generalized Differen-
tial Quadrature Method (GDQM) has been used by various researches for efficient treatment of
structural analysis problems. Analyses yielded good to excellent results for only a few discrete
points due to the use of high order global basis functions in the computational domain. Howe-
ver, especially for real-world problems, DQM still lacks flexibility. Recently, Chen et al. (2000)
extended the DQM to analysis of various structures and then it called the Quadrature Element
Method (QEM). 49 degree of freedom (DOF) quadrature plate element was developed by Striz
et al. (1994) to alleviate the lack of versatility and limitations of the existing high order series
type approximation method. Different versions of the Differential Quadrature Method have been
used for various applications. Hybrid approach was further developed by Han and Liew (1996)
to solve the one-dimensional bending problem of the axisymmetric shear deformable circular
plate, and by Liu and Liew (1998, 1999a,b) and Liu (2000) to solve two-dimensional bending
and vibration problems of thick rectangular plates and polar plates having discontinuities. Wang
and Gu (1997a,b) made an attempt to solve static problems of truss and beams and static and
free vibration problems of thin plates. DQM was used by Liu and Liew (1999b) for the study
of a two dimensional polar Reissner-Mindlin plate in the polar coordinate system by integrating
the domain decomposition method (DDM). The Differential Quadrature Finite Difference Me-
thod (DQFDM) was proposed and applied by Chen (2004) for analysis of 2-D heat conduction
in orthotropic media. Franciosi and Tomasiello (2004) applied a modified quadrature element
method to perform static analysis of structures.

In this paper, the Quadrature Element Method is proposed and applied to analyze free
vibration of point supported rectangular plates. Plates having different boundary conditions
and various point topologies are studied. The results are compared with the studies using other
approximating methods known in literature. First, interior and/or exterior point supported
free plates and then, interior point supported plates having various boundary conditions are
presented. Solutions are tested with the results of ABAQUS, a finite element program which has
a wide spread use in the analysis of engineering problems.

2. Formulation of the quadrature plate element

The Hybrid Quadrature Element technique consists of a collocation method in conjunction with
the Galerkin finite element technique to combines the high accuracy and rapid converging of
DQM for efficient solution of differential equations with the generality of the finite element
formulation (Chen et al., 2000).
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The quadrature plate element is closely related to the serendipity Lagragian element, but it
has internal points and basis functions of high order (Chen et al., 2000). Numerical procedures
are extensively used in the element formulation to circumvent the problems caused by the use of
high order basis functions. C0 and C1 inter-element compabilities are met exactly for the mid-
-surface, while the other C2 or even C3 compabilities are closely approximated at each boundary
by the use of moderately high order basis functions. The 25 node rectangular element is given
in Fig. 1. This plate element has also 49 degrees of freedom. These degrees of freedom, which
belong to the plate element, are given in Table 1 (Chen et al., 2000; Quan and Chang, 1989).

Fig. 1. Nodes of the Quadrature plate element

Table 1. Degrees of freedom for 25 node quadrature plate elements

Nodal number DOF

1-5
w,
∂w

∂x
,
∂w

∂y
,
∂2w

∂x∂y9-13

2-3-4
w,
∂w

∂y10-11-12

6-7-8
w,
∂w

∂x14-15-16

17-18-19
20-21-22 w
23-24-25

The displacements of 25 nodes and 49 degrees of the freedom quadrature plate element are
expressed in terms of polynomial type basis functions, i.e.
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where Nij is the shape function which can be determined from the specified collocation points,
and wi, (∂w/∂x)i, (∂w/∂y)i, (∂

2w/∂x∂y)i are local DOFs associated with the node i.
The governing equation of the isotropic thin plate in small deflection free vibration is given

by

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4
=
ρhω2

D
w (2.2)

and Kirchhoff’s plate theory, in which the bending strain of the element is given for an isotropic
and homogeneous plate as
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If Eq. (2.1) and Eq. (2.3) are combined, the strain-displacement relationship is stated by

ε = −z
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The stiffness matrix can be calculated for the area A

K =

∫

A

QTDQ dA (2.5)

where D is the rigidity matrix which can be calculated using constant thickness h, Poisson’s
ratio ν and the modulus of elasticity E

D =
Eh2

12(1 − ν2)







1 ν 0
ν 1 0
0 0 (1− ν)/2






(2.6)

The consistent mass matrix can be calculated as

M =

∫

A

NT(ρh)N dA (2.7)

and the governing equation for plate free vibration can be written in the matrix form

(Ks − λ
2Ms)w = 0 (2.8)

where λ is the frequency parameter, and the subscribed s represents the whole discretized system.

3. Numerical application and discussions

Frequency parameters of free vibrations are described as λ = ωL2
√

ρh/D, where ω, L, ρ, h,
D represent circular frequency, length of the plate, density, thickness and rigidity, respectively.
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In order to obtain more accurate results, QEM solutions have been carried out by using 2×2
and 4×4 differential quadrate plate elements joined side by side along the x and y directions.
When a larger number of plate elements are used more accurate results can be obtained, but the
solution can be obtained with a larger linear system of equations. If there are simply supported
boundary conditions on all edges of the plate considered then the quadrate plate element has
only 25 DOFs. In other words, a set of 25×25 linear equations system has to be solved for one
plate element. The size of the linear equations system is set to 400×400 for the same procedure
needed be to solve with the same boundary conditions and the 4×4 plate element.
First, the number of plate elements that can be used for results having acceptable accuracy

must be decided. Therefore, frequency parameters for three boundary conditions and four plate
elements are obtained with QEM. Table 2 presents the frequency parameters λ of isotropic
rectangular plates. It is interesting that acceptable accuracy results are obtained by QEM for
all boundary conditions in the case of only one plate element.

Table 2. The first frequency parameters λ of isotropic square plates for some boundary condi-
tions (λ = ωL2

√

ρh/D)

Exact Number of use DQ plate elements
(Leissa, 1973) 1×1 2×2 3×3 4×4

S-S-S-S 19.73921
19.73921 19.73921 19.73921 19.73921
(7.0 · 10−4)∗ (2.2 · 10−5)∗ (4.3 · 10−7)∗ (1.6 · 10−8)∗

S-F-S-F 9.63138 9.63139 9.63138 9.63138 9.63138

S-C-S-S 23.64632 23.64700 23.64632 23.64632 23.64632
∗ Relative error in parenthesis has been evaluated using the analytical Leissa value (2π2) [%]

Fig. 2. Relative error determined by ABAQUS for different boundary conditions

Besides, the same boundary conditions given in Table 2 are solved using ABAQUS commer-
cial finite codes. It is obvious that if more elements are used in computation, the error will be
reduced. However, the required number of elements must be determined for acceptable accu-
racy. The variation of the relative error with selected degrees of freedom is given in Fig. 2 for
different boundary conditions. Relative errors have been evaluated using the analytical results
of Leissa (1973). This % error value of the relative difference is defined as (Analytical Leissa
value-ABAQUS result)×100/(Analytical Leissa value). Naturally, the result changes when diffe-
rent boundary conditions are used. As in many literature sources the 4 node thin shell elements
(S4R) are employed, the uniform mesh size and different element numbers on each side of the
plate such as 10, 20, 50, 100, 200 and 400 scales are used to achieve convergent FEM solutions
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(Rui et al., 2015, 2016). In this study, the results have been given for all values from 100 SR4
shell elements on each side of the plate. For these elements, there are approximately 49,800
DOFs. As shown in Fig. 2, the biggest % relative error for SFSF boundary conditions to the
selected number of elements is 0.01%.

In order to simplify the visualisation of types of supports which are used in tables and
figures, symbols in Table 3 are to be used. The number of elements used in ABAQUS should be
determined to obtain an acceptable solution for simply supported rectangular plates with point
supports at the centre, as this type of problems is found in numerous literature items. Simply
supported rectangular plates with a point support at centre are shown in Fig. 3. The results of
QEM (2×2 and 4×4) are presented in Table 4 with other solutions for which different methods
are applied. For the first five frequency parameters λ, all results are also in good agreement.
Especially, the results of the finite strip element method used by Huang and Thambiratnam
(2001) are strongly in agreement with QEM. If it is assumed that the first mode is 49.483 as
it was taken from results of Huang’s solution (Huang and Thambiratnam, 2001), Fig. 4 shows
the change in the results from ABAQUS solution as a function of the number of elements on
each side of the plate. It can be seen that the relative error according to Huang’s results is
approximately 0.03% for 100 elements on each side of the plate.

Table 3. Simplified support type symbols

Symbol Support types

Null Free

Fixed

Simply

Point

Fig. 3. Simply supported square plates with a point-support at center

As shown in Fig. 5, five boundary conditions and point support at the corner of the plate
are considered. In Table 5, the results of Kim and Dickinson (1987) – orthogonal polynomial,
Cheung and Zhou (2000) – static beam function, and Mizusawa and Kajita (1987) – finite spline,
are presented. CFCF, CFSF, SFSF, CFFF, SFFF boundary conditions are considered and first
five frequency parameters are presented. The natural frequencies are determined using both
QEM and ABAQUS, and the obtained results are in good agreement with the analytical results
reported in the literature.

For several cases, the results for plates with point supports are compared with other values
given in the literature. As shown in Fig. 6, plates with different numbers of point supports at the
interior and/or boundary are considered. All results obtained from ABAQUS and QEM solutions
are presented in Table 6. Kato and Honma (1998), Kim and Dickinson (1987) used Rayleight-Ritz
Method, Fan and Cheung (1984), Mizusawa and Kajita (1987) used Spline Finite Strip Element
Method, Narita and Hodgkinson (2005) used Layerwise optimization method, Venkateswara et
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Table 4. Frequency parameters λ of simply supported square plates with a point support at
the center (λ = ωL2

√

ρh/D)

Method λ1 λ2 λ3 λ4 λ5

Venkateswara et al. (1973) – – 52.62 – –

Lee and Lee (1977) – – 53.088 – –

Leissa (1969) 49.3 – – – –

Saadatpour et al. (2000)] 49.348 – – – –

Fan and Cheung (1984) 49.35 49.35 52.78 78.96 98.71

Kim and Dickinson (1987)] 49.348 49.348 53.170 78.959 98.696

Huang and Thambiratnam (2001b) 49.348 49.351 52.667 78.959 98.711

Present (ABAQUS) 49.362 49.362 52.643 78.975 98.784

Present (QEM, 2×2) 49.348 49.348 52.851 78.957 98.711

Present (QEM, 4×4) 49.348 49.348 52.677 78.957 98.696

Fig. 4. First frequency parameters for simply supported square plate with a point support at center
(ABAQUS solutions)

Fig. 5. Square plates with point supports at one corner for various boundary conditions

al. (1973) used Finite Element Method. Kocatürk et al. (2004) used the Lagrange Equation
Method. The first five frequency parameters for eight different point supports situation are
given in Table 6. It can be seen from Table 6, a very good agreement between QEM and those of
Kato and Honma (1998), Kim and Dickinson (1987), Mizusawa and Kajita (1987), Narita and
Hodgkinson (2005), Venkateswara et al. (1973), Kocatürk et al. (2004) are encountered.

Various point support topologies and four different types of boundary conditions are consi-
dered as shown in Table 7. The minimum distances are L/4 since four quadrature plate elements
are used for solutions. Seven different situations are considered and the first five frequency para-
meters are calculated. SSSS, CCCC, SCSC and FCFS type of boundary conditions are selected.
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Table 5. Frequency parameters λ of square plates with point supports at one corner for various
boundary conditions (λ = ωL2

√

ρh/D)

Fig. Method λ1 λ2 λ3 λ4 λ5

5a

Cheung and Zhou (1999) 15.272 24.100 39.495 54.703 63.511
Mizusawa and Kajita (1987) 15.12 23.70 39.37 53.53 62.54
Kim and Dickinson (1987) 15.172 23.923 39.392 54.157 62.850
Present (ABAQUS) 15.166 23.905 39.394 54.105 62.742
Present (QEM, 2×2) 15.169 23.915 39.389 54.112 62.718
Present (QEM, 4×4) 15.166 23.906 39.388 54.094 62.708

5b

Cheung and Zhou (1999) 12.021 21.348 35.140 47.916 58.903
Mizusawa and Kajita (1987) 11.94 21.06 35.01 47.24 57.92
Kim and Dickinson (1987) 11.940 21.175 35.015 47.398 58.144
Present (ABAQUS) 11.939 21.167 35.018 47.399 58.096
Present (QEM, 2×2) 11.939 21.172 35.014 47.393 58.076
Present (QEM, 4×4) 11.939 21.167 35.014 47.388 58.069

5c

Cheung and Zhou (1999) 9.6801 17.496 30.713 44.178 51.873
Mizusawa and Kajita (1987) 9.608 17.32 30.60 43.65 51.04
Kim and Dickinson (1987) 9.6079 17.316 30.596 43.652 51.041
Present (ABAQUS) 9.6079 17.317 30.598 43.663 51.058
Present (QEM, 2×2) 9.6079 17.316 30.596 43.652 51.036
Present (QEM, 4×4) 9.6079 17.316 30.596 43.652 51.035

Cheung and Zhou (1999) 5.3351 16.054 22.000 29.536 43.894
Mizusawa and Kajita (1987) 5.312 15.86 21.71 29.29 43.39

5d Present (ABAQUS) 5.3261 15.912 21.813 29.403 43.499
Present (QEM, 2×2) 5.3277 15.915 21.817 29.407 43.497
Present (QEM, 4×4) 5.3268 15.912 21.812 29.403 43.494

Cheung and Zhou (1999) 3.3395 12.033 17.419 25.886 38.982
Mizusawa and Kajita (1987) 3.336 11.93 17.29 25.68 38.56

5e Present (ABAQUS) 3.3357 11.927 17.293 25.681 38.561
Present (QEM, 2×2) 3.3361 11.927 17.293 25.680 38.555
Present (QEM, 4×4) 3.3361 11.927 17.293 25.679 38.555

Fig. 6. Square plates with point supports

Besides, the results of point supported free plates are given in Table 8. The first five frequency
parameters are presented for point supports on the interior and/or boundary of plates. The
differences between the results of QEM and ABAQUS solutions are approximately 0.1%
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Table 6. Comparison of frequency parameters λ of square plates with point supports
(λ = ωL2

√

ρh/D)

Fig. Method λ1 λ2 λ3 λ4 λ5

6a

Kato and Honma (1998) 13.51 18.03 19.05 19.05 27.26
Kim and Dickinson (1987) 13.47 18.03 18.93 18.93 27.05
Fan and Cheung (1984) 13.47 17.85 18.79 18.79 26.92
Narita and Hodgkinson (2005) 13.47 18.14 19.02 19.02 –
Present (ABAQUS) 13.468 17.835 18.780 18.780 26.910
Present (QEM) 13.468 17.841 18.786 18.786 26.913

Narita and Hodgkinson (2005) 19.60 23.40 33.17 33.17 –
6b Present (ABAQUS) 19.598 23.380 32.580 32.580 34.985

Present (QEM) 19.596 23.378 32.597 32.597 35.013

Narita and Hodgkinson (2005) 3.299 9.894 15.77 19.60 –
6c Present (ABAQUS) 3.298 9.893 15.769 19.598 26.618

Present (QEM) 3.298 9.893 15.770 19.596 26.616

Narita and Hodgkinson (2005) 9.512 14.78 21.34 29.09 –
6d Present (ABAQUS) 9.486 14.659 21.309 28.841 33.586

Present (QEM) 9.487 14.662 21.307 28.847 33.604

Kato and Honma (1998) 18.03 35.62 35.62 38.68 61.06
Kim and Dickinson (1987) 18.03 35.17 35.17 38.43 60.58

6e Fan and Cheung (1984) 17.85 34.89 34.89 38.43 60.12
Present (ABAQUS) 17.837 34.884 34.884 38.440 60.101
Present (QEM) 17.843 34.882 34.882 38.432 60.086

Narita and Hodgkinson (2005) 13.47 17.09 18.65 18.65 –
6f Present (ABAQUS) 13.468 17.029 18.275 18.275 39.185

Present (QEM) 13.468 17.030 18.284 18.284 39.215

Narita and Hodgkinson (2005) 6.641 6.736 19.60 19.75 –
6g Present (ABAQUS) 6.638 6.700 19.489 19.598 24.639

Present (QEM) 6.639 6.701 19.495 19.596 24.639

Narita and Hodgkinson (2005) 7.112 15.77 15.77 16.90 –
Cheung and Zhou (1999) 7.136 15.800 15.805 19.710 38.710
Mizusawa and Kajita (1987) 7.111 15.77 15.77 19.60 38.43

6h Kocatürk et al. (2004) 7.1109 – – 19.596 –
Venkateswara et al. (1973) 7.1109 – – 19.596 –
Present (ABAQUS) 7.1112 15.769 15.769 19.598 38.440
Present (QEM) 7.1109 15.770 15.770 19.596 38.432

4. Conclusions

The Quadrature Element Method is applied to analyze free vibration of point supported rectan-
gular plates having different boundary conditions and various point topologies. The results are
compared to other approximation methods. A very good agreement is observed with the data
published in literature. A 25-node plate element is easier to process with commercial software.
It is possible to apply the Quadrature Element Method to plates having more complex shapes
and to obtain a better accuracy by means of joining plate elements side by side along the x
and y directions.
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Table 7. Frequency parameters λ of square plates with point supports for four boundary con-
ditions (λ = ωL2

√

ρh/D)

Support
Mod

S-S-S-S C-C-C-C C-S-C-S F-C-F-S
Position QEM ABAQUS QEM ABAQUS QEM ABAQUS QEM ABAQUS

λ1 167.78 168.08 187.97 188.10 170.35 170.64 48.538 48.515
λ2 167.78 168.08 187.97 188.10 184.95 184.97 50.128 50.086
λ3 182.71 182.74 207.96 207.92 185.99 186.13 82.215 82.172
λ4 182.71 182.74 215.98 215.71 205.14 205.04 82.772 82.712
λ5 197.39 197.65 242.16 242.60 206.70 206.96 133.17 133.19

λ1 49.348 49.362 73.394 73.437 60.807 60.829 26.227 26.222
λ2 62.106 62.071 86.985 86.931 73.233 73.194 33.799 33.787
λ3 91.269 91.232 105.57 105.55 100.02 99.999 61.801 61.796
λ4 98.696 98.784 131.58 131.76 115.97 116.083 66.573 66.574
λ5 128.30 128.38 151.28 151.16 141.12 140.983 77.381 77.385

λ1 78.957 78.975 108.22 108.27 94.586 94.625 42.012 41.987
λ2 91.269 91.228 121.28 121.25 104.68 104.66 42.899 42.859
λ3 91.269 91.228 121.28 121.24 110.16 110.10 58.187 58.196
λ4 101.69 101.61 139.20 139.12 120.37 120.30 61.114 61.109
λ5 167.78 168.08 204.49 204.88 170.35 170.64 99.245 99.301

λ1 67.760 67.759 74.089 74.075 71.703 71.701 38.804 38.798
λ2 91.269 91.232 105.57 105.55 104.68 104.66 48.538 48.515
λ3 131.52 131.51 162.74 162.81 162.17 162.25 77.124 77.123
λ4 167.78 168.08 187.97 188.10 170.33 170.64 80.303 80.260
λ5 167.78 168.08 207.05 207.49 193.81 193.78 82.215 82.172

λ1 52.677 52.644 55.185 55.150 53.966 53.931 38.203 38.193
λ2 91.269 91.232 105.57 105.55 92.350 92.298 41.679 41.647
λ3 91.269 91.232 105.57 105.55 104.68 104.66 52.440 52.410
λ4 98.696 98.784 131.58 131.76 110.61 110.70 77.139 77.137
λ5 146.83 146.80 180.45 180.55 168.11 168.16 79.983 79.957

λ1 91.269 91.232 105.57 105.55 92.350 92.298 39.993 39.972
λ2 91.269 91.232 105.57 105.55 103.43 103.33 41.679 41.647
λ3 98.696 98.784 116.08 115.81 104.68 104.66 75.963 75.960
λ4 104.81 104.58 131.58 131.76 120.48 120.44 79.983 79.957
λ5 167.78 168.07 207.05 207.49 170.35 170.64 96.537 96.564
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