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The paper is devoted to a dished head of a pressure vessel subject to in-
ternal uniform pressure. A short survey of optimal design of the pressure
vessel and its head is presented. The problem of shaping of the middle
surface of the dished head with the use of trigonometric series is depic-
ted. As a criterion of the shaping process, the continuity of curvatures of
the surfaces in the joint of the circular cylindrical shell and the dished
head is assumed. Results of the numerical calculation for optimal shapes
of the head are presented in figures.
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1. Introduction

The standard torispherical, ellipsoidal or hemispherical head of a pressure ves-
sel significantly disturbs the membrane stress pattern arising in its cylindrical
part. The value of the meridional principal curvature of the middle head sur-
face is non-zero while in the cylindrical it takes the zero level. In result, the
curvature becomes discontinuous. The problem of dished heads of the vessels
has been undertaken by many investigators. Middleton (1979) presented an
optimal design problem of the torispherical pressure vessel head with the use
of the penalty function procedure. Mansfield (1981) proposed the meridian
shape in the form of an integral equation determining the optimal surface of
revolution and compared the results with classical ellipsoidal and torispheri-
cal heads. Yushan and Wang (1996), Yushan et al. (1996) calculated stresses
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of ellipsoidal heads and noticed the stress concentration occurring there. Ma-
gnucki and Lewinski (2000) described the stress state arising in an untypical
torispherical head composed of circular and polynomial parts. Magnucki et al.
(2002) solved the problem of stress minimization of a vessel with an ellipso-
idal head. Magnucki and Lewinski (2003) presented the optimal design of an
ellipsoidal head with consideration of various thickness values of the shell. Ma-
linowski and Magnucki (2005) minimized the stress concentration in sandwich
ribbed flat baffle plates of a cylindrical tank. Krivoshapko (2007) presented a
review of strength and buckling problems of generalized and ellipsoidal shells
of pressure vessels. Liu et al. (2008) proposed a theoretical method using finite
element analysis to calculate the plastic collapse loads of pressure vessels under
internal pressure and compared the analytical methods according to three cri-
teria stated in the ASME Boiler Pressure Vessel Code. Btachut sand Magnucki
(2008) delivered a review of strength, static stability, and structural optimiza-
tion of horizontal pressure vessels. Wittenbeck and Magnucki (2008) shaped
the dished head meridian in the form of clothoidal and circular parts. Ventsel
and Krauthammer (2001) delivered a monograph presenting the strength and
stability problems of plates and shells with the edge effect of cylindrical shells.

The present paper is a continuation of the strength and optimization pro-
blems and deals with the shaping of the middle surface of dished heads with
the use of trigonometric functions.

2. Mathematical description of the middle surface of the dished
head

The shape of a head closing a cylindrical pressure vessel significantly affects the
pattern of stress arising along its meridian. Since the stress depends, among
others, on the meridian curvature, its radius of curvature should be continu-
ous. Curvature of commonly used torispherical or ellipsoidal heads undergoes
sudden variation in the contact point of the head and cylindrical parts of the
meridian. This is due to the fact that the meridional curvature radius of the
cylindrical part is equal to infinity, while the further course of the meridian
belonging to the head is of a finite radius. In order to avoid such a situation,
the head profile should begin from the infinite radius too. Such a shape of the
head may be described by the following functions

r(z) = ar(() (2.1)

where
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7(¢) — dimensionless radius,
7(¢) = fo(¢) = a1 cos(m() + az cos(2m() + ag cos(3m()
¢ — dimensionless coordinate, ( = z/bgy
bo — size (a linear quantity)
a — radius of the cylindrical shell.

The continuity conditions of the dimensionless radius for the joint of cy-
lindrical shell and the dished head have the following form

7(0) =1 giving a1 +ag+az=1 (2.2)

The other conditions that should be met by function (2.1) in order to ensure
stepless variation of the radius are as follows

dr

& =0 fulfilled by identity (2.3)

¢=0

The first of the above equations is satisfied by identity, while the other provides
another condition for aq, as, and ag

d2
d—gg —0 giving a1 + 4as +9a3 =0 (2.4)

¢=0

This allows one to express the coefficients a9 and «g3 in terms of

Qg = é(Q - 80[1) a3 = é(3a1 — 4) (2.5)
Thus, function (2.1) may smoothly match the cylindrical part of the vessel
shape, but in order to provide a satisfactory shape of the head it must be
completed by a circular part. Since the connection between the cosinusoidal
and circular parts of the meridian should be smooth too, the circle should
begin in the point at which the centre of curvature of cosinusoidal curve (2.1)
reaches the axis of vessel symmetry.

The longitudinal-meridional curvature radius is

@) (@) re]”

R,, = - =a 5 (2.6)
i (%) £
and the circumferential-parallel curvature radius
Re= 25 a0+ (Z) 1200 (27)
cos G/ 't
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where

f1(€) = ay sin(w () + 2aq sin(27¢) + 3ag sin(37()

f2(¢) = ay cos(m¢) + 4ag cos(2m() + 9a cos(37()
bo

fo=—

a

ny

Fig. 1. Exemplary location of the centre of curvature for the point M of the
cosinusoidal curve

In any point of the considered curve its derivative equals the tangent of
the angle 6 ((dr/dz)~! = tan ). Hence, according to Fig. 1, one might easily
write the following expressions for the coordinates of the centre of curvature

14 ()
zc:z—ﬂﬁzaﬂo{ﬁ— M)y (2Y p0)])

L de 7 f2(C) Bo 2.9
RAC NN S |
Tc=y+?:a{r(4)—m[l+(%) f1(C)]}

Taking into account relationship (2.5), cosinusoidal curve (2.1) is determined
by two parameters: «1 and by. Therefore, once their values are assumed, one
is able to find such a point M at the cosinusoidal part of the curve from which
the circular shape begins (Fig. 2).

In consequence, selection of pairs of a1 and by parameters enables finding
a family of head shapes of various values of the relative depth 3 given by the
formula

b ~
B = Pl BoCar + R (1 + cos bxr) (2.9)
where R
z = m
CM M Rm =

:E u
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Fig. 2. The head shape composed of the cosinusoidal and circular parts connected at
the point M

3. Equivalent stress of the circular cylindrical vessel

The longitudinal and circumferential stresses of the head are as follows

Re)@

_ 1o _ 1
Om = §Re? O¢ = §R6(2 — Rm n

(3.1)

where pg is the uniformly distributed pressure, ¢ — thickness of the head.
The equivalent stress (i.e. Huber-Mises stress) is

1 Re Re 2170 ~ Po
"eq:§RE\/ 3=spr+(po) T o dw=Gwey (32

where the dimensionless equivalent stress is

1~ R, R.\2 ~ _ Re
5’eq = §Re\/3 — 3Rm + (Rm) and R, = — (33)

Ventsel and Krauthammer (2001) described theory and applications of thin
plates and shells, with consideration of the edge effect in thin-walled shells.
An exemplary variant of the head obtained for a; = 0.8, as = 0.52,
a3 = —0.32 is shown in Fig. 3. Distribution of the dimensionless equivalent
stress of this head is shown in Fig. 4.
The centre of curvature runs along its trajectory and intersects twice with
the z-axis. This provides two possible solutions for the head. In the case of
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Fig. 3. Example of the head solution for a; = 0.8 and [y = 2
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Fig. 4. Dimensionless equivalent stress for a; = 0.8, By = 2, and 3 = 0.7356

connecting the circular part at the point M; making use of the centre C7, the
relative depth of the head would exceed unity, that is rather not recommen-
ded. An alternative solution obtained with the use of the points Ms and Cy
gives the head meridian shown in the illustration, with the relative depth
£ =0.7356.

This is much better, however, the pattern of the dimensionless equivalent
stress shown for the cosinusoidal part of the head is rather unfavourable as it
exceeds the level of 52q = 1/3/2 occurring in the cylindrical part of the vessel.

The optimization problem of the head in terms of the variables o1 and 3y
is formulated as follows:

e optimization criterion

min{3}

@10
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e constraints — the strength condition

[ S

Oeq,max <

Therefore, the final solution to the problem should consist in finding a pair of
«aq and by parameters so adjusted as to obtain a possibly small 3 value with
the equivalent stress level kept below the value of 52q =/3/2.

Numerical analysis has shown that such a solution exists for a; = 1.2212
and [y = 1.6679, which is depicted in Fig. 5.
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1 . X | : —
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Fig. 5. Optimal pattern of the dimensionless equivalent stress for a; = 1.2212,
Bo = 1.6679, and [ = 0.7835

The Gaussian curvature 1/(R.R,,) of the middle surface of the head varies
significantly and, in consequence, disturbs the membrane state stress. This
phenomenon may be alleviated by increasing the head depth.

The MES calculation carried out with the help of the ABAQUS system
and shown in Fig. 6 confirmed the equivalent stress pattern obtained above for
the central line. The computation was performed for an examplary vessel of
the radius 1 m and shell thickness 10 mm.

Figure 7 shows a graphical visualization of the equivalent stress at the inner
surface of the vessel. It becomes evident that in this case the stress arising at
the inner part of the head shell exceeds its level occurring in the cylindrical
part.

Therefore, another attempt has been undertaken with a view to find a
variant so adjusted as to keep the maximum stress at the level characteristic
for the cylindrical part. This was possible by enlarging the relative depth of
the head. Finally, the relative depth equal to 3 = 0.8384 gave a satisfactory
result depicted in Figs.8 and 9.
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Fig. 6. Equivalent stresses at the middle, inner and outer surfaces of the head
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Fig. 7. Visualization of the equivalent stress at the inner surface

4. Conclusions

The presented numerical study of the stress state of a cylindrical pressure
vessel with convex cosinusoidal-spherical heads enables drawing the following

conclusions:
e Fulfillment of the condition of continuous curvature in the joint between
the head and the cylindrical shell is not sufficient to avoid stress concen-

tration in this place.
e Further increase in the head depth reduces the value of the concentrated
stress.

e As a result of shaping the head according to the boundary effect theory,
the relative depth 3 = 0.784 has been obtained for which the stress
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Fig. 8. Equivalent stresses at the middle, inner and outer surfaces of the head for the
variant with enlarged relative depth of the head
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Fig. 9. Visualization of the equivalent stress at the inner surface for the variant with
enlarged relative depth of the head

concentration should disappear. Nevertheless, a numerical test with the
help of FEM has shown the opposite (Fig.6).

e Increase in the relative depth up to § = 0.838 eliminates the stress
concentration (Fig.8).

It should be noticed that the relative depth of standard ellipsoidal heads
amounts to the value of 8 = 0.5 at which a remarkable stress concentration
occurs.
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Ksztaltowanie srodkowej powierzchni wypuklego dna walcowego
zbiornika ci$nieniowego

Streszczenie

Praca dotyczy dna wypuklego walcowego zbiornika ci$nieniowego obciazonego
rownomiernym cidnieniem wewnetrznym. Zamieszczono krétki przeglad problemu
optymalnego projektowania zbiornika i jego dna. Przedstawiono problem ksztalto-
wania srodkowej powierzchni wypuklego dna z zastosowaniem szeregu trygonome-
trycznego. Warunek ograniczajacy ksztatt potudnika dna dotyczy ciagltosci krzywizn
w miejscu potaczenia z powtoka walcowa. Poszukiwano rozwiazania optymalnego,
w ktérym gleboko$é dna jest minimalna przy ograniczeniu warunkiem wytrzyma-
tosci. Wyniki numerycznych obliczen optymalnych ksztaltow dna przedstawiono na
rysunkach.
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