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The incremental model describing the pre-failure behaviour of granular
soils is proposed. Firstly, the constitutive equations are derived from the
extensive set of experimental data, for the triaxial configuration. The
following features are included into the model: initial anisotropy, initial
state of sand (i.e. either dilative or contractive), instability line. Then,
the incremental constitutive equations are generalized to the 3D case,
using techniques of tensor algebra. Finally, the model is re-derived for
the undrained conditions in order to predict such phenomena as, for
example, static liquefaction. The approach presented is an alternative
to already classical approaches as the elasto-plasticity or hypoplasticity.
The paper consists of two parts. Part I deals with the formulation of the
model and its calibration, whereas Part II is devoted to verification of
the model against experimental results.
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1. Introduction

This paper consists of two parts. The first one deals with the incremental
model describing the pre-failure behaviour of sand both dry (or saturated and
fully drained) and water saturated in undrained conditions. In the second part,
various predictions of the model proposed are computed and then compared
with experimental results.
The basic idea of this paper is to propose a model that has a possibly

simple mathematical structure, and that is firmly based on a solid empirical
background. The model is presented in the form of incremental equations,
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describing the volumetric and deviatoric deformations of the soil as functions
of the mean stress and the stress deviator. These equations are formulated
explicitly for the conditions corresponding to triaxial tests, in the invariant
form. Then, a 3D generalization of these incremental equations is presented,
that takes into account the initial anisotropy of sand.
The model proposed is an alternative to already accepted approaches as,

for example, the elasto-plasticity or hypoplasticity, see Kolymbas (2000a),
Zienkiewicz et al. (1999). A natural question seems to be: why to develop
alternatives to already existing tens, or perhaps hundreds, of various models
of soils? Geotechnical engineers expect that theoretical models of soils would
enable various analyses of practical importance, but in practice these models
often fail. They even lead to wrong predictions at the elementary levels as,
for example, triaxial tests, see Saada and Bianchini (1989). For these reasons,
even some extreme opinions have been published. For example: ”Constitutive
relations is a phrase which commands respect in the Universities and revulsion
in practice, and which damages both”, Bolton (2001). Or: ”The main shortco-
ming in the field of constitutive modelling is that each researcher (or group of
researchers) is developing his own constitutive model. This model is in most
cases very intricate and, thus, non-relocative, i.e. no other researcher is able
to work with it. I can report from my own experience that it took me several
months and hard work until I realized that I was unable to obtain anything
with a constitutive model proposed by a colleague”, Kolymbas (2000b).
The research presented in this paper is based on an extensive set of experi-

mental data obtained and collected for many years at the Institute of Hydro-
Engineering in Gdańsk. A few of the already existing approaches have been
applied to describe that empirical material, but with rather limited success, see
Sawicki (2003), Głębowicz (2006). Therefore, it was decided to apply a rather
straightforward approach that is based on the analysis of various stress-strain
curves obtained from the triaxial compression tests for different initial states
of soil samples and different stress paths.
The following methodology has been applied:

a) The basis for modelling is the extensive set of experimental data obtained
at the Institute of Hydro-Engineering in Gdańsk, using advanced labo-
ratory equipment and technology. The details are described in Section 3
of the present paper.

b) The stress-strain curves corresponding to some simple loading/unloading
paths, as isotropic compression and deviatoric loading at constant mean
stress, were then analysed in detail. It was found that some of the experi-
mental results can be represented as common plots, when new variables
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are introduced. Then, analytical approximations of these curves were
found in the form of possibly simplest functions. These approximations
are different for initially contractive and dilative states of soil, and diffe-
rent for loading and unloading. A specific definition of the loading and
unloading was proposed. It was also found that the sand investigated
displays anisotropic behaviour and this feature was taken into account
in the theoretical description of experimental results.

c) Incremental constitutive equations, for the triaxial configuration, were
then formulated on the basis of analytical approximations of basic em-
pirical results. The calibration of these equations has already been done
in the form of analytical approximations of experimental results, as de-
scribed previously. Then, the incremental equations formulated for the
triaxial tests configuration, were generalized to the 3D form, using the
formalism of tensor functions.

d) The incremental constitutive equations, derived for fully drained con-
ditions, are then applied to describe the stress paths for the case of
undrained conditions.

e) In Part II of this paper, various predictions of the model are exami-
ned in order to verify the incremental constitutive equations proposed.
These predictions are obtained by integration of the incremental equ-
ations along the stress paths that are different from those applied for
calibration. The predictions deal with the pre-failure behaviour of sand
for both fully drained and undrained conditions. The results of compu-
tations are compared with respective experimental results. It is shown
that the model gives quite good predictions of the pre-failure behaviour
of sand.

The advantages of the methodology applied in this paper can be summarized
as follows:

• Theoretical description of the pre-failure behaviour of sand is based on
the extensive set of experimental data obtained at the same laboratory
in similar conditions and on the same sand. For the above reason, the
data presented can also be used by other researchers, in order to validate
their models. Note that quite often the modelers use various empirical
data, dispersed in the literature, and obtained in various laboratories at
different conditions and materials, for validation of their models.

• The model is defined in possibly the simplest form that enables its ap-
plication to various loading paths. The functions appearing in the incre-
mental equations are determined directly from experimental data. The



312 A. Sawicki, W. Świdziński

shape of these functions can be modified, if necessary, in order to obtain
better predictions.

• Some important effects are incorporated into the model proposed as, for
example, the initial state of the soil (either compressive or dilative), ini-
tial anisotropy and the instability line. These effects are often ignored in
the existing models. The important feature of the model is that it pre-
dicts the undrained behaviour of soil as, for example, static liquefaction,
on the basis of the behaviour of fully drained soil.

2. Definitions

2.1. Stresses and strains in triaxial compression

The experimental results presented in this paper were obtained from tests
performed in the triaxial apparatus enabling measurement of local strains,
both the vertical and horizontal ones. During such tests, the cylindrical soil
sample is subjected to the vertical and horizontal stresses, designated as σ1
and σ3, respectively, see Fig. 1. The corresponding strains are denoted as ε1
and ε3. In the case of water saturated soil, the effective stresses are defined
as σ′ = σ1 − u, and σ′3 = σ3 − u, where u denotes the pore pressure. The soil
mechanics sign convention is used, where the plus sign denotes compression.
Experimental results will be interpreted in terms of the following stress and
strain variables

p′ =
1
3
(σ′1 + 2σ

′

3) q = σ′1 − σ′3 = σ1 − σ3

εv = ε1 + 2ε3 εq =
2
3
(ε1 − ε3)

(2.1)

where: p′ is the mean effective stress; q – stress deviator; εv – volumetric
strain; εq – deviatoric strain. These variables are related directly to the stress
and strain invariants

p′ =
1
3
trσ′ q =

√
3J2 J2 =

1
2
tr (σ′dev)2

εv = trε εq =

√

4
3
K2 K2 =

1
3
tr (εdev)2

(2.2)

where p′ is the first invariant of the effective stress tensor; J2 – second inva-
riant of the stress deviator; εv – first invariant of the Cauchy strain tensor;
K2 – second invariant of the strain deviator.
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Deviators of the tensors appearing in Eqs. (2.2)3,6 are defined as follows

σ
′dev = σ′ −

(1
3
trσ′
)

1 ε
dev = ε−

(1
3
trε
)

1 (2.3)

The non-dimensional stress variable η is defined as

η =
q

p′
(2.4)

2.2. Characteristic objects

Figure 1 shows two important objects represented by straight lines in the
stress space p′, q, namely the Coulomb-Mohr failure condition (CM) and the
instability line (IL). The failure condition is defined as follows

q =
6 sin φ
3− sinφp

′ = Φp′ (2.5)

where φ is the angle of internal friction.
The instability line is given by the relation

q = Ψp′ (2.6)

where Ψ < Φ is a parameter which should be determined experimentally.

Fig. 1. Coulomb-Mohr failure condition and the instability line in the effective stress
space; simple stress paths (a); stresses acting on cylindrical soil sample (b)

The instability line divides the regions of contraction and dilation of in-
itially dilative sand subjected to pure shearing. Stress path AB corresponds
to compaction, BC to dilation. These phenomena, characteristic for granu-
lar materials, take place in dry or saturated, but in free draining conditions,
sands. In the case of initially contractive soil, there is no dilation along the
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path ABC, just only compaction. But in undrained shearing of contractive
sand, the instability line corresponds to the maximum shear stress that can
be supported by the material.
The initial state of the soil is defined by a pair of numbers e and p′, where

e is the initial void ratio which represents a point in the e, p′ space (in semi-
logarithmic scale). This space is divided into two parts by the steady state line
(SSL), see Fig. 2. The region above this line represents the states corresponding
to the conctrative behaviour during shearing, whilst the states below this
line correspond to the dilative behaviour. The steady state of deformation
is defined as continuous flow of a granular medium at constant volume and
constant stress, see Poulos (1981). We shall identify the steady state with
the CM line in the effective stress space. The stress-strain characteristics of
initially dilative and contractive soils differ essentially, as will be shown in
subsequent sections.

Fig. 2. Steady state line for ”Skarpa” sand

2.3. Loading and unloading

The problem of loading and unloading has the fundamental meaning in
the theory of plasticity, also with applications to soil mechanics. According to
common understanding, during loading the irreversible (plastic) strains deve-
lop, whilst during unloading the reversible (elastic) strains are recovered. The
problem of loading and unloading is obvious in the uni-axial case, but in a
general 3D case is controversial, see Życzkowski (1973).
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In classical elasto-plasticity, the definition of loading and unloading is cle-
ar. The loading takes place when the stress increment is directed outwards of
the current yield surface. When it is directed inwards this surface, the process
of unloading occurs. This means that the same stress increment may be as-
sociated with the loading in one theory, and in the other with unloading, see
Sawicki (2003). In order to avoid such an ambiguity, we have introduced the
following definitions of loading and unloading:
dp′ > 0 – spherical loading; dp′ < 0 – spherical unloading;

dq > 0 – deviatoric loading; dq < 0 – deviatoric unloading,

where d(·) denotes the increment of respective quantity.
It will be shown later that it is convenient to present some of the experi-

mental data in terms of the variable η, defined in Eq. (2.4). The differential
of this variable is the following

dη =
∂η

∂p′
dp′ +

∂η

∂q
dq =

1
p′
(dq − ηdp′) (2.7)

The deviatoric loading takes place when dη > 0, and unloading is associa-
ted with the condition dη < 0, which is an alternative formulation. Figure 3
shows graphical interpretation of these conditions.

Fig. 3. Stress increments above the line η = const define the deviatoric loading.
Unloading corresponds to the stress increments directed below this line

In the special case of η = const , there is dη = 0, and the loading takes
place when dp′ > 0 and dq > 0, and the unloading occurs when dp′ < 0 and
dq < 0.

2.4. Useful units

For practical purposes it is convenient to introduce the following stress
and strain units: stress unit = 105 N/m2 = 0.1MPa; strain unit 10−3 (non-
dimensional).
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This means that the stresses will be presented as non-dimensional quanti-
ties as, for example, p′ – real mean effective stress/stress unit, etc. Similarly,
εv – real volumetric strain/strain unit. The reason for introducing such units
is that these quantities, i.e. stresses and strains, will be of similar order of
magnitude, which is important in numerical calculations.

3. Experimental investigations

3.1. Methodology and experimental background

All the experiments discussed in the present paper were performed in the
computer-controlled triaxial apparatus, manufactured by GDS Instruments,
see Menzies (1988), Świdziński and Mierczyński (2002). The measuring system
was equipped with special gauges enabling the local measurement of both
the vertical and lateral strains. In the case of saturated and fully drained
samples, the change of volume of pore water was also measured, which enables
independent control of strains.
The experiments were performed on the quartz sand ”Skarpa”, charac-

terised by the following parameters: median size of grains D50 = 420µm;
uniformity coefficient CU = 2.5, specific gravity G = 2.65; maximum and
minimum void ratios emax = 0.677 and emin = 0.432, respectively; angles of
internal friction of loose and dense sand φ = 34◦ and 41◦, respectively (de-
termined from triaxial compression tests). The soil samples were prepared in
a membrane-lined split moulder, ether by moist tamping or by water pluvia-
tion methods. The first method assured an achievement of very loose samples
displaying the contractive behaviour at a relatively low mean effective stress
level, whereas the second, uniformity of dense samples, exhibiting a dilative
character during shearing.
The basic set of experiments included the isotropic loading and unloading

of soil samples (paths OA and AO, respectively, see Fig. 1), and the shearing at
a constant mean stress (paths ABC and CBA in Fig. 1, for loading and unlo-
ading, respectively). The experiments were performed for initially loose and
dense samples (isotropic compression), and for initially contractive and dilative
samples (shearing at constant mean stress). The deviatoric loading/unloading
experiments were performed for various values of the constant mean stress.
The experiments described above have served for calibration of the incre-

mental constitutive equations. The stress paths OA and ABC for loading, and
CBA and AO for unloading, were chosen for traditional reasons, as the sphe-
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rical and deviatoric parts of respective tensors play the basic role in mechanics
of materials. The experimental programme has also included the investigations
of the soil samples subjected to other loading histories as, for example, paths
OAE or OD in Fig. 1, but these results will be presented in the second part
of this paper, in connection with validation of the incremental constitutive
equations proposed.

3.2. Stress-strain curves for isotropic compression

Figure 4 shows the character of stress-strain curves during the isotropic lo-
ading and unloading (path OAO in Fig. 1). The shape of these curves is similar
for initially loose and dense samples. Note that during the isotropic compres-
sion, we do not consider whether the sample is either dilative or contractive,
as all the samples densify in this case.

Fig. 4. Strains developed during the isotropic loading and unloading (path OAO in
Fig. 1). Recall respective stress and strain units, Section 2.4

It should be noted that during the isotropic compression, both the volu-
metric and deviatoric strains develop. In the case of initially isotropic soil,
there should be εq = 0, so the samples investigated display an anisotropic
character. The degree of initial anisotropy, i.e. the ratio |εq/εv |, is about 0.15.
It was almost impossible to obtain initially isotropic samples, even using a
very careful method of sample preparation in laboratory conditions. Note that
most of the existing models of soils assume the initial isotropy. In this paper,
the effect of initial anisotropy will be taken into account. The volumetric and
deviatoric strains that develop during loading can be approximated by the
following formulae
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εv = Av
√

p′ εq = Aq
√

p′ (3.1)

where Av and Aq are coefficients the values of which depend on the initial
state of sand, i.e. loose or dense. Table 1 shows the values of these coefficients,
determined for two groups of samples, designated as initially loose and dense.

Table 1. Coefficients Av and Aq

Initial Number Range of den- Range Average Range Average
state of exper. sity index ID of Av Av of Aq Aq

Loose 23 0.016-0.445 3.73-7.32 6.01 −1.67-−0.29 −0.95
Dense 26 0.707-0.859 2.23-4.54 3.47 −1.02-−0.12 −0.53

Recall that the values of coefficients, presented in Table 1, correspond to
the stress and strain units introduced in Section 2.4. For example, calculate the
volumetric strain corresponding to Av = 4 and p′ = 200 kPa = 2 · 105 N/m2.
Eq. (3.1)1 gives: εv = 4

√
2 = 5.66 in unit 10−3. That means that the volume-

tric strain is 5.66 · 10−3 = 0.00566.
The functions approximating experimental results may be chosen in other

form than that in Eqs. (3.1). For example, instead of the square root appro-
ximation, on can apply alternatively the logarithmic or polynomial functions.
It is a matter of convenience as all of those functions approximate sufficiently
well the experimental results. The square root approximation was chosen for
two reasons. Firstly, there appears only a single coefficient. Secondly, in geo-
technical engineering, the square root approximation is applied quite often.
For example, Eq. (3.1)1 can be re-written as p′ = (

√
p′/Av)εv , where

√
p′/Av

plays the role of the bulk modulus.
Similar approximations can be applied for the unloading curves

εv = ε0v +A
u
v

√

p′ εq = ε0q +A
u
q

√

p′ (3.2)

where Auv and A
u
q are respective coefficients, and ε

0
v and ε

0
q denote residual

(plastic) strains that remain in the soil sample after unloading, see Fig. 4. Their
values depend on the maximum value of p′ applied to the sample. For initially
loose samples (0.02 ¬ ID ¬ 0.44), the average values of these coefficients are
Auv = 4.41 and A

u
q = −0.447. For initially dense samples (0.71 ¬ ID ¬ 0.86),

there is: Auv = 2.91 and A
u
q = −0.205.

3.3. Shearing at constant mean stress – dilative soil

Shearing at a constant mean stress is realised on the stress paths ABC
(loading) and CBA (unloading), see Fig. 1. In this case, the response of sand
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(stress-strain curves) depends strongly on its initial state, i.e. dilative or con-
tractive, and therefore should be considered separately. Figure 5 shows the
shear stress – volumetric strain curves of initially dilative samples, for vario-
us values of the mean effective stress that was kept constant during each of
experiment.

Fig. 5. Volumetric strains that develop during shearing along path ABC, cf. Fig. 1,
for initially dilative sand and different values of p′ = const (pA [105N/m2])

The stress-strain curves from Fig. 5 have been re-normalised in order to
present these experimental results in the form of a single common curve. The
method of trial and error was applied to find such a single curve. Figure 6 shows
that a useful interpretation of the experimental results can be presented using
new variables, namely: η and εv/

√
p′. Figure 6 shows the results from Fig. 5

in the form of a common curve.
The curve presented in Fig. 6 displays some interesting features of the sand

behaviour. In the first stage of shearing, the sand densifies (0 ¬ η ¬ η′). The
non-dimensional stress η = η′ corresponds to the instability line, see Eq. (2.6).
Then, the process of dilation takes place. The value of η = η′′ corresponds
to the Coulomb-Mohr yield criterion, see Eq. (2.5). The curve shown in Fig. 6
can be approximated by the following formulae

εv√
p′
=







a1η
2 + a2η for 0 ¬ η ¬ η′

(a3η2 + a4η + a5)[exp(a6η)− 1] for η′ ¬ η ¬ η′′
(3.3)

where ai, i = 1, ..., 6, are some coefficients, which should assure the continuity
of functions (3.3) at η = η′ as well as continuity of the first derivative which
equals zero at η = η′. The following values of these coefficients have been
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Fig. 6. Experimental results from Fig. 5 presented in the form of a single common
curve (pA [105N/m2])

obtained for the experimental data: a1 = −1; a2 = 2; a3 = 4.07 · 10−6;
a4 = −9.44 · 10−3; a5 = −1.09 · 10−2, a6 = 6.54.
The deviatoric strains that develop during pure shearing of dilative sand

can also be represented in the form of a common curve as shown in Fig. 7. The
analytical approximation of this curve is the following

εq√
p′
= b1[exp(b2η)− 1] (3.4)

where b1 = 3.35·10−4 and b2 = 8.32 for the experimental data analysed (recall
respective units!). For very dense sand, the respective coefficients obtained are
b1 = 3.5 · 10−4 and b2 = 6.648.

3.4. Shearing at constant mean stress – contractive soil

The qualitative character of deviatoric strains is similar to that presented
in Fig. 7. For the experimental data analysed the respective coefficients are
following: b1 = 0.023 and b2 = 6.245. In the case of volumetric deformations,
the experimental results can also be presented in the form of a single curve, as
shown in Fig. 8. The respective analytical approximation of this curve is the
following

εv√
p′
= c1η4 (3.5)

where c1 = 2.97 for the data analysed.
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Fig. 7. Common curve for deviatoric strains of initially dilative sand (pA [105N/m2])

Fig. 8. Common curve for volumetric strains that develop during pure shearing of
initially contractive sand

4. Incremental equations for triaxial configuration

The experimental results presented in Section 3 will be generalized in the form
of incremental constitutive equations. Their general form is the following

dεv =Mdp′ +Ndq dεq = Pdp′ +Qdq (4.1)

where M , N , P , Q are certain functions, which will be determined from ana-
lytical approximations of the experimental results presented in Section 3. Note
that the structure of Eqs. (4.1) displays some features characteristic for gra-
nular soils. Firstly, the function N describes the phenomenon of dilation, i.e.
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the change of volume due to shearing. For most of engineering materials as,
for example, metals, concrete or plastics, there should be N = 0. Secondly,
the function P shows that the soil is initially anisotropic, as in the case of
isotropy there should be P = 0.
The functions M , N , P and Q will be determined by differentiation of re-

spective analytical approximations, as is described below. Consider the loading
along the path OA, where the strains are approximated by Eqs. (3.1). Also
note that along this paths there is dq = 0. Differentiation of these equations
leads to the following formulae

dεv =
Av
2
√
p′
dp′ =Mdp′ dεq =

Aq
2
√
p′
dp′ = Pdp′ (4.2)

A similar technique is applied in order to derive respective functions from
the data corresponding to the path ABC, where dp′ = 0. For example, con-
sider function (3.3)1. Respective differentiation leads to

dεv =
∂εv
∂η

∂η

∂q
dq =

1√
p′
(2a1η + a2)dq = Ndq (4.3)

for 0 ¬ η ¬ η′, etc.
Table 2 summarises all the functions for the case of loading, separately for

the initially contractive and dilative sand. The values of respective coefficients,
for ”Skarpa” sand, are presented in Section 3.

Table 2. Functions appearing in Eqs. (4.2) for the case of loading

Function Contractive Dilative

M
Av
2
√
p′

1√
p′
(2a1η + a2) for 0 ¬ η ¬ η′,

N
4c1η3√
p′

1√
p′
{exp(a6η)[a3a6η2 + (2a3 + a4a6)η + a4+

+a5a6]− 2a3η − a4} for η′ ¬ η ¬ η′′

P
Aq
2
√
p′

Q
b1b2√
p′
exp(b2η)
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Note that there are 11 coefficients appearing in Table 2, not to mention
such numbers as η′ and η′′. Also note that the values of these coefficients are
different for the initially contractive and dilative sand. Therefore, there are
altogether 22 coefficients which should be determined experimentally. A large
number of various coefficients is a common problem in soil mechanics. Probably
some of these coefficients are correlated but there is still lack of empirical data
to find possible correlations. Some researchers construct models which have ”a
minimal set of parameters”, but description of a bare set of experimental data
certainly needs more than a few numbers, as shown in Section 3. Nevertheless,
the problem of minimisation of material parameters remains an important
research question in soil mechanics.
Table 3 summarises the respective functions for the case of unloading, after

Sawicki and Świdziński (2007). The shape of these functions is similar for
both dilative and contractive states of sand, but the parameters are obviously
different.

Table 3. Functions appearing in Eqs. (4.1) for the case of unloading

Function

M N P Q

Auv
2
√
p′

av√
p′

Auq
2
√
p′

bq√
p′

The values of Auv and A
u
q are given in Section 3. The remaining coefficients

are the following: av = −0.87 and −0.39 for the initially loose and dense sand
respectively; bq = 0.76 and 0.4 for a loose and dense sand.

5. 3D form of incremental equations

Incremental equations (4.1) are formulated for the specific configuration corre-
sponding to the experiments performed in triaxial conditions. The stress and
strain variables, i.e. p′, q, εv and εq, appearing in these equations are related
to the invariants of respective tensors, as shown in Section 2.1. These relations
enable generalization of these equations to a 3D form, using the methods of
tensor algebra.
Such a method of derivation of constitutive equations is different from the

approach suggested in already classical publications, where the starting point
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are the tensor relations expressed in a most general form. Then the shape of
these equations is simplified according to the problem analysed, see Sawczuk
and Stutz (1968), Boehler and Sawczuk (1970, 1977) or Betten (1988).
It is assumed that the general form of the incremental equations is the

following, see Sawicki (2008)

dεv = Adp′ +BdJ2 dεdev = Cdp′ +Ddσ′dev (5.1)

where A, B and D are some scalar functions which depend on the invariants
of the effective stress tensor. C is a tensor that depends on the current stress
state and the kind of initial anisotropy of sand. The quantities J2, εdev and
σ
′dev are defined in Eqs. (2.2)3 and (2.3), respectively.
The structure of Eqs. (5.1) displays decomposition of the spherical and

deviatoric parts of the stress and strain tensors. Experimental results show that
the sand exhibits cross-isotropic behaviour, with the vertical axis indicating
the privileged direction. In order to take into account this effect, the following
structural tensor is introduced

S =







1 0 0
0 0 0
0 0 0






(5.2)

Assume that
C = CSdev (5.3)

where C is a scalar function and

S
dev =

1
3







2 0 0
0 −1 0
0 0 −1






(5.4)

The functions A, B, C and D are determined from the conditions that
Eqs. (5.1) reduce to Eqs. (4.1) in the case of triaxial compression tests. It can
easily be checked, by substitution, that the following relations are valid

A =M B =
N
√
3

2
√
J2

C =
3P
2

D =
3Q
2

(5.5)

In the same way, the other relations can be generalized. The criterion of
spherical loading/unloading remains unchanged, but in the case of deviato-
ric loading/unloading one should substitute the following value of the non-
dimensional stress increment into the respective condition, (i.e. dη > 0/dη <
0)

dη =
1
p′
(dq − ηdp′) =

√
3
p′

( 1
2
√
J2
dJ2 −

√
J2
p′
dp′
)

(5.6)
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The instability condition (2.6) takes the following form

J2 =
1
3
Ψ2(p′)2 (5.7)

6. Undrained behaviour

Constitutive incremental equations (4.1), or more general relations (5.1), de-
scribe also the behaviour of saturated sand in undrained conditions. Such
conditions take place in the case of rapid loads as those during earthquakes,
explosions and other dynamic excitations. In such circumstances, there is no
time for excess pore-pressure to dissipate. The undrained conditions can also
be investigated in a laboratory, as the construction of triaxial apparatus may
prevent the outflow of pore water. Practically, the undrained conditions are
identified with the condition of zero volumetric changes, i.e.

dεv = 0 (6.1)

Equations (4.1)1 and (6.1) lead to the following formula

Mdp′ +Ndq = 0 (6.2)

Recall that dp′ = dp − du, where dp is the increment of the total mean
stress, and du – increment of pore-pressure. Therefore, Eq. (6.2) can be re-
written as

du = dp+
N

M
dq (6.3)

A similar procedure applies to Eqs. (5.1)1 and (6.1). Recall that the functions
N and M depend on p′ = p − u, see Table 2. Integration of Eq. (6.3) for a
given total stress history leads to corresponding histories of pore-pressure and
effective stresses. Some important examples will be presented in Part II of this
paper.
In the case of a compressible fluid, i.e. of pore water containing some

admixture of gas, Eq. (6.3) should be modified. Simple analysis leads to the
equivalent form of this equation, see Sawicki and Świdziński (2007)

du =
1

M + n0κf
(Mdp+Ndq) (6.4)

where n0 is the initial porosity; κf – pore fluid compressibility.
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7. Conclusions

The results reported in this paper can be summarised as follows:
a) The existing models of granular soils do not always lead to realistic
predictions of the pre-failure behaviour of those materials. There is still
a need for the models which would better reproduce the real response of
sand and such with a rather simple formal structure.

b) The model proposed in this paper is based on the analysis of bare em-
pirical data, and its structure is relatively simple. Such a model can be
easily applied to solve practical problems.

c) The model proposed takes into account some features which have been
ignored in traditional soil mechanics as, for example, steady state line,
instability line, initially dilative or contractive states and initial aniso-
tropy.

d) The model derived firstly for fully drained conditions is also valid for
undrained conditions, which will be shown in Part II of this paper.
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Związki naprężenie-odkształcenie dla piasków suchych i nawodnionych

Część I: Model przyrostowy

Streszczenie

Zaproponowano model przyrostowy opisujący zachowanie się gruntów sypkich
przed osiągnięciem stanu granicznego. Równania konstytutywne wyprowadzono bez-
pośrednio ze związków naprężenie-odkształcenie, otrzymanych z badań trójosiowych.
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W modelu uwzględniono początkową anizotropię gruntu, jego stan początkowy (dy-
latywny lub kontraktywny) oraz linię niestabilności. Równania przyrostowe zostały
uogólnione na przypadek trójwymiarowy, zgodnie z regułami algebry tensorowej. Mo-
del zastosowano do symulacji zachowania się nawodnionego gruntu w warunkach bez
odpływu wody z porów, co prowadzi między innymi do zjawiska upłynnienia. Przed-
stawione podejście jest alternatywą do modeli sprężysto-plastycznych oraz hipopla-
stycznych. Część I pracy dotyczy sformułowania modelu i jego kalibracji, a w części II
przedstawiono predykcje modelu, które porównano z wynikami doświadczeń.
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