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The radial return method for elasto-plastic constitutive equations in the
special case of analysis of a thick-walled cylinder is presented. Sensitivity
study concerning the integration step size was performed analytically for
the specified case. This simple model was also utilized in the adjustment
study of nonlinear solution strategies as a preliminary phase of FEM
investigations of high pressure reactors. The robustness and step-size
insensitivity of this integration method was proved and efficient solution
strategies were chosen.
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1. Introduction

Application of the finite element method to nonlinear structural problems is
connected with iterative calculations of nodal displacements which satisfy a set
of simultaneous algebraic equations of the standard linear form. An iterative
operation is performed for every load level n

K
i
ndu

i
n = r

i
n rin = pn − f(u

i
n) (1.1)

where Kin is the current stiffness matrix, while r
i
n indicates unbalance betwe-

en the external load vector pn and a vector of internal forces dependent on
the current nodal displacements uin. Subscripts refer to the n-th load level
while superscripts to the i-th equilibrium iteration occurring on a specified
load level. Moreover, the small step incremental approach is essential to ob-
tain satisfactory results when the constitutive law relating stress and strain
increments is path dependent.
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Selection of the solution strategy and definition of convergence criteria
for the iterative process depends on specified loading conditions and material
characteristics. Before FEM study of complex structures, it is good practice
to perform some adjustments based on the same material models but sim-
pler geometry and loading conditions. Another essential preparatory step is
sensitivity study of the constitutive integration algorithm in which constitu-
tive equations can be enforced in a process with different increments of some
imposed displacement history.
The main field of the author’s investigation is an elastic-plastic analysis

of a cyclically loaded thick-walled reactor with strong stress concentrators, in
which shakedown effects can occur (Zieliński and Widłak, 2007; Widłak and
Zieliński, 2008). In such analysis, the size of the computational model made
the respective adjustment study impossible. Therefore, a simple problem of
the internally loaded cylinder with plain strain conditions has been chosen.
The problem of elastic-plastic analysis of thick-walled cylinders is well

known and widely presented in fundamental plasticity texts (Życzkowski,
1981). Most of them give direct solution forms. However, these analytical solu-
tions are based on the Hencky-Iliuszyn simple process assumptions, which are
not realistic in context of significant plastic deformations in contradistinction
to flow theories requiring iterative approaches. Furthermore, some assump-
tions present in these solutions neglect certain significant aspects for specific
analyses, e.g. strain hardening during cyclic loadings. The problem of thick
walled cylinder analysis using incremental plasticity can be considered as the
benchmark problem for procedures used in non-linear solution strategies as
well as for algorithms used in the integration of constitutive relations.

2. Elastic-plastic constitutive equations. Radial return method

The finite element procedures used in structural plasticity problems require
specific integration methods for constitutive and flow equations. These me-
thods are aimed at solving the main problem in computational plasticity, in
which the deformation increment is assumed to be given, while the aim is to
accurately and effectively compute the corresponding stress state. If the obta-
ined state results in residual (1.1)2 larger than the prescribed tolerance, then a
new equilibrium iteration is generated, and the next increment calculated. The
secondary problem, which is related to constitutive relations, is calculation of
the elasto-plastic stress-strain matrix along with certain strategies as a means
to finding the solution.
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The radial-return method (Simo and Taylor, 1986; Hughes, 1984; Simo and
Hughes, 1998) is the most widely used and effective algorithm for this purpose.
When striving for benchmark objectives, it suffices to consider this algorithm
with simplified plasticity models. An essential idea concerning the problem,
which assumes an elastic-perfectly plastic case with the Huber-von Mises yield
surface and the associated flow rule, is outlined below.
Generally, the following set of governing equations has to be satisfied (Ba-

the, 1995; Belytschko et al., 2000)

σ̇ij = CEijrs(ε̇rs − ε̇
pl
rs) (2.1)

in which σ̇ij represents stress rates, CEijrs are components of the elastic con-
stitutive tensor and ε̇rs, ε̇plrs are components of total and plastic strain rates,
respectively.
The Huber-von Mises yield function can be stated in the following form

f =
3
2
(sij · sij)− Y 2 (2.2)

where sij are deviatoric stress components and Y denotes the yield stress.
This function gives the yield condition f = 0, which must hold throughout
the plastic response.
Assuming the active process, the plastic strain rates are given by the

Prandtl-Reuss flow rule

ε̇
pl
ij = λ̇

∂f

∂σij
(2.3)

where λ̇ is related to the effective plastic strain rate and the flow direction is
indicated as normal to the von Mises cylinder.
Equations (2.1) and (2.3) are further reduced by enforcing the consistency

condition f = 0, which forms a nonlinear equation on λ̇ and leads to the
following rate constitutive equations

σ̇ij = C
ep
ijrsε̇rs (2.4)

where Cepijrs are components of the tensor which is often referred as a matrix
of the continuum elasto-plastic tangent moduli.
In fact, in FEM computations, we have no longer continuum problems

described by the previous constitutive equations, therefore, the incremental
models as the return mapping algorithm are employed. In the following, an
outline of this method is presented which further is illustrated in the particular
case of analysis of a thick walled cylinder. Moreover, the elasto-plastic tangent
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operator, consistent with the radial-return algorithm, is derived in the specified
case.
In the development of this algorithm, it is beneficial to present geometrical

interpretation of equation (2.1). It is observed that in a plastic process the
stress σ̇ is an orthogonal projection of the trial vector σ̇tr onto the tangent
plane of the yield surface. This is caused by normality of the involved plastic
strain rate vector ε̇pl (Fig. 1).

Fig. 1. Geometric interpretation of the constitutive relation for
elastic-perfectly-plastic cace with the Huber-von Mises yield surface

The first task of the algorithm is to calculate the elastically induced trial
stress σtrn for a given strain increment dε. The trial stress is examined to
confirm whether it is inside or outside the yield surface. If it falls within or on
the yield surface, the process is recognized as an elastic one, and the update
stress is simply equal to the trial stress

σtrn = σn−1 + C
Edε (2.5)

where CE is an elastic constitutive matrix (see (4.1)).
If the trial stress lies outside the yield surface, it is necessary to bring it

back accordingly to the consistency condition. In the radial return process,
σn is defined as an intersection of the line connecting the trial stress to the
center of the yield surface with this surface (Fig. 2).
The algorithm is convergent and exact in the limit when dε → 0. Mo-

reover, the algorithm is recognized as being much more accurate than more
complex procedures, and works satisfactorily even for large increments resul-
ting from a small number of the applied load steps. The sensitivity study
of this phenomenon was analytically performed for the thick walled cylinder
problem in Section 7, and the algorithm robustness was proved.
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Fig. 2. Illustration of the radial-return algorithm

3. Advanced nonlinear solution strategies

To proceed further, it is worthwhile to review the role played by different
solution strategies in the overall nonlinear analysis process. A chosen strategy
has significant influence on the generated strain increment size and the rate
of solution convergence.
In equation (1.1)1, the matrix Kin takes on the role of a stiffness matrix

in linear analysis, but now it relates small changes of load to small changes
of displacements. This global stiffness matrix is computed or modified for a
given deformation state, then inverted and applied to the nodal out-of-balance
force vector to obtain the displacement increments. The general objective of
each iteration in equation (1.1)1 can be represented as out-of-balance force
reduction

ri+1n = pn − f(u
i+1
n ) = 0 (3.1)

The form of the stiffness matrix, which is used at subsequent iterations, de-
pends on the assumed solution method. Various schemes have been developed
to solve nonlinear problems. In this section, a group of Newton methods are
discussed, which are the most common algorithms used in FEM computations.
In the most often used Newton-Raphson procedure, equation (3.1) can be

approximated to the first order as

ri+1n
∼= rin +

( ∂r

∂u

)i

n
duin = 0 (3.2)

The stiffness matrix, corresponding to the tangent direction, can be presented
in this case as

(KT )in =
(∂f

∂u

)i

n
= −
( ∂r

∂u

)i

n
(3.3)
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This matrix is assembled in the actual FEM procedures using element matri-
ces, which are determined on the basis of constitutive elasto-plastic tangent
operators

(KeT )
i
n =
∫

e

B
⊤(Cep)inB dVe (3.4)

where B matrix defines relation between the strain vector and nodal displa-
cements, and (Cep)in is the constitutive matrix on the n-th step and i-th
iteration defined in a tensoric form by equation (2.4) and calculated using the
return mapping algorithm.
Finally, equation (3.2) can be rewritten as follows

(KT )indu
i
n = r

i
n (3.5)

contributing to actual displacements

ui+1n = u
i
n + du

i
n (3.6)

The N-R process is distinguished by very rapid convergence in which the
asymptotic rate is quadratic. The main drawbacks of this process are con-
nected with computation of the tangent stiffness matrix and factorization at
each iteration.
An obvious modification of this procedure involves retention of the original

tangent stiffness matrix, calculated and factorized at the first iteration to
current load levels. In this case, however, the rate of convergence is much
lower – linear asymptotic instead of quadratic.
Other methods eliminating the tangent stiffness formation at every itera-

tion utilize secant directions, which can be computed taking advantage of the
known previous displacement increment and out of balance force reduction on
this increment. A secant slope can be used in such a way that

(KS)i+1n du
i
n = r

i
n − r

i+1
n (3.7)

This is called the quasi-Newton equation. It does not uniquely define (KS)i+1n ,
but places a restriction on its definition. By using this approach, one may
obtain convergence much more rapidly than in the modified N-R process.
Up to now, several different procedures of determining (KS)i+1n have be-

en proposed. All of them use some form of updating previously determined
matrices or their inverses. For example, one of them, preserving the matrix
symmetry and positive definiteness, is the BFGS (Broyden, Fletcher, Gold-
farb, Shanno) update (Dennis and More, 1977). This method is effectively
used with recomputation and factorization of the tangent matrix after some
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number of secant matrix updates, which can, however, sometimes lead to in-
stability when a higher number of updates is involved. It will be investigated
in Section 6.
The common feature of iterative techniques discussed above is the resul-

tant displacement in the vector form duin, the purpose of which is to reduce
ri+1n to zero. This is not always easy to achieve in several iterations and de-
pends on loading conditions, material characteristics and the chosen solution
strategy. To get a solution which represents faster convergence, a modification
of equation (3.6) can be introduced as (Crisfield, 1991)

ui+1n = u
i
n + s

i
ndu

i
n (3.8)

where sin is a scalar search parameter. This, so called, line search technique is
an important feature of most numerical techniques of optimization and can be
used in a wide range of iterative solution procedures. For the simple iterative
procedures outlined above, the scalar sin would be set to unity. In equation
(3.8), the scalar sin becomes a variable, which can be determined for a scalar
nonlinear system by evaluating ri+1n for various values of ui+1n . For multi-
degree-of-freedom systems such an approach is rather complex. It requires the
introduction of a scalar parameter S(sin) of residual forces, which can be stored
while selecting sin, when

ri+1n = pn − f(u
i+1
n ) (3.9)

has a zero component in the direction of duin. This yields

S(sin) = du
i
n · r

i+1
n = 0 (3.10)

which is a nonlinear scalar equation for sin. During one iteration several evalu-
ation of this function should be performed. Matthies and Strang (1979) suggest
accepting sin if |S(s

i
n)| < 0.5|S(0)|.

With the line search technique, acceleration of convergence is remarkable,
especially when applied to the modified Newton or quasi Newton methods. In
many commercial systems, it is even enclosed into the standard N-R procedure
giving significant reduction to the number of iterations (Hallquist, 2006).

4. Implicit integration algorithm for thick walled cylinders

As written previously, the cylindrical high-pressure vessels are the main in-
terest of the author. Therefore, a thick-walled cylinder has been chosen to
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illustrate the problem presented earlier in general form. The plane strain state
has been assumed, i.e. ε̇z = 0. In this case, in the plane strain conditions the
system of equations (2.1) changes to











σ̇r
σ̇θ
σ̇z











= CE











ε̇r − ε̇
pl
r

ε̇θ − ε̇
pl
θ

−ε̇plz











(4.1)

where

C
E =

2G
1− 2ν







(1− ν) ν ν

ν (1− ν) ν

ν ν (1− ν)






G =

E

2(1 + ν)

Yield function (2.2) can be defined as

f =
1
2
[(σr − σθ)2 + (σθ − σz)2 + (σz − σr)2]− Y 2 (4.2)

where σr, σθ, σz are the radial, hoop, axial stress, respectively and Y is the
yield stress. In the particular case, the flow rule takes the form











ε̇plr
ε̇
pl
θ

ε̇plz











= λ̇











2σr − σθ − σz
2σθ − σr − σz
2σz − σr − σθ











(4.3)

where λ̇ is related to the effective plastic strain rate ε̇pleq as follows

λ̇ =
ε̇pleq

2Y

[ 1
MPa · s

]

(4.4)

The effective plastic strain rate is defined as

ε̇pleq =

√

2
3
[(ε̇plr )2 + (ε̇

pl
θ )
2 + (ε̇plz )2] (4.5)

For the numerical implementation and compatibility with the Newton type
algorithms, it is required to represent equation (4.1) in the incremental form.
There are several techniques of calculation of the stress states σn located on
the yield surface. Herein, a direct method corresponding to the return mapping
algorithm is presented. Equations (4.1) and (4.3) can be developed to
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









σr
σθ
σz











(n)

=











σr
σθ
σz











(n−1)

+ CE











dεr − dε
pl
r

dεθ − dε
pl
θ

−dεplz











=

(4.6)

=











σr
σθ
σz











(tr)

−
dεpleq

2Y
C
E











2σr − σθ − σz
2σθ − σr − σz
2σz − σr − σθ











(n)
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








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σθ
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








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=










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σθ
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


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









dεr
dεθ
0











dλ =
dεpleq

2Y

were introduced.
By taking advantage of the known mean plastic strain increments

(dεplm = 0), we can state equations (4.6) as











σr
σθ
σz











(n)

=











σr
σθ
σz











(tr)

− 2Gdλ











2σr − σθ − σz
2σθ − σr − σz
2σz − σr − σθ











(n)

(4.7)

In an implicit algorithm, in contradistinction to the explicit algorithm, the
right hand side of equations (4.7) is computed in the final state, which is
indicated by superscript n. Using (4.7), we can calculate σn as

σ(n)r =
2Gdλ(σ(tr)r + σ

(tr)
θ + σ

(tr)
z ) + σ

(tr)
r

6Gdλ + 1

σ
(n)
θ =

2Gdλ(σ(tr)r + σ
(tr)
θ + σ

(tr)
z ) + σ

(tr)
θ

6Gdλ + 1
(4.8)

σ(n)z =
2Gdλ(σ(tr)r + σ

(tr)
θ + σ

(tr)
z ) + σ

(tr)
z

6Gdλ + 1

These values must satisfy the yield condition. By introducing them into (4.2),
we obtain a nonlinear equation in dλ which is dependent on dεpleq

(σ(tr)r − σ
(tr)
θ )

2 + (σ(tr)θ − σ
(tr)
z )2 + (σ

(tr)
z − σ

(tr)
r )2

2(6Gdλ + 1)2
− Y 2 = 0 (4.9)

Once dλ is determined, all terms of the vector σn can be calculated by sub-
stituting specified values into (4.8).
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5. Elastic-plastic tangent stiffness matrix for plane strain

When the presented algorithm is included into the Newton type solution stra-
tegies, the tangent stiffness matrix is needed. This can be obtained employing
equation (3.4) which uses the tangent stress-strain operators. It is well pro-
ved (Simo and Taylor, 1985; Ristinmaa, 1994; Hughes and Belytschko, 2008)
that significant loss in the rate of convergence occurs when the elasto-plastic
continuum tangent matrix is used in place of the tangent consistently derived
from the integration algorithm. The consistent operator is defined as

C
ep
n =
∂σ(σn−1, εn−1, εpleqn−1 , ε− εn−1)

∂ε

∣

∣

∣

∣

ε=εn

(5.1)

and can be obtained in practice by differentiation of stresses (4.8) with respect
to time and application of condition (4.9). This enables us to find the rate of
dεpleq as a function of the deformation rate. The elasto-plastic matrix finally
takes the following form

C
ep
n =

2G
(

6Gdε
pl
eq

2Y + 1
)

(1− 2ν)







A+ (1− ν) A+ ν
A+ ν A+ (1− ν)
A+ ν A+ ν






+

(5.2)

−
1
2Y

(

1−
dεpleq

Y

∂Y

∂(dεpleq)

) 1
∂f

∂(dεpleq)







d1d1 d1d2
d2d1 d2d2
d3d1 d3d2







where subsequently

A =
Gdεpleq

Y
(1 + ν) d1 =

2G(2σr − σθ − σz)

6Gdε
pl
eq

2Y + 1

d2 =
2G(2σθ − σr − σz)

6Gdε
pl
eq

2Y + 1
d3 =

2G(2σz − σr − σθ)

6Gdε
pl
eq

2Y + 1

The above matrix is of the same kind as the one presented by Simo and
Taylor (1985), which in contradistinction to the continuum matrix used in (2.4)
preserves quadratic rate of convergence in conjunction with the full Newton
method.
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6. Adjustment study of the solution strategy

The problem of thick-walled cylinder analysis in the elasto-plastic range is con-
sidered as the benchmark test for procedures used in the iterative nonlinear
solution as well as for the radial return algorithm. The dimensions and inter-
nal pressure of the investigated cylinder correspond to geometry and loading
conditions of actual high-pressure reactors, i.e. internal radius a = 150mm,
external radius b = 300mm and pressure p = 150MPa. An elastic-perfectly
plastic material with the yield stress Y = 200MPa was assumed for the tests.
The nonlinear iterative strategies presented in the previous section were

employed by the author in the solution of the problem listed above, which
was comparatively solved with modern FE codes – Ansys and LS-Dyna. The
full Newton method and quasi Newton with the BFGS updates method pro-
ved respectively, the fastest convergence rate. However, the second one was
more effective because it needed calculation and factorization of the tangent
stiffness matrix only at the first iteration of every load increment. The most
effective solution procedure was the BFGS method in conjunction with line
search technique. The displacement increment was scaled using the line search
as long as the scalar parameter of residual forces S(sin) satisfied the condition
|S(sin)| < 0.5|S(0)|. This condition was sufficient in obtaining convergence in
4 iterations without matrix recalculations (Fig. 3). The rate of convergence was
almost quadratic, characteristic for the full Newton method, and the computa-
tional time was proved to be three times shorter. Therefore, the quasi Newton
method with the BFGS updates was chosen in the detailed investigations of
the thick walled reactors with stress concentrators.

Fig. 3. Iterations in the quasi Newton method with the line search
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There are some ways of determining the nonlinear solution convergence.
The most popular are criteria based on specified norms and certain threshold
values. The procedure continues to calculate equilibrium iterations until the
convergence tolerance is satisfied. Different values of tolerances are suggested
for various problems in the commercial nonlinear FE systems. The influence of
the convergence criteria on the calculated hoop stress is shown in Fig. 4. Other
stress components present a very similar course, therefore, the author resigned
from presenting these plots. It suffices to use εd = 1% relative tolerance for
the displacement and residual force norms. The energy relative convergence
tolerance must be set to εc = 0.1% in order to obtain accurate results. This last
value is approximately one order smaller than this suggested by nonlinear FE
systems (Hallquist, 2006). It is best to use a double-check on the convergence,
e.g. simultaneous monitoring of the displacement and energy norms. This last
approach was utilized in the investigation of the reactor.

Fig. 4. Convergent hoop stresses for various tolerance norms (LS-Dyna)

7. Radial return algorithm study

The presented return-mapping integration algorithm, in conjunction with the
quasi Newton solution strategy, is stable for a wide range of nonlinear problems
that involve small deformations. The accuracy considerations are limited to
investigations of the load increment size. In the examination of this algori-
thm, certain deformations were applied, from which the trial stress state was
analytically calculated. With the use of Eq. (4.9), dλ was determined and
σn components were calculated from (4.8). The solution for a large number
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of 10 000 steps was treated as the reference deformation history. This was fur-
ther divided into different numbers of increments and used in the study of the
algorithm convergence.
Even in the one-step calculations, a very good accuracy was achieved

(Fig. 5). The stress components differed approximately by 1MPa from the
reference level. The inaccuracy associated with the choice of convergence cri-
teria had a greater influence on the obtained results in the overall solution
process (see Fig. 4). Hence, this investigation proved robustness and step-size
insensitivity of the radial return algorithm.

Fig. 5. Sensitivity study of the radial return algorithm used in an analytical way
(Eqs. (4.8)-(4.9))

8. Conclusions

The radial return algorithm was described and illustrated with the special
case of analysis of the thick-walled cylinder in the plane strain conditions.
This simple model was also utilized in the adjustment study of nonlinear solu-
tion strategies as a preliminary phase of FEM investigations of high pressure
reactors. The return mapping algorithm, applied in the Huber-von Mises as-
sociated plasticity, is a robust and step-size insensitive integration method.
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A closer scrutiny is suggested for a choice of the solution strategy and set-
ting of parameters of the nonlinear solution convergence, because they mainly
influence the efficiency and accuracy of the nonlinear solution process.
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Metoda rzutowania powrotnego w analizie stanu naprężeń cylindra

grubościennego

Streszczenie

W pracy zaprezentowano metodę rzutowania powrotnego dla szczególnego przy-
padku analizy sprężysto-plastycznej cylindra grubościennego. Wykorzystując anali-
tyczne zależności, zbadano dokładność tej metody dla różnych wielkości przyrostów
odkształceń. Zagadnienie analizy sprężysto-plastycznej cylindra grubościennego zo-
stało również wykorzystane do oceny metod nieliniowego rozwiązywania zagadnień
MES, które następnie będą użyte w badaniu reaktorów wysokociśnieniowych. W pra-
cy wykazano dużą dokładność analizowanego algorytmu.
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