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Analysis and synthesis of mechanisms are basic engineering tasks. They
can suffer from errors due to versatile reasons. The graph-based methods
of analysis and synthesis of planetary gears can be alternative methods
for accomplishing of the afore mentioned tasks, which additionally allow
for checking of their correctness. In the paper, two graph-based methods
of analysis of planetary gears are discussed. An exemplary planetary gear
is analysed by means of the graph-based methods as well as the traditio-
nal Willis method. Force and torque analyses were performed as well. An
algorithmic approach — which implies from the graph models — allows for
checking of versatile variants of designs in an easy and schematic way,
which can lead to optimisation of the design within a conceptual phase
of the design procedure.

Key words: contour equation method, Hsu’s graph, f-cycle equation, gear
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1. Introduction

Analysis and synthesis of mechanisms can be performed by means of versa-
tile methods. These tasks can suffer from human errors. So, it is reasonable
to have some alternative methods which allow for comparison of results and
for detection of almost unavoidable mistakes. The graph-based methods de-
liver such alternative approaches for modelling of a wide class of mechanical
systems. Two of them are considered in the present paper.

There were also some other attempts to model planetary gears via diagrams
e.g. Wolf’s pictograms (Miiller and Wilk, 1996) or PKP-schemata and nume-
rical codes (Ivancenko et al., 1974), but these methods did not further evolve
due to lack of generalization and lack of connections with other branches of
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mathematics. Also the method based on signal flow graph theory for modelling
of gears (Bonnell and Hess, 1968; Wojnarowski and Lidwin, 1975; Uematsu,
1997) has not been too frequently used. On the contrary, the graph based me-
thods have been independently, intensively developed for several recent years
all over the world, see e.g. (Uyguroglu and Demirel, 2005; Wojnarowski et
al., 2006). Besides the papers, there are some monographs where the graph
methods were described in details and illustrated by means of representative
examples. The linear graph-based methodology of modelling of mechanisms
was extensively described in Tsai (2001). The word ”linear” will be usually
omitted in the rest of the present paper for simplicity. The contour based
approach was discussed in Marghitu and Crocker (2001) as well as Marghitu
(2005). The so-called contour graph is a symmetrical digraph without loops.
The paper Wojnarowski et al. (2006) includes a review of the graph-based me-
thods for gears and relevant references (58 items) almost totally different than
these cited here, including topics connected with bond-graphs. Especially, the
last mentioned work encloses a short list of Prof. Wojnarowski’s achievements
dedicated to this topic. He and Prof. Arczewski pioneered the graph-based
modelling of mechanical systems in the 70s of the previous century in Poland.
The present paper focuses on the graph-based analysis of planetary gears (Za-
wislak, 2007, 2008) but the graph related modelling belongs to a wider family
of the algebraic structure based approaches (Shai, 2001) which allow especially
for classification of mechanisms (Davies, 1968), conceptual design (Zawislak,
2006), enumeration of structures (Tuttle et al., 1989) and synthesis of mechani-
cal systems (Schmidt et al., 2000) as well as determination of angular velocities
of elements of multi-body systems (Arczewski and Dul, 1995). Powerfulness
of the graph-based modelling of mechanical systems consists in the fact that
a graph is inseparably connected with other algebraic structures like e.g. sub-
graphs (e.g. trees, cycles, cliques, paths), dual graph, matrices, vector spaces
of cuts and cycles, structural numbers and matroids as well as algorithms
connected with these structures. By interpreting the mechanical knowledge in
terms of graphs, we solve mechanical problems via graph models (Shai and
Preiss, 1999). The graphs applied by Shai had other rules of assignment than
these discussed in the present paper.

Versatile linear graph models were considered by Tsai (2001) but Hsu’s
graph models of gears (Hsu, 2002) are utilized in the following considerations.
In the case of analysis of car gearboxes, the graph-based methodology is also
efficient using additionally transformations of a basic graph according to a
particular gear drive (Zawislak et al., 2008; Zawislak, 2008). An introductory
comparison of the graph and contour methods for analysis of gears was done
by the authors in Drewniak and Zawislak (2010).
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The application of the considered methods for analysis of an exemplary
planetary gear is given underneath. This is a coupled gear (in German: Kop-
pelgetriebe). The considered gear has an internal closed loop what causes that
there is also a circle (loop) made of the stripped edges in the graph represen-
tation of the gear. Such structures were claimed (Tsai, 2001) as impossible to
analyse via the graph method but the presented considerations, which lead
to compatible results for all three discussed methods, denied this statement.
The considered gear is suitable for designing a gearbox as an introductory
layout where several inputs and outputs are available. If clutches and brakes
are added, then some elements can be fixed and a respectable angular velocity
is equal to zero.

Force and torque analyses were here performed in a traditional way. But
this stage of analysis can also be done via the graph-based approach, which
is especially useful for mechanisms (Marghitu, 2005). Dynamics of gears can
be studied via the graph approach upon Andrews’s methodology (Andrews et
al., 1997).

The general idea of the graph-based modelling of mechanical systems con-
sists in the following steps:

e discretisation of a mechanical system. This means that appropriate sim-
plifications have to be made. Some aspects are omitted. Some structural
elements are considered as essential and they are interpreted as graph
vertices. Some connections or relationships between these elements are
abstracted. They are represented via graph edges, usually some system
of weights can be assumed to the edges or vertices and edges,

e assignment of the graph to the mechanism (especially planetary gear)
based upon special rules. There are several different rules depending on
the object of modelling and problems solved via the graph based method,

e derivation of special subgraphs, e.g. f-cycles or contours. These subgra-
phs can be singled out based upon the graph-theoretical algorithms what
causes that the approach is simple and algorithmic,

e listing the codes of these graph elements. The encoding rules are clearly
defined what allows for avoidance of mistakes,

e generation of a system of equations in an algorithmic way using the
codes. These codes allow for management (assignment) of the indica-
tors of variables existed in the considered equations in a straightforward
manner,

e solution of the obtained system in a chosen algebraic way to obtain ne-
eded angular velocities, ratios, forces, accelerations etc. Different sets of
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unknowns are considered but if these unknowns are not essential for the
solutions then they are excluded from the considerations via appropriate
algebraic transformations.

The similar routine can be formulated for the reverse order of activities,
i.e. synthesis: going from the graph generation towards creation of a gear
functional structure (Tsai, 2001).

The considered planetary gear is presented in Fig. 1.
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Fig. 1. Functional scheme of an exemplary planetary gear: 1,2,...,6 sun wheels,
wheels with internal toothings and planets; h, H — arms;
A, B, ..., F — characteristic points; w, M — angular velocities and torques

A special planetary gear is considered. It encloses an internal closed loop
formed by wheels and planets. The mobility of the structure is equal to 2. It
means that two elements have to be driven. Some considerations concerning
possible inputs and outputs are presented in Section 4 (Tables 1 and 2). The
mobility W (DOF, degree of freedom) for the considered mechanism, i.e. pla-
netary gear, can be calculated upon the following formula (Griibler-Kutzbach’s
equation)

W=3n—2c5—¢c,=18—12—-4=2 (1.1)

where: n — number of links (movable elements), c¢5 — number of full joints
(one degree of freedom), e.g. rotational type; ¢4 — number of half joints, e.g.
meshing type; moreover c¢; and ¢4 are equal to the total number of edges and
diagonals of a polygon (c5 = 6) and the number of stripped edges (¢4 = 4),
respectively. We have also n = 6, i.e. number of graph vertices — in the case
of linear graph representation of a planetary gear (see Fig.2).
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Nevertheless, it is possible to analyse this case. However, there are some
restrictions on the number of teeth and dimensions to assure the possibility of
assemblage of the gear and proper gearing in two parallel toothings. In Tsai
(2001), there are several tables where the mechanical properties of mechanisms
are expressed via characteristics of their assigned graphs.

For the considered gear, the following data for teeth numbers and the
module are assumed: z; = 15; 29 = 24; 23 = 63 (—63); 24 = 18; z5 = 21 and
z6 = 60(—60), m = 2mm, where negative values of the teeth numbers are
considered for the internal gearing in the case of the Willis method, and one
common module for all meshings has been assumed.

The original approach discussed in the present paper consists in:

e usage of Tsai’s derivation of the f-cycle equations method for Hsu'’s type
graphs, which originally were used mainly for synthesis purposes,

e analysis of the closed-loop gear via the graph-based approach, which has
also other novelty aspects. Generally, the contour method has been sel-
dom utilized in mechanics till now, and for open layouts only. Besides the
mentioned books, there are few published papers dealing with this appro-
ach for gears. Moreover, the examples of gears given in Prof. Marghitu’s
books are relatively simple. However, really complicated structures we-
re analysed for versatile mechanisms without geared subsystems. In the
present paper, a contour graph has been generalized for the analysed
compound gear (closed-power-loop), i.e. double described vertices we-
re introduced and additional arcs were considered to assure orientation
of every contour, which means that the orientation of contours can be
chosen arbitrarily,

e comparison of the detailed rules of assignment 'mechanical system-graph’
for two considered graph approaches is given in the present paper — which
were only roughly listed together in Drewniak and Zawislak (2010),

e analysis of forces, torques and, especially, efficiency of the gear is made,
which makes the presented considerations complex and comprehensive.
Usage of a free body diagram makes the analysis very effective.

2. Graph based model of a planetary gear

Graph-based models of mechanisms, especially gears, have been developed for
many years. Despite the fact that several different graph models of mechanisms
were discussed in Tsai (2001) — the Hsu graphs have been chosen, and they



420 J. DREWNIAK, S. ZAWISLAK

are utilized as models of planetary gears in the present paper. It seems that
this model is the most adequate.

The rough idea of modelling is as follows: only some general properties or
aspects of a mechanism are taken into account, e.g. analysis of kinematics.
Therefore, the main rotating elements of a mechanical system are represen-
ted by graph vertices and the relations among them are modelled via edges.
The applied rules of assignment start from the idea: the singled out main gear
elements like e.g. gear wheels, planets and arms are considered as vertices.
Especially, all elements rotating around the main physical axis of a planetary
gear are represented by the vertices of a polygon, moreover the mutual rela-
tions among them: 'rotation around the same axis’ are coded via the polygon
edges and its diagonals. The latter are not drawn for simplicity of the picture.
However, they are used for determination of some f-cycles.

Fig. 2. Modified Hsu’s linear graph of the planetary gear (see: variant — Table 2,
row 2)

The relation for gear wheels: 'to be in gear’ is represented by a stripped line.
The relation 'to be an arm for a geared wheel (planet wheel)’ is represented by a
continuous line. An exemplary graph of the planetary gear (Fig. 1) is presented
in Fig. 2. Some vertices are described in an unusual manner, e.g. 3/6 and 1/4.
It is to be underlined that wheels 3 and 6 as well as 1 and 4 are connected by
a stiff axis and they create a united element with two toothings. The set of
f-cycles is as follows: (1,2)h; (2,3)h; (4,5)H and (5,6)H (Tsai, 2001), where
only adequate descriptions of geared wheels are used, i.e. 1 instead of 1/4.
Precisely, these notions are the codes of the f-cycles. Namely, first cycle (1,2)h
consists of three edges {(1,2), (2,h), (1,h)}. Asit can be seen: edge (1, h) is not
drawn explicitly and it is hidden in the shaded polygon. Edge (2, h) represents
a pair 'planet and arm’. Edge (1,2) represents gearing of two wheels. The rule
for a code of the f-cycle is that we write a description of the stripped edge in
brackets and the description of the arm outside the brackets. Moreover, the
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names of vertices are arranged in increasing order starting from numbers. The
adequate detailed cycles can be written for the remaining three codes. Every
f-cycle generates one equation.

The following system of equations can be derived based upon the mentio-
ned f-cycles according to the formulated rules

w1 — wp, = —Naj(wa — wy) wy — wp, = +N32(w3 — wp) 2.1)
wy —wg = —Ns4(ws — wh) ws —wy = +Ngs(we — wh)
where: w;, © = 1,2,...,6; wp and wpy are angular velocities of respective

gear elements; N;; — ratios, N;;j = 2;/zj, the signs '~ and '+’ depend on the
external and internal gearing, respectively, z;, z; — teeth numbers of the wheel
and pinion, respectively.
Due to the layout of the considered planetary gear, the following equalities
can be considered
W3 = We¢ W1 = W4 (2.2)

Solving the system of equations, the following solutions are derived

(N54Ngs + Dwy — wy w1 + No1 N3sws

_ wp, = 2.3
N54Negs5 1+ N21N3o (23)
Taking into account the input angular velocities
wy = 157s7! wy = 87.5571 (2.4)
the numerical values of the output angular velocities are obtained
21 60
87.5(1+ £8) - 157 »
w3 = wg = 0 = 66.65s
18 (2.5)

157 + 66.6522 83
wp = — 22 = 84.02557"
14 %

The achieved results will be compared with other methods of gear analysis.

3. Contour based model of the planetary gear

The contour method of modelling of a mechanical system consists in creation
of a special graph enclosing the contours, i.e. closed circles built of arrows
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connecting the vertices representing the elements of the system. The conto-
ur graph of the gear presented in Fig.1 is shown in Fig.3. The rule is that
the contour starts in a supporting system (body of a gear) and passes via
elements on which angular (or linear) movement is passed by. We end the con-
tour after returning to the support. All closed independent loops generated in
this way have to be drawn. Then the list of codes of the derived contours is
created. Next, in turn, the contour equations can be written in an algorithmic
manner manipulating the indices in the following way: all relative velocities
for every consecutive pair of element codes have to be inserted into the deri-
ved equations. There are relative angular velocities of the mechanical system
elements inside the obtained system of equations. It is an unavoidable stage
of the method. However, the unwanted quantities can be eliminated and the
system can be solved in a step-by-step manner. A detailed explanation of the
methodology can be studied upon (Marghitu and Crocker, 2001). Underneath,
only the needed details tailored to planetary gear modelling will be given.

Fig. 3. Contour graph of the planetary gear

The following contours can be distinguished for the contour graph (Fig. 3)
of the considered planetary gear:

IH 0—-1—-2—-h—0

I 0—-h—2—-3-0

(1) 0—-4—5—-H—0

(IV) 0—-4—5—-6—0.

Contour  (I)  generates the following pairs of indicators
{(1,0);(2,1); (h,2); (0,h)}. They are used in the first two equations (1)
of system (3.1). The contour can be interpreted as follows: we start it from 0,
i.e. the support for the axis of wheel 1, which is geared with planet wheel 2,
planet 2 rotates around its own axis mounted to h and rotates together with
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the arm h around the axis depicted by 0. This is the end of the contour:
0 -1 — 2 — h — 0. Analogous explanations can be given for the three
remaining contours.

The contour graph is presented in Fig.3 where the special drawing rules
by Marghitu and Crocker (2001) were applied. It encloses four contours I-IV.
The orientations of the contours are shown via crooked arrows inside particular
contours I-IV.

Based upon the distinguished contours, the following system of equations
can be written

(1) w10 + wa1 +wpe +wop =0 TAX w2 +7TR Xwp =0
(2) Who + wop + wso + wpz =0 TR X Wop + T X w3g =0
(3) Wyo + wsqs + whs + wor =0 TE XWsy +TE X wys =0
(4) wio + ws4 + wes + woes = 0 TR X w54 +7Tp X wgs =0
(3.1)
where 7, are the position vectors of the points & = A, B,...,F shown in

Fig.1; w;; — means vectors of relative angular velocity of the i-th element in
relation to the element j.

Every contour generates two equations connected with angular velocities
and some other for forces and torques. The latter are not used in the present
paper. The first equation for every pair is a sum of angular velocities designated
by a contour, the second one is a sum of cross products of the respective arm
multiplied by the angular velocity. In the second case, some summands are
omitted when the arm length is equal to zero. The following relations are used
for simplification of the system:

— connected with the rule for exchanging of an order of the indicators
Wwio = —Wo; Z—1,2,...,6 (32)
Woh = —Who WoH = —WHO
— connected with the rule of transformation of the relative velocities into
general ones, i.e. rotating around the main axis denoted by 0
Wi = Wj i:1,2,...,6

(3.3)
WhO = Wh WHO = WH

— connected with geometrical relations of the considered planetary gear
rA=T1 TF =T4
rg =11+ 1o rE =714+ 15 (3.4)
re =11+ 21 rp =14+ 215
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For example: 74 is equal to the pitch radius of geared wheel 1, so it is equal
to 1. An analogous explanation can be given for remaining equalities (3.4)
for arms rp to rgp. The transformed system can be written in the following
form

—TAW1 — TAW21 — TAWR2 — TAwop = 0 rawa1 + rpwpz =0
—TreWhy — Towap — Tewsz — rewps = 0 rpwap + rowsz =0 (3.5)
—TEW40 — rEwss — rpwhgs — rpwog =0 rrwss +rpwps =0
—Trpw4p — Tpws4 — rpwse — "pwos = 0 rrws4 + rpwse = 0

To solve system (3.1), the following actions have been undertaken: we omit
the arrows, i.e. we turn the vector equations into scalar ones. It can be do-
ne because the velocities act as vectors along the same direction. Moreover,
the senses (i.e. orientations along the given direction) will be established via
the solution of the system. The vector multiplication (cross product) can be
simplified to the scalar one because the angles between the arms and veloci-
ties in the case of gears with cylindrical wheels are always equal to 90°. For
other mechanisms enclosing cranks, pistons, cylinders, sliders, followers, etc.,
a detailed analysis of angles has to be done (Marghitu and Crocker, 2001) to
simplify the system of equations correctly. Additionally, the first equation in
(3.5) was multiplied by —ry4, the third by —r¢, etc., the resultant equations
are gathered in system (3.5). Then the unwanted relative velocities can be
eliminated.

Assuming the cylindrical gear wheels, we have the relationships

o di _ zmy

) 2
where: m; is the module of the i-th wheel, z; — teeth number of the i-th
wheel, ¢ =1,2,...,6.

Due to the fact that it is a universal design having multi-inputs and multi-
outputs, all modules were assumed as equal. It causes that the module is not
present in the formulas for the output angular velocities. In the case of different
modules, these formulas would be a little more complicated but the system is
also solvable. The solution to system of equations (3.5) is as follows

(3.6)

wh (2ry + 2r5) — r4wn

— e — = 66.655""
we = w3 ST S .
wy, = Lt (r+2ra)ws o) o561
2(7‘1 + 7‘2)

We obtained the same numerical results (3.7) as in the case of the linear
graph-based modelling — see formulas (2.5). It confirms the correctness of the
performed modelling and analysis.
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4. Analysis of an exemplary planetary gear by means of the
Willis method and data comparisons

The correctness of kinematical analysis of the considered gear will be addi-
tionally checked via the classical Willis method. We also analyse several va-
riants of constructional data. The second set of the test data is as follows:
z1 = 18; z9 = 21; 23 = 60(—60); z4 = 15; z5 = 24 and zg = 63 (—63);
m; = m = 2 [mm], where the negative values of teeth numbers are considered
for internal gearing in the case of the Willis method. The given quantities are:
wi = 157s7 % wy, = 30s7!; the unknowns are wy, and ws = wg. The same
systems of equations derived based upon the two considered graph methods
solved for the new unknowns give similar general solutions.

The ratio of an arbitrary planetary gear, including differential ones and
those having mobility W > 2, can be calculated by means of the Willis for-
mula. In the case of the considered gear, we have to consider the partial ratios
ifiy and %k, where the upper indices h or H determine the virtually fixed
link of the gear, after applying to all the gear links additional velocities —wy,
or —wpy, respectively. Then the relative velocity of the arm h or H is equal to
zero. Therefore, the ratio 1?3 of the geared wheels, considering the order from
1 to 3, in the case of ”"theoretically fixed” arm h and z3 < 0 can be expressed
as

WiTWh _ 2 (4.1)
w3 — Wh <1
Similarly, the ratio i} of the geared wheels, considering the order from 4 to 6,
in the case of ”"theoretically fixed” arm H and zg < 0 can be written as
WiTWH _ % (4.2)
we —WH 24
Taking into account the additional kinematic conditions: w; = wy; = w4 and
w3 = wg, we can calculate the unknown angular velocities and the needed
kinematic ratio i1y

W = w3 = Wy, [M + 1} — _8.10s !
WhHZ3 (4 3)
wy = AT 693 o3 g i = (ﬂ) =~ 6.638
24— %6 WH/ w,=30s"1

The same values of these quantities were obtained for both graph-based me-
thods. It confirms equivalence of them and the possibility of mutual checking
of their correctness.
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In Fig. 4, free body diagrams for forces and torques acting on the geared
wheels and arms are presented. Some considerations on these quantities are
given in the next Section.

Analysing different inputs and outputs, different ratios can be achieved.
The results for the first set of data are presented in Table 1. Further analysis
can be done for other values of the input velocities or numbers of teeth. The
numerical values of respective velocities and ratios in the second set of data
are given in Table 2.

Table 1. Gear ratios for the first set of data; outputs: wy and ws = wg

No. Input. angu_lrixr Outpu.t angllllar Ratio
velocity [s7'] velocity [s7]
1 w1 = 157 we = 66.65 | (i16)wy — 2.36
wy — known (wy = 87.5)
2 wy = 157 wn = 84.03 | (i1p)wy = L.87
wy — known (wy = 87.5)
3 Wi = 87.5 wo = 66.65 | (im16)w, = 131
wi — known (w; = 157)
1 Wi = 87.5 wn = 84.03 | (ifin)w; = 1.04
w1 — known (wy = 157)

Table 2. Gear ratios for the second set of data; outputs: wy and w3 = wg

Input angular Output angular .
No. velocity [s7!] velocity [s7!] Ratio
1 w1 = 157 wo = —8.10 | (i16)w, — —19.33
wp, — known (wp, = 30)
2 wy = 157 Wi = 23656 | (i1f1)w, — 6.638
wp, — known (wp, = 30)
3 wn = 30 wo = —8.10 | (ing)w, = —3.70
wi — known (w; = 157)
4 Wh = 30 wWH = 23.65 (ihH)wl =1.26
w1 — known (wy = 157)

For the third data set, we assume that the output arm A is fixed via a
brake (wp, = 0s™!) and the other data from the second case remain. It is
a particular version of the considered gear, which can also have a particular
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practical meaning. In this case DOF of the planetary gear is equal to 1. Then

the ratio i13 = i?g is determined by means of a formula adequate for the fixed

axis and in the case when z3 <0
Y= (4.4)
w3 <1

The ratio if} can be determined similarly as in the general approach to the

considered gear, see (4.3)3. The following values of angular velocities and the

ratio i1y have been obtained

ws = L 471087 wp = AL T E6WE g g5l
Zi)I 74T %6 (4.5)
g = (E)whzo =-20

Also in this case, the same results were obtained upon the graph-based models.
The designer can analyse several possibilities to change the input velocities or
to fix some gear elements using brakes in the conceptual phase of gear design,
e.g. within the three data sets analysed above.

5. Analysis of forces and torques

Forces and torques acting in the gear can be analysed. The analysis is perfor-
med in a step-by-step manner viewing the considerations from an input and
an output.

In Fig. 4, the free body diagram is presented. The fact that toothings 1 and
4 as well as 3 and 6 are fixed on the same elements (respectively) is taken into
account especially as a condition of equilibrium of the corresponding forces
F172 and F475.

In Figs. 5, 6, 7, the third case is analysed. The scheme of the gear with an
additional brake (placed at the input) is given in Fig. 5. In Fig. 6, analysis of
velocities is shown. In Fig. 7, the free body diagram for the considered gear in
the third case is given. This type of diagram enables us to clearly analyse the
forces and to spot the points where equilibrium of forces has to be achieved.
Analysing the directions and senses of the angular velocities and torques, we
can deduct which quantities are passive or active.

Based upon Fig. 7, the forces and torques acting on the geared wheels and
the arm H are analysed. The output torque of the gear is equal to

My = Myitgmu (5.1)

where nrp is the efficiency.
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Fig. 4. Free body diagram of the considered gear with analysis of forces for the first
and second analysed case
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Fig. 5. Scheme of the gear for the third case, i.e. with fixing of the arm h via a brake

Therefore, it is necessary to calculate the efficiency of the gear nrp in the
case of the given efficiency of meshing of some pairs of the geared wheels,
i.e. the external ones (1,2 and 4,5) as well as internal (2,3 and 5,6). The
relative velocities of geared wheels 6 and 4 (in relation to the arm H) for a
theoretically considered planetary gear are as follows (Abramov, 1976; Miiller
and Wilk, 1996)

wil = we —wy = —39.25571 <0 wl = wy —wy =164.85571 > 0
(5.2)
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Fig. 6. Analysis of velocities in the third case (with the arm h via a brake)
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Fig. 7. Free body diagram for the third case (arm h fixed via a brake)

Because the senses of directions of the velocity w{! and the torque Mg are
compatible (Fig. 7), then geared wheel 6 is an active gear in the series of wheels
4-5-6, whereas wheel 4 is passive, thus

Me|wi! Inéh = My|wi| (5.3)
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From the condition of equilibrium for the arm H, we have
My = My + Mg (54)

The relative velocities of geared wheels 3 and 1 (in relation to the arm h) for
a theoretically considered planetary gear (after introducing that the angular
velocity wp, = 0) are as follows

Wwh=w; =157s71 >0 Wl = w3 = —47.10s71 <0 (5.5)
hence wheel 1 is active and wheel 3 is passive
M|wt s = Ms|wh| (5.6)
The equilibrium condition for shaft I is expressed by the equation
My = —M; + M, (5.7)

Moreover, taking into account the equilibrium condition for wheels 3 and 6
(in the case when the total power is passed outside via the arm H), i.e. upon
the assumption

My = Mg — M3 =0 (5.8)

we obtain the equality
Ms = Mg (5.9)

Summarizing the above considerations, it is possible to calculate the efficiency
of the considered gear

i
M TOH |
My =~ = sl 79 (5.10)
Myt (% — 1)iIH
|Wé{|‘0{177é{177?3
where

h h _h H H_H

s = Mi2"s3 Nea = Me5"54 (5.11)

moreover, it was assumed that 7}y, = nf} = 0.99 (for the external meshing)
and 1l = nll = 0.98 (for the internal meshing).

6. Final remarks

Based upon the above-described considerations, the following conclusions can
be drawn: two graph-based methods of modelling of mechanical systems have
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been used for analysis of an exemplary planetary gear. The obtained ratios
(for two applied methods) as well as the results of Willis method are equal,
which confirms the equivalence of these approaches. The usage of graph-based
methods for analysis of the exemplary gear with a closed internal loop has
been described and performed step by step giving a detailed explanation to
all activities. The methods are relatively simple, algorithmic and general. This
confirms usefulness of these methods for checking of correctness of gear ana-
lysis.

Both the applied graph-based methods were slightly modified, i.e. Tsai’s
and Hsu’s approaches were joined as well as Marghitu’s graph was tailored to
a scheme having a closed loop.

Additionally, it has been shown (by a counter example) that Tsai’s claim
that the case when a graph has a circuit built of stripped lines is impossible
for analysis is not a general rule.

Moreover, the graph-based models give a powerful tool for modelling and
representation of the knowledge about mechanical systems (Andrews et al.,
1997; Shai and Preiss, 1999; Tsai, 2001; Zawislak, 2007) what is needed for
Artificial Intelligence based methods. The graph based models of gears and
versatile mechanical systems are very effective in realisation of some other
engineering tasks like e.g. synthesis and enumeration of design solutions, which
is actually beyond the scope of the present paper but can be studied based
upon the given references.

Concerning the obtained results presented in Tables 1 and 2, it can be
stated that the achieved ratios — shown in Table 1 — are approximately one,
but in Table 2 the ratios above six and approximately nineteen are listed.
Therefore, the first set of data should be rejected as useless. It is interesting
to see that the sets of teeth data differ only by the number of teeth that have
been exchanged between two parallel series of toothings.
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Grafowe i konturowe modele przektadni planetarnych

Streszczenie

Analiza i synteza mechanizméw sg podstawowymi dzialaniami inzyniera. Nara-
zone sg one z réznych powodéw na niezamierzone bledy. Metody analizy i syntezy
przektadni planetarnych oparte na teorii graféw moga by¢ metodami alternatywnymi
dla realizacji tych zadan, ktore pozwalaja sprawdzi¢ poprawnosé przeprowadzonych
rozwazan. W artykule rozwaza sie dwie metody grafowe modelowania przekladni.
Przykladowa przekladnie planetarna analizuje si¢ tymi metodam, a wyniki poréwnu-
je sie z metoda Willis’a. Przeprowadzono takze analize sil, momentow i sprawnosci.
Ujecie algorytmiczne — ktére wynika z modelowania grafami — pozwala na tatwe spraw-
dzanie wielu wariantéw rozwigzan w tatwym ujeciu schematycznym, co wplywa na
optymalizacje rozwazanych rozwiazan konstrukcyjnych w fazie koncypowania.

Manuscript received July 17, 2009; accepted for print October 19, 2009



