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In this paper, adaptive control for a class of uncertain nonlinear systems with input con-
straints is addressed. The main goal is to achieve a self-regulator PID controller whose
coefficients are adjusted by using some adaptive fuzzy rules. The constraints on the control
signal are taken into account as a saturation operator. The stability of the closed-loop sys-
tem is analytically proved by using the Lyapunov stability theorem. The proposed method
is then applied to a surface vessel with uncertain dynamic equations. The simulation results
show the effectiveness of the proposed control strategy.
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1. Introduction

Dealing with the control problem of uncertain systems, various algorithms have been developed
ensuring the robust stability and performance (Petersen and Tempo, 2014). Robust adapti-
ve control has been formulated for a class of uncertain nonlinear systems by output feedback
control (Xu and Huang, 2010; Lee, 2011). For nonlinear systems in the strict-feedback form
with unknown static parameters, a robust adaptive control law was designed by Montaseri
and Mohammad (2012), which guarantees the asymptotic output tracking despite matched and
unmatched uncertainties. The neural-network-based robust control design, via an adaptive dy-
namic programming approach, was investigated in (Wang et al., 2014) to obtain the optimal
performance under a specified cost function. Some applications have been also introduced in the
literature, in the presence of time-varying uncertainties and disturbances (Koofigar and Ame-
lian, 2013). Nevertheless, taking the input constraint in the controller design procedure is still
highly desired.
In the last decade, a considerable attention has been paid to robust control of nonlinear

systems with input constraints (Chen et al., 2010, 2014; Lu and Yao, 2014). In such cases, fuzzy
logic and neural networks may be some alternative solutions. A direct adaptive fuzzy control
approach has been presented for uncertain nonlinear systems in the presence of input saturation
by incorporating a new auxiliary design system and Nussbaum gain functions (Li et al., 2013).
The problem of adaptive fuzzy tracking control for a class of pure-feedback nonlinear systems
with input saturation was studied by Wang et al., (2013a,b). Muñoz and Marquardt (2013)
focused on the control design for input-output feedback linearizable nonlinear systems with
bounded inputs and state constraints. An indirect adaptive fuzzy control scheme was developed
for a wider class of nonlinear systems with the input constraint and unknown control direction
by Wuxi et al. (2013) and Yongming et al. (2014). To this end, a barrier Lyapunov function and
an auxiliary design system were employed.

From an application viewpoint, the surface vessels with uncertain nonlinear dynamics may
be adopted to demonstrate the effectiveness of various control schemes. Nonlinear strategies
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(Daly et al., 2012), adaptive control (Fang et al., 2004), and neural networks (Dai et al., 2015)
are samples of control algorithms in the previous investigations. Removing some drawbacks of
such works, adaptive intelligent methods as adaptive neural networks, were presented by Li et
al. (2015). In this study, an adaptive fuzzy algorithm is proposed to achieve the advantages of
both intelligent and adaptive mechanisms for ensuring the robustness properties and taking the
constraints into account.
Briefly discussing, there may exist some main restrictions in the previous investigations as,

i) the fuzzy rules have been designed off-line and the stability and performance may be lost with
changing the circumstances, ii) the stability analysis has not been presented in an analytical
form, and iii) to ensure the stability of the closed-loop system, the initial value for the controller
parameters must be set. To eliminate the aforementioned limitations, a self-regulator fuzzy PID
controller is proposed in this paper, which guarantees the robustness properties against the
system uncertainties and external disturbances.
This paper is organized as follows. In Section 2, the problem formulation and the constraints

on input signal are introduced. In Section 3, an adaptive fuzzy controller is designed for a
class of uncertain nonlinear systems with constrained input and the stability proof is given.
The proposed method is applied to a surface vessel in Section 4 and the simulation results are
presented. The concluding remarks are finally given in Section 5.

2. Problem formulation

Consider a class of nonlinear systems, represented by the state-space description

Ẋ1 = X2

Ẋ2 = X3
...

Ẋn−1 = Xn

Ẋn = F(X1,X2, . . . ,Xn) +G(X1,X2, . . . ,Xn)p(u) + d(t)

Y = X1

(2.1)

where X ∈ R
n×m denotes the vector of state variables, d(t) represents the external disturbance,

and p(u)∈R
m is the vector of constrained inputs.

Fig. 1. Block diagram of p(u)

As schematically depicted in Fig. 1, the nonlinear operator p(u) acts as a saturation con-
straint as

p(ui) =





αuu for ui ­ uu

αui for ul ¬ ui ¬ uu

αul for ui ¬ ul

i = 1, 2, . . . ,m (2.2)

where uu, ul and α denote the parameters of saturation operator.
The saturation operator p(ui) is described here as

p(ui) = a(ui)ui + b(ui) (2.3)
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where a(ui) and b(ui) are given by

a(ui) =





0 for ui ­ uu

α for ul ¬ ui ¬ uu

0 for ui ¬ ul

b(ui) =






αuu for ui ­ uu

0 for ul ¬ ui ¬ uu

αul for ui ¬ ul

(2.4)

Incorporating description (2.3) into (2.1), yields

Ẋ1 = X2

Ẋ2 = X3
...

Ẋn−1 = Xn

Ẋn = F+Gb(u) +Ga(u)u+ d(t) = F+Gb(u) + Ĝuu+ d(t)

Y = X1

(2.5)

Remark 1. The only information about the system model is that the invertible matrix Ĝu(·),
as an estimate of Gu(·) = G(·)a(u), is available, see Mclain et al. (1999).

The control objective is to design the control input u such that Y tracks the smooth
reference trajectory Yd. Define the tracking error vector E = [e1, . . . , em]

T as

E = X1 −Yd = Y −Yd (2.6)

A PID control structure is adapted here as

ui = kPiei + kIi

t∫

0

ei(τ)dτ + kDi
dei

dt
i = 1, 2, . . . ,m (2.7)

where ei is the i-th component of the error vector E, and kPi, kIi and kDi denote respec-
tively the proportional, integral and derivative coefficients.

3. Adaptive fuzzy controller design

3.1. Fuzzy estimation

In this Section, the l-th fuzzy rule of the fuzzy controller for estimating the unknown function
H(x) is formed by (Shaocheng et al., 2000)

Rl : if x1 = A
l
1 ∧ x2 = A

l
2 → H(x) = θl (3.1)

where x = [x1, x2]
T denotes the input vector, Ali is the membership function of each input.

The fuzzy model for describing H(x) is Mamdani, and the output of the fuzzy system can be
obtained by

H(x) =

N∑
l=1
θl
2∏
i=1
µAl
i
(xi)

N∑
l=1

2∏
i=1
µAl
i
(xi)

(3.2)
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where uF l
i
is the fuzzy membership function and N is the number of rules. Now, form the

unknown function as

H(x) = Φ(x)Tθ (3.3)

where

Φ(x) = [φ1(x), φ2(x), . . . , φN (x)]
T φl(x) =

2∏
i=1
µAl
i
(xi)

N∑
l=1

2∏
i=1
µAl
i
(xi)

θ = [θ1, θ2, . . . , θN ]
T

(3.4)

3.2. Controller design

To facilitate the designing procedure, new state variables are defined here as

Z1 =

t∫

0

E(τ) dτ

Z2 = E

Z3 =
dE

dt
...

Zn+1 =
dn−1E

dtn−1

(3.5)

by which the dynamic equations (2.1) may be rewritten as

Ż1 = Z2

Ż2 = Z3
...

Żn = Zn+1

Żn+1 = Ft + Ĝuu

(3.6)

where

Ft = F−
dnYd

dtn
+Gb(u) + (Gu − Ĝu)u+ d(t) (3.7)

Hence, input signal (2.7) may be given by

u = KIZ1 +KPZ2 +KDZ3 (3.8)

where

KP = diag
[
kP1 kp2 · · · kpm

]

KI = diag
[
kI1 kI2 · · · kIm

]

KD = diag
[
kD1 kD2 · · · kDm

]
(3.9)

Now, define an ideal control signal u∗ as

u∗ = ΦTTΘ
∗ = Ĝ−1u (−Ft −K1Z1 −K2Z2 − . . . −Kn+1Zn+1) (3.10)

where u∗ is obtained from the feedback linearization of system (3.6).
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Remark 2. Ki, i = 1, . . ., n+ 1, is chosen such that

Acl =




0 Im 0 · · · 0

0 0 Im
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 Im
−K1 −K2 · · · −Kn −Kn+1




(3.11)

is negative semi-definite.

The input signal u∗ is not implementable, as Ft is unknown. Instead, an approximation of
the ideal signal u∗ is generated as

û = ΦTT Θ̂ (3.12)

where Θ̂ is an approximation of Θ∗.

Then, replacing (3.12) in (3.6), yields

Żn+1 = Ft + ĜuΦ
T
T Θ̂ (3.13)

By adding and subtracting ĜuΦ
T
TΘ
∗ in (3.13), one can write

Żn+1 = Ft + ĜuΦ
T
T Θ̂− ĜuΦ

T
TΘ
∗ + ĜuΦ

T
TΘ
∗ = Ft + ĜuΦ

T
T Θ̃+ ĜuΦ

T
TΘ
∗ (3.14)

where

Θ̃ = Θ̂−Θ∗ (3.15)

denotes the parameter estimation error. By substituting (3.10) into (3.14), one obtains

Żn+1 = −K1Z1 −K2Z2 − . . .−Kn+1Zn+1 + ĜuΦ
T
T Θ̃ (3.16)

and

Ż = AclZ+BclΦ
T
T Θ̃ (3.17)

where

Z = [Z1,Z2, · · ·,Zn+1]
T Bcl = [0,0, . . . , Ĝu]

T (3.18)

Remark 3. Acl in (3.11) is a negative semi-definite matrix, so the positive definite symmetric
matrix P can be found that satisfy the algebraic Lyapunov equation

ATclP+PAcl = −Q (3.19)

for any positive definite symmetric matrix Q.

Theorem. Consider constrained nonlinear system (3.6). By applying the control input

u = ΦTTΘ and adaptive law
˙̂
Θ = −2ΓTΦTB

T
clPZ, the closed loop stability and tracking

performance are guaranteed.
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More precisely

u =




u1
u2
...
um



=




ΦTT1Θ1
ΦTT2Θ2
...

ΦTTmΘm



=




ΦTT1 0 0 0

0 ΦTT2 0 0

0
. . .

. . . 0

0 0 0 ΦTTm







Θ1
Θ2
...
Θm



= ΦTTΘ (3.20)

and

ui = Φ
T
i θpiZ2i + Φ

T
i θIiZ1i + Φ

T
i θDiZ3i = ΦTi

TΘi (3.21)

in which

ΦT i = [ΦiZ1i, ΦiZ2i, ΦiZ3i]
T Θi = [θIi, θpi, θDi] (3.22)

and

kpi = gpi
(
ei,
dei

dt

)
= ΦTi θpi kIi = gIi

(
ei,
dei

dt

)
= ΦTi θIi

kDi = gDi
(
ei,
dei

dt

)
= ΦTi θDi

(3.23)

Remark 4. The nonlinear functions gpi(·), gIi(·) and gDi(·) may be obtained by a formulation
as H(x) in (3.2).

Proof. Choose the Lyapunov function candidate

V (Z, Θ̃) = ZTPZ+
1

2
Θ̃TΓ−1Θ̃ Γ > 0 (3.24)

with P > 0 and Γ > 0. The time derivative of V is given by

V̇ (Z, Θ̃) = ŻTPZ+ ZTPŻ+
1

2
˙̃
Θ
T
Γ−1Θ̃+

1

2
Θ̃TΓ−1

˙̃
Θ (3.25)

By replacing (3.17) into (3.25) and some manipulations, one can obtain

V̇ (Z, Θ̃) = ZT(ATclP+PAcl)Z+ 2Z
TPBclΦ

T
T Θ̃+

˙̃
Θ
T
Γ−1Θ̃

= −ZTQZ+ (2ZTPBclΦ
T
T +
˙̃
Θ
T
Γ−1)Θ̃

(3.26)

Then, by adopting the adaptation law

˙̂
Θ = −2ΓTΦTB

T
clPZ (3.27)

one can conclude

V̇ (Z, Θ̃) = −ZTQZ < 0 (3.28)

Thus, Barbalat’s Lemma (Sastry and Shankar, 1999; Åström and Wittenmark, 2013) en-
sures that the vector Z is asymptotically converged to zero.
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Fig. 2. Surface vessel in the inertial fixed and body fixed frames

4. Simulation

In this Section, the performance of the controller is evaluated in two situations, and the proposed
method is applied to a surface vessel schematically shown in Fig. 2.
Such a three-input three-output system may be described by (Fang et al., 2004)

m11v̇x + d11vx = τ1

m22v̇y +m23ẇ + d22vv + d23w = τ2

m33ẇ +m23v̇y + d23vy + d33w = τ3

(4.1)

in which (x, y) and θ are respectively the surface vessel position and yaw angle in the inertial
coordinate system and (vx, vy), and w denote respectively the surface vessel speed and rotational
speed in the body coordinate system.
Dynamical equations (4.1) with using a set of simple mathematical operations can be rew-

ritten in the form

M(q)q̇ +C(q, q̇)q̇+G(q, q̇) = τ∗ (4.2)

where

q = [x, y, θ]T

M(q) =



m11 cos

2 θ +m22 sin
2 θ −md cos θ sin θ −m23 sin θ

−md cos θ sin θ m22 cos
2 θ +m11 sin

2 θ m23 cos θ
−m23 sin θ m23 cos θ m33




C(q, q̇) =




θ̇(md cos θ sin θ) θ̇(m11 cos
2 θ +m22 sin

2 θ) 0

−θ̇(m22 cos
2 θ +m11 sin

2 θ) −θ̇(md cos θ sin θ) 0

−θ̇(m23 cos θ) −θ̇(m23 sin θ) 0




G(q, q̇) = K(q)q̇

K(q) =



d11 cos

2 θ + d22 sin
2 θ −dd cos θ sin θ −d23 sin θ

−dd cos θ sin θ d22 cos
2 θ + d11 sin

2 θ d23 cos θ
−d23 sin θ d23 cos θ d33




(4.3)

and

τ
∗ = [τ1, τ2, τ3] (4.4)

To facilitate the designing procedure, choose the state variables as

X1 = q X2 = q̇ X1,X2 ∈ R
3 (4.5)
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The state space representation may be as

Ẋ1 = X2 Ẋ2 = F(X1,X2) +Gu(X1,X2)u (4.6)

where

F(X1,X2) = −M
−1(X1)[C(X1,X2)X2+G(X1,X2)] Gu(X1,X2) =M

−1(X1) (4.7)

and

u = τ ∗ u ∈ R
3 (4.8)

The numerical values of the model parameters in equation (4.1) are given in Table 1, as given
by Fang et al. (2004).

Table 1. Model parameter values for the surface vessel

Parameter Value Parameter Value Parameter Value

m11 [kg] 1.0852 m33 [kg] 0.2153 d11 [kg/s] 0.08656

m22 [kg] 2.0575 d11 [kg] 0.08656 d22 [kg/s] 0.0762

d33 [kg/s] 0.0031 d23 [kg/s] 0.151 d32 [kg/s] 0.0151

The initial values and eigenvalues of the matrix Acl ∈ R
9×9 are selected as

X10 = [1,−1, 0.3]
T X20 = [0, 0, 0]

T

λ = [−1,−1,−1,−1,−1,−1,−1,−1,−1]
(4.9)

The matrix Γ, constant scalars γi, i = 1, 2, 3 and membership functions are chosen here as

Γ =



γ1IL 0 0
0 γ2IL 0
0 0 γ3IL


 γ1 = γ2 = 10 γ3 = 10

3 (4.10)

Fig. 3. (a) Membership function of the tracking error, (b) membership function of the derivative of the
tracking error

Case I. The tracking performance of the proposed constrained control scheme is evaluated
here and compared with that of the existing sliding mode method, see Zeinali and Leila
(2010). Assume the reference position and the saturation limits are respectively given by
[xd(t), yd(t), θd(t)]

T = [3.5m, 2m, 0 rad]T and −2 < τi < 2, i = 1, 2, 3. The external disturbance
d(t) = (sin(t) + 1)[1, 1, 1]T also perturb the system at time t = 5 s.
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Figures 4a and 4b show that the tracking of the reference positions for x and y is obtained in
the presence of disturbance. Figure 5 shows the capability of the proposed scheme in disturbance
rejection compared with the sliding mode control by Zeinali and Notash (2010). The convergence
of the controller coefficients Kp, KD, KI for tracking xd(t), yd(t) and θd(t) are demonstrated in
Figs. 6 and 7. The control efforts in the proposed adaptive fuzzy method and the existing sliding
controller are illustrated in Fig. 8.

Fig. 4. (a) X direction and (b) Y direction tracking of the surface vessel

Fig. 5. Tracking of the pitch θ of the surface vessel

Fig. 6. Convergence of the controller parameters in (a) the x direction, (b) the y direction
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Fig. 7. Convergence of Kp, KD, KI for the yaw controller

Fig. 8. Control signals in the proposed algorithm and the sliding control

To make a comparison between the designed adaptive fuzzy controller and the existing sliding
control (Zeinali and Leila 2010), consider a cost function as

J =

tf∫

0

(‖e(t)‖2 + ‖u(t)‖2) dt (4.11)

The lower cost of the proposed controller, as reported in Table 2, shows the advantage of the
proposed approach.

Table 2. The costs of controllers in Case I

Controller Sliding mode Proposed method

J 117.1378 61.3327
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Case II. In this case, the reference signal and the saturation operator parameters are considered
respectively as



xd(t)
yd(t)
θd(t)


 =



sin(0.5t)
cos(0.5t)
0


 and − 2 < τi < 2 i = 1, 2, 3

The simulation results, illustrated in Figs. 9 and 10, show that the proposed method gives
smoother responses with less tracking error, compared with the sliding mode control (Zeinali
and Leila, 2010). In the tracking of the reference output on the channel y, the sliding mode
algorithm is unstable, while the proposed method is stable and the tracking error is converged
to zero. Figure 11 shows that the control effort of the proposed method is much lower than that
in the other method. Unlike the sliding mode, the control signal is zero in the steady state for
the proposed method. Comparing the results may be also possible by adopting cost function
(4.11), as numerically reported in Table 3.

Fig. 9. Tracking error of the (a) the x direction, (b) the y direction

Fig. 10. Tracking error of pitch θ

Table 3. The cost of controllers in Case II

Proposed method Sliding mode Controller

J 16933.4 77.8
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Fig. 11. Control signals

5. Conclusion

Focusing on the constraints on the inputs of nonlinear systems, the problem of robust tracking
is investigated here. To solve the problem, an adaptive fuzzy algorithm is proposed for which
the robust stability is proved using the Lyapunov stability theorem. As a practical situation,
the problem is formulated for a surface vessel, taking the limitations on the control input into
account. The designed controller is applied and the simulation results are presented to show the
benefits of the method. The existing sliding control is also applied to the vessel and a cost function
is defined to compare the results with the proposed scheme. In addition to demonstrations, a
cost function is defined, and a numerical comparison is also made to show the benefits of the
adaptive fuzzy algorithm.
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