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Results of numerical analysis of a structure witch consists of two identi-
cal chaotic oscillators suspended on an elastic element are presented. The
numerical calculations have been carried out with the use of the profes-
sional ANSYS software (User’s Gude ANSYS 10). The findings show that
for given conditions of the excitation, the initially uncollerated chaotic
oscillations of the structure become periodic and synchronous.
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1. Introduction

Typical attractors of a dynamical system are fixed points, limit cycles, qu-
asiperiodic trajectory and strange attractors (chaotic behaviour). One of the
characteristic features of a non-linear system is the presence of co-existing
attractors. This feature is called multistability. Multistability has been obse-
rved by many researchers dealing with dynamical systems (Feudel et al., 1996;
Kraut and Feudel, 2002; Pecora and Carroll, 1990). This phenomenon was
examined with respect to the possibility of synchronous occurrence of oscil-
lators (Pecora and Carroll, 1990; Kapitaniak, 1996; Chen, 1999; Boccaletti et
al., 2002).
The subject under consideration is dynamics of two Duffing chaotic oscil-

lators suspended on an elastic beam. The Oscillators are excited by a periodic
signal with frequency ω. In the previous study (Czołczyński et al., 2009), the
initially uncorrelated chaotic oscillator became periodic and synchronous as
result of interaction with the elastic beam. Another interesting observation
concerns the response of the elastic beam and the oscillators to the excita-
tion with no accompanying synchronisation of their oscillations. In the work
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Czołczyński et al. (2009), a simple discrete model of the beam was considered,
whereas the aim of this papers is to find if the previously observed dynamical
phenomena exist when the beam is discretised using the finite element method.
The model of the analysed structure is shown in Fig. 1.

Fig. 1.

All Duffing oscillators used in the analysis are described by the following
formula

mi
d2yi
dt2
+ dy
dyi
dt
− kyyi + kdy

3
i = f sin(ωit) (1.1)

where dy, ky, kd, f , ω are constants, i = 1, 2.

The above differential equation possesses a solution y(t) for an open set of
initial conditions. The presence of damping in Eq. (1.1) means that this system
is dissipative and its solution y(t) tends to the attractor, i.e. the minimum
subset A ⊂ Rn, where Rn is an n-dimensional phase space of Eq. (1.1), during
the time evolution (y(t) → A as t → ∞). The possession of the attractor
indicates global stability of the system. If, additionally, the system is locally
stable (i.e. the solution y(t) is insensitive on the initial condition y(t = 0)),
then the typical attractors of system (1.1) are fixed points (stable equilibrium
position – only in the case of lack of excitation, e.g., f = 0), limit cycles
(periodic behaviour), tori (quasiperiodic behaviour). On the other hand, in
the case of local instability, the sensitivity on initial condition appears, and
we can observe the so-called strange attractor (chaotic behaviour). One of the
characteristic features of a nonlinear system is the coexistence of attractors
in the phase space, i.e. for given parameter values depending on the initial
conditions, the system trajectory can go to a different attractor.

The beam is considered as a continuous homogenous linear elastic structure
of the length l characterised by the modulus of elasticity E and the inertial
moment of the cross section J . Details of the numerical discretization of the
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beam are given in Section 2. The results of the numerical computations are
presented in Section 3. Finally, the results are summarised in Section 4.

2. Numerical model

The model has been developed for numerical calculations whose schematic
view is presented in Fig. 2. The subject taken into consideration consists of two
Duffing oscillators suspended on an elastic beam. For the numerical calcula-
tion, professional ANSYS software packages were incorporated (User’s Guide
ANSYS 10).

Fig. 2.

The structure has been built from the numerical elements:

• COMBIN 39 which describes non-linear springs,

• COMBIN 14 which describes viscotic damping.

For the numerical computation, transient dynamic analysis has been em-
ployed. The transient dynamic equation presented below has the following
linear structure

Mü+ Cu̇+Ku = F a (2.1)

where: M is the structural mass, C – structural damping, K – structural
stiffness, ü – nodal acceleration, u̇ – nodal velocity, u – nodal displacement,
F
a – applied load.

The parameters of the oscillators are: dy = 0.168Ns/m, ky = 0.5N/m,
kd = 0.5N/m

3, f = 1Hz, ω = 1 s−1, g = 1.
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The beam is supported on both ends. Other structural parameters are as
follows:
modulus of elasticity [N/mm2] E = 2 · 105

Poisson’s ratio ν = 0.3
density [kg/mm3] ρ = 7.65 · 10−6

sectional moment of inertia [mm4] J = h4/12 = 52.08
damping coefficient g = 1
mass [kg] m1 = m2 = 1

The non-linear part of equation (1.1) (kdy
3
i −kyyi) has been introduced as

a discrete value of displacement forces described by this equation. The results
of calculations for the range of spring dislocations are presented by a graph in
Fig. 3.

Fig. 3.

The load [f sin(ωt)] was introduced to calculations of discrete values de-
pendent on time. On the basis of the following data (ω = 1, f = 0.21) the
vibration period T = 2π s was accepted. The value of load is shown in Fig. 4.

Fig. 4.

The numerical analysis was made for two different initial conditions. Figu-
re 5 shows solutions for two combinations of the oscillators.
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Fig. 5.

The responses of masses suspended on the oscillators to load changes spe-
cified above are shown in the graphs in Fig. 6.

Fig. 6.

3. Results of numerical simulation

Results of numerical calculations are presented in graphs showing the node
displacement. In both analysed cases, the displacement of node 8 in relation
to node 9 and of node 3 in relation to node 5 is shown below, see Fig. 7a,b.
Figure 8a shows iterations of oscillations of nodes 8 and 9. Figure 8b pre-

sents oscillations of nodes 3 and 5. The displacement of nodes 3, 5, 8, and 9 is
given in Fig. 8c.
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Fig. 7.

Fig. 8.

While analysing graphs of the displacement, it can be seen that the ini-
tially chaotic behaviour of the oscillators becomes periodic and synchronous
in clusters. Some exemplary results of numerical calculations for case 2 are
presented in the graph showing the displacement of:

• node 8 versus displacement of node 9 – Fig. 9a,

• node 3 versus displacement of node 5 – Fig. 9b.

The displacement of nodes 3, 5, 8 and 9 is given in Fig. 10.

The analysis of the obtained results proves that the synchronisation of
the elastic beam and the Duffing oscillators does not occur. The oscillations
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Fig. 9.

Fig. 10.

of the beam are periodical but they are not harmonic, on the other hand the
displacement of Duffing’s oscillators shows lack of synchronisation. In this case,
many equilibrium points of the beam UY 3=UY 5 and oscillators UY 8=UY 9
hove been observed (Fig. 10). These points occur in different places along the
course of experiment. They testify to the lack of synchronisation between the
beam displacement and synchronisation of the oscillators.

4. Conclusions

Summarising, the use of the ANSYS software allowed one to analyse the struc-
ture consisting of an elastic beam to which two non-linear chaotic Duffing
oscillators have been added. The numerical study enabled identification of
the phenomenon in which the oscillators co-operating with the elastic beam
behave:

• periodically and synchronically (case 1),

• periodically and not synchronically (case 2).
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The numerical analysis confirmed the existence of relation between dyna-
mics of the oscillators and the beam response.
The numerical computation obtained with the use of ANSYS supported

the conclusions and observations formulated by Czołczyński et al. (2009).
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Streszczenie

W artykule przedstawiono wyniki analizy numerycznej struktury składającej się
z dwóch identycznych chaotycznych oscylatorów zawieszonych na sprężystej belce. Ob-
liczenia numeryczne przeprowadzono stosując profesjonalny pakiet programu ANSYS.
Wykazano, że dla danych warunków wzbudzenia, początkowo nie są skorelowane, cha-
otyczne oscylacje struktury stają się okresowe i synchroniczne. W warunkach, kiedy
częstości wzbudzenia różnią się, zjawiska powyższe nie występują.
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