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The structural modeling and dynamic properties of a spinning beam with an unsymmetri-
cal cross section are studied. Due to the eccentricity and spinning, transverse deflections
along the two principal directions and the torsional motion about the longitudinal axis are
coupled. The structural model of the beam is established based on the Hamilton principle
and by incorporating the torsional inertia. Moreover, because of its significant influence on
characteristics for the non-circular cross-sectional beam, the warping effect is considered in
the formulation. The proposed model is effectively validated in two cases: the spinning be-
am with a symmetric cross section and the cantilevered beam with an unsymmetrical cross
section. Then the effects of the spinning speed on natural frequencies and mode shapes are
investigated. Numerical results reveal that the critical speed is altered with respect to nonco-
incidence of the centroid and the shear center. For the beams with strong warping rigidities,
the warping effect cannot be neglected due to significant influence on natural frequencies.
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1. Introduction

Spinning beams are important components of turbine blades, propellers, elastic linkages, satellite
booms and are widespread in various branches of structural engineering. Dynamic characteristics
such as natural frequencies and mode shapes of these systems are meaningful for analysis of
position accuracy, throughput, fatigue and safety. As a consequence, it is essential to accurately
establish the dynamic model of spinning beams and predict its vibration characteristics.

For the last decades, there has been a growing interest in the investigation of structural
modeling, and excellent work has been done on the dynamic analysis of spinning beams. The
fully flexural-torsional coupling model for spinning beams has been successfully established based
on the analytical method by Bishop (1959), Dimentberg (1961), Kane (1961), Newland (1972)
and Zu and Han (1992). Bishop (1959) utilized Newton’s method to derive the characteristic
equation of a bent shaft in the Euler-Bernoulli beam model and investigated the stability of
the system. Lagrangian approach (Shiau et al., 2006) and Hamilton’s principle (Yoon and Kim,
2002) were also utilized to derive the governing equations for the system. Besides, different
methods were proposed by researchers in order to solve the governing equations, i.e. assumed-
-modes method, finite element method, and dynamic stiffness method. Shiau et al. (2006) studied
the dynamic behavior of a spinning Timoshenko beam with general boundary conditions based
on the global assumed mode method. Yoon and Kim (2002) utilized the finite element method
to analyze the dynamic stability of an unconstrained spinning beam subjected to a pulsating
follower force. Banerjee and Su (2004) developed the dynamic stiffness method and the Wittrick-
-Williams algorithm was applied to compute natural frequencies and mode shapes. This method
was also used in the free vibration analysis of a spinning composite beam (Banerjee and Su,
2006).
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Based on the proposed methods, many researchers dealt with problems of spinning beams
subjected to different kinds of loads (Ho and Chen, 2006; Lee, 1995; Zu and Han, 1994) under
various boundary conditions (Choi et al., 2000; Zu and Melanson, 1998). Sheu and Yang (2005)
studied the dynamic response of a spinning Rayleigh beam with rotary inertia and gyroscopic
effects in general boundary conditions. The relationship between the critical speed and the
hollowness ratio and length-to-radius ratio was investigated by Sheu (2007). Ouyang and Wang
(2007) presented a dynamic model for vibration of a rotating Timoshenko beam subjected to a
three-directional load moving in the axial direction. Popplewell and Chang (1997) investigated
free vibrations of a simply supported but stepped spinning Timoshenko beam with the Galerkin
method. Ho and Chen (2006) discussed the vibration problems of a spinning axially loaded
pre-twisted Timoshenko beam. Na et al. (2006) established the model of a tapered thin-walled
composite spinning beam subjected to an axial compressive force. Moreover, dynamic stability
of spinning structures around the longitudinal axis such as a shaft or an unconstrained beam
has been widely investigated (Lee, 1996; Tylikowski, 2008). Experimental investigations on a
cantilevered spinning shaft have been reported. Qian et al. (2010) conducted a non-contact
dynamic testing of a highly flexible spinning vertical shaft.

In all of these studies, spinning beams had symmetric cross-sections and the shear center and
centroid were assumed to superpose each other. In practical applications, the cross-section of the
spinning beam can be eccentric due to errors during processing. Moreover, in some circumstances
the cross-section is intended to be eccentric to meet the requirement of the engineering. For a
beam with an arbitrary uniform cross section, the coupling of bending and torsion may occur
when the beam experiences rotating motion. Yoo and Shin (1998) studied the eigenvalue loci
veerings and mode shape variations for a rotating cantilever beam with the coupling effect
considered. Latalski et al. (2014) investigated a rotating composite beam with piezoelectric active
elements. An analysis of a rotor with several flexible blades was conducted with the spin softening
effects and the centrifugal stiffening effects considered through a pre-stressed potential (Lesaffre
et al., 2007). Sinha and Turner (2011) further researched the characteristics of a rotating pre-
twisted blade. In these studies, the direction of rotation is vertical to the longitudinal direction.
Literature focused on the analysis of a beam rotating about its longitudinal direction is few.
Filipich et al. (1987) studied the free vibration coupling of bending and torsion of a uniform
spinning beam having one axis of symmetry. Then they extended the approach to a beam having
no symmetric axis and developed a dynamic model of coupled torsional an bending deformations
(Filipich and Rosales, 1990). The model accounted for the dynamic coupling terms due to the
rotation and the eccentricity.

This paper further discusses the bending-torsion coupling effects with the warping effect
considered. Natural characteristics including natural frequencies and mode shapes with respect
to the spinning velocity and the eccentricity are investigated. And the critical spinning speed
variation is observed in the presence of coupling effects. The paper is organized as follows. In
Section 2, differential equations of the beam are formulated based on the Hamilton principle.
The formulations are built on Euler-Bernoulli beam theory with the warping effect and torsional
rigidity while neglecting the effect of shear rigidities. In Section 3, we calculate mode shape
functions and natural frequencies of the system by applying the assumed mode method. In
Section 4, the present model is validated by comparing with literature and numerically simulated
with examples. The effects of spinning speed and warping on natural frequencies, mode shapes
and critical speed are examined.

2. Governing differential equations

This Section deals with the formulation of differential equations for a spinning beam with an
arbitrary cross section based on Hamilton’s principle.
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2.1. System description

A homogeneous slender beam with a uniform arbitrary cross-section is depicted in Fig. 1a.
The left end of the beam is fixed to a base which rotates about the longitudinal axis at a constant
angular velocity designated as Ω while the right end is free. When in undeformed configuration,
the longitudinal axis of the beam goes through the shear center of the cross section.

Fig. 1. Deformed configuration of a spinning beam with arbitrary cross section

Three sets of orthogonal right-handed coordinate frames are defined in order to describe the
position vector R of a differential element dM at a generic point P . The rectangular coordinate
system XY Z is fixed with the inertial frame and the origin O is placed at the shear center of
the cross-section on the clamped end. The frame xyz is a rotating frame whose origin o remains
coincident with the point O and the x axis remains parallel to the X axis. When the beam
spins, directions of the y and z axes are time-varying. The angle between the y axis and the
Y axis is represented by the symbol ϕ. The third reference frame ξηζ is the element coordinate
of the differential beam element which is attached to the shear center S of the beam section.
C represents the center of mass of the beam section and (ey, ez) denote the coordinates of C in
the frame Sηζ.

The orientations of these frames at a time during free vibration are shown in Fig. 1b. The
deformation of a differential beam element located at a distance x from the left end is defined
by spatial displacement v(x, t), w(x, t) and rotation φ(x, t) about x-axis. The v(x, t) and w(x, t)
represent lateral displacements in the y and z directions, respectively.

2.2. Equations of motion

The governing equation of the flexible beam is formulated based on the following assumptions:
(1) for the elementary case of beam flexure and torsion using the Euler-Bernoulli beam theory
with torsional inertia but not shear deformation or axial-force effects, (2) the warping effect is
considered due to the fact that the torsion induced warping occurs when the beam section is not
circular, (3) the axial displacement of the beam is neglected. Moreover, the deformation of the
beam is small and yields to the linear conditions. Physical properties of the material are elastic
and constant.

We consider the spinning beam undergoing transverse displacements and torsional motion.
Also, it is assumed that the shear center S and the center of mass C of the cross section are not
coincident. For such a beam, the position vector of a representative point after beam deformation
can be defined as

R(x) = vj+ wk+ eyj1 + ezk1 (2.1)
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where i, j and k are unit vectors in the x, y and z directions, respectively. And i1, j1 and k1 are
unit vectors in the ξ, η and ζ directions, respectively.
The velocity of the point can be obtained as follows

υ(x) = v̇j+ ẇk+Ωi× (vj+ wk) + (Ω + φ̇)i× (eyj1 + ezk1) (2.2)

The overhead dot denotes partial derivatives with respect to time t.
The kinetic energy can be simplified as

T =
1

2

L
∫

0

ρA(v̇2 + ẇ2) dx+
1

2
ρJp

L
∫

0

φ̇2 dx+
1

2

L
∫

0

ρA[Ω2(v2 + w2)− 2Ωv̇w + 2Ωvẇ] dx

+
1

2

L
∫

0

ρA[(e2y + e
2
z)φ̇
2 − 2ez v̇φ̇+ 2eyẇφ̇+ 2ezΩwφ̇+ 2eyΩvφ̇] dx

+

L
∫

0

ρA[(e2y + e
2
z)Ωφ̇− ezΩv̇ + ezΩ2w + eyΩẇ + eyΩ2v] dx

+

L
∫

0

ρA(−eyΩv̇φ+ eyΩ2wφ− ezΩẇφ− ezΩ2vφ) dx+
1

2

L
∫

0

ρA(e2y + e
2
z)Ω
2 dx

(2.3)

The symbols ρ, E and A denote density, Young’s modulus and cross sectional area. Jp is the
polar moment of inertia and is given by

Jp =

∫∫

A

r2p dη dζ (2.4)

where rp represents the distance between a certain point in the section and the center.
The potential strain energy of the beam including the warping effect is considered as below

U =
1

2

L
∫

0

E(Izv
′′2 + Iyw

′′2) dx+
1

2

L
∫

0

GJpφ
′2 dx+

1

2

L
∫

0

EΓφ′′
2
dx (2.5)

where G denotes the shear modulus. Iy and Iz show the second moments of area about the
z-axis and y-axis, EΓ is warping rigidity. Primes denote partial derivatives with respect to x.
For uniform beams, A, Iy, Iz, Jp and EΓ are constant throughout the span.
Then the Lagrangian function of the beam system can be expressed as

L = T − U =
1

2

L
∫

0

ρA(v̇2 + ẇ2) dx+
1

2

L
∫

0

ρA[Ω2(v2 + w2)− 2Ωv̇w + 2Ωvẇ] dx

+
1

2
ρJp

L
∫

0

φ̇2 dx+
1

2

L
∫

0

ρA(e2φ̇2 − 2ez v̇φ̇+ 2eyẇφ̇+ 2ezΩwφ̇+ 2eyΩvφ̇) dx

+

L
∫

0

ρA(e2Ωφ̇− ezΩv̇ + ezΩ2w + eyΩẇ + eyΩ2v) dx

+

L
∫

0

ρA(−eyΩv̇φ+ eyΩ2wφ− ezΩẇφ− ezΩ2vφ) dx+
1

2

L
∫

0

ρAe2Ω2 dx

−
1

2

L
∫

0

E(Izv
′′2 + Iyw

′′2) dx−
1

2

L
∫

0

GJpφ
′2 dx−

1

2

L
∫

0

EΓφ′′
2
dx

(2.6)
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Using Hamilton’s principle, the dynamic model of the system can be obtained

EIz
∂4v

∂x4
+ ρA(v̈ −Ω2v − 2Ωẇ − ezφ̈− 2Ωeyφ̇+ ezΩ2φ) = ρAexΩ2

EIy
∂4w

∂x4
+ ρA(ẅ −Ω2w + 2Ωv̇ + eyφ̈− 2Ωez φ̇− eyΩ2φ) = ρAezΩ2

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ (ρAe2 + ρJp)φ̈+ ρAey(2Ωv̇ + ẅ −Ω2w)

+ ρAez(−v̈ +Ω2v + 2Ωẇ) = 0

(2.7)

When skipping the eccentricity of the cross section, Eq. (2.7) has the following form

EIz
∂4v

∂x4
+ ρA(v̈ −Ω2v − 2Ωẇ) = 0 EIy

∂4w

∂x4
+ ρA(ẅ −Ω2w + 2Ωv̇) = 0

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ ρJpφ̈ = 0

(2.8)

The first two equations in Eq. (2.8) are fully consistent with the results by Banerjee and Su
(2004). Also, it can be concluded that the eccentricity induces the coupling between transverse
deformations and torsional motion.

When skipping the spinning, Eq. (2.7) has the following form, which is consistent with the
results by Tanaka and Bercin (1999)

EIz
∂4v

∂x4
+ ρA(v̈ − ezφ̈) = 0 EIy

∂4w

∂x4
+ ρA(ẅ + eyφ̈) = 0

EΓ
∂4φ

∂x4
−GJp

∂2φ

∂x2
+ (ρAe2 + ρJp)φ̈+ ρA(−ez v̈ + eyẅ) = 0

(2.9)

It is obvious that the coupling between v and w takes place due to spinning.

3. Mode shape and frequency equation

For a free homogeneous vibration problem, a sinusoidal oscillation is assumed

v(x, t) = V (x)ejωt w(x, t) =W (x)ejωt φ(x, t) = Φ(x)ejωt j =
√
−1
(3.1)

where ω is the circular frequency of oscillation, V , W and Φ are amplitudes of v, w and φ,
respectively. Substituting Eq. (3.1) into differential equation (2.7) leads to

EIz

ρA
V (4) − (ω2 +Ω2)V − 2jωΩW + ez(ω2 +Ω2)Φ − 2jωΩeyΦ = 0

EIy

ρA
W (4) − (ω2 +Ω2)W + 2jωΩV − ey(ω2 +Ω2)Φ− 2jωΩezΦ = 0

EΓ

ρA
Φ(4) −

GJp

ρA
Φ′′ −

(

e2 +
Jp

A

)

ω2Φ+ (ω2 +Ω2)(ezV − eyW ) + 2jωΩ(eyV + ezW ) = 0

(3.2)

For convenience, we consider a beam with a monosymmetric cross-section with the symmetry
axis y. The centroid C is on the axis y and the scalar ez is equal to zero. Then Eq. (3.2) can be
simplified as
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EIz

ρA
V (4) − (ω2 +Ω2)V − 2jωΩW − 2jωΩeyΦ = 0

EIy

ρA
W (4) − (ω2 +Ω2)W + 2jωΩV − ey(ω2 +Ω2)Φ = 0

EΓ

ρA
Φ(4) −

GJp

ρA
Φ′′ −

(

e2y +
Jp

A

)

ω2Φ+ 2jωΩeyV − ey(ω2 +Ω2)W = 0

(3.3)

Then introducing the differential operator D and subsequent variables as follows

D =
d

dx
L11 =

EIz

ρA
D4 − (ω2 +Ω2)

L12 = −2jωΩ L13 = −2jωΩey

L21 = 2jωΩ L22 =
EIy

ρA
D4 − (ω2 +Ω2)

L23 = −ey(ω2 +Ω2) L31 = 2jωΩey

L32 = −ey(ω2 +Ω2) L33 =
EΓ

ρA
D4 −

GJp

ρA
D2 −

(

e2y +
Jp

A

)

ω2

(3.4)

It can be seen that Y , Z and Ψ satisfy the equation

∆







V

W

Φ






= 0 (3.5)

where

∆ =







L11 L12 L13
L21 L22 L23
L31 L32 L33






(3.6)

Introducing

κ1 =
ρA

EIz
κ2 =

ρA

EIy
κ3 =

ρA

EΓ

κ4 =
GJp

EΓ
κ5 =

(

e2y +
Jp

A

)

κ6 = ω
2 +Ω2

(3.7)

and setting the determinant of differential operator matrix (3.6) equal to zero leads to the
following twelvth order differential equation:

(D4 − κ6κ1)[(D4 − κ6κ2)(D4 − κ4D2 − κ3κ5ω2)− e2yκ2κ3κ26]
− 4ω2Ω2κ1κ2[(D4 − κ4D2 − κ3κ5ω2) + e2yκ3κ6] + 4ω2Ω2e2yκ1κ3D4 = 0

(3.8)

The solution to the above equation can be expressed in an exponential form

R(x) = erx (3.9)

Specifying s = r2, then substituting Eq. (3.9) into (3.8), the following characteristic equation
can be obtained

s6 − κ4s5 − (κ3κ5ω2 + κ2κ6 + κ1κ6)s4 + (κ2κ4κ6 + κ1κ4κ6)s3

+ (κ1κ2κ
2
6 − 4κ1κ2ω2Ω2 − κ2κ3κ26e2y − 4κ1κ3e2yω2Ω2 + κ1κ3κ5κ6ω2

+ κ2κ3κ5κ6ω
2)s2 + κ1κ2κ4(4ω

2Ω2 − κ26)s− κ1κ2κ3(κ5κ26ω2 − κ36e2y
+ 4κ6e

2
yω
2Ω2 − 4κ5ω4Ω2) = 0

(3.10)
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s1-s6 are solutions to Eq. (3.10). The twelve roots of Eq. (3.8) can be written as

±ri ri = j
√
si i = 1, 2, . . . , 6 (3.11)

Then the general solutions of V , W and Φ are expressed as

V (x) = A1 cosh r1x+A2 sinh r1x+A3 cosh r2x+A4 sinh r2x+A5 cosh r3x+A6 sinh r3x

+A7 cos r4x+A8 sin r4x+A9 cos r5x+A10 sin r5x+A11 cos r6x+A12 sin r6x

W (x) = B1 cosh r1x+B2 sinh r1x+B3 cosh r2x+B4 sinh r2x+B5 cosh r3x+B6 sinh r3x

+B7 cos r4x+B8 sin r4x+B9 cos r5x+B10 sin r5x+B11 cos r6x+B12 sin r6x

Φ(x) = C1 cosh r1x+C2 sinh r1x+ C3 cosh r2x+ C4 sinh r2x+ C5 cosh r3x+ C6 sinh r3x

+ C7 cos r4x+ C8 sin r4x+ C9 cos r5x+ C10 sin r5x+ C11 cos r6x+ C12 sin r6x

(3.12)

where Ai, Bi and Ci (i = 1-12) are three different sets of constants.
Substituting Eq. (3.12) into Eq. (3.2), relations between Ai, Bi and Ci can be derived

B1 = p1A1 B2 = p1A2 B3 = p2A3 B4 = p2A4

B5 = p3A5 B6 = p3A6 B7 = p4A7 B8 = p4A8

B9 = p5A9 B10 = p5A10 B11 = p6A11 B12 = p6A12

C1 = q1A1 C2 = q1A2 C3 = q2A3 C4 = q2A4

C5 = q3A5 C6 = q3A6 C7 = q4A7 C8 = q4A8

C9 = q5A9 C10 = q5A10 C11 = q6A11 C12 = q6A12

(3.13)

where

pi =
κ2κ6

2jωr4iΩ

( 1

κ1
r4i − κ6 +

4ω2Ω2

κ6

)

i = 1, 2, . . . , 6

qi =



















































κ2κ
2
6e(
1

κ1
r4i − κ6 +

4ω2Ω2

κ6

)

+ 4eyω
2Ω2r4i

2jωr4iΩ
( 1

κ3
r4i −
κ4

κ3
r2i − κ5ω2

)

i = 1, 2, 3

κ2κ
2
6e
( 1

κ1
r4i − κ6 +

4ω2Ω2

κ6

)

+ 4eyω
2Ω2r4i

2jωr4iΩ
( 1

κ3
r4i +
κ4

κ3
r2i − κ5ω2

)

i = 4, 5, 6

(3.14)

The constants A1-A12 can be determined from the boundary conditions. For a clamped-free
beam, the boundaries are as follows

clamped end (x = 0) : V = 0, V ′ = 0,W = 0,W ′ = 0, Φ = 0, Φ′ = 0

free end (x = L) : V ′′ = 0, V ′′′ = 0,W ′′ = 0,W ′′′ = 0, κ4Φ
′ − Φ′′′ = 0, Φ′′ = 0

(3.15)

Using boundary condition (3.15), a set of twelve homogeneous equations in terms of the
constants A1-A12 will be generated. The natural frequencies ω can be numerically solved by
setting the determinant of the coefficient matrix of A1-A12 to be equal to zero.

4. Numerical applications and results

In this Section, firstly some limiting cases are examined to validate the model presented he-
re. Secondly, the dynamic characteristics of the beam with unsymmetrical cross sections are
investigated using the proposed method.
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4.1. Validation

The example for validating is taken from literature (Banerjee and Su, 2004). The beam has
a rectangular cross section and possesses equal flexural rigidities in the two principal directions
of the cross section. The properties are given by: EIyy = 582.996 Nm

2, EIzz = 582.996 Nm
2,

ρA = 2.87 kg/m, L = 1.29m.
The non-dimensional natural frequency and the spinning speed parameter are defined as in

literature (Banerjee and Su, 2004)

ω∗i =
ωi

ω0
Ω∗ =

Ω

ω0
(4.1)

where

ω0 =

√

√

EIyyEIzz

ρAL4
(4.2)

Comparison of the first three natural frequencies in the current study with those given in
published literature is listed in Table 1. Both examples apply to cantilever end conditions, and
the effect of warping stiffness is excluded in the analysis. It is concluded that the resulting
frequencies are in good agreement with the one given in the previous work. Because EIyy equals
EIzz in this example, the natural frequency parameters of the first two modes are equal when
the spinning speed parameter is zero.

Table 1. Natural frequencies of the spinning beam: (1) Banerjee and Su (2004), (2) present
method

Spinning Natural frequency parameters (ω∗i )
speed ω∗1 ω∗2 ω∗3

parameter (Ω∗) (1) (2) (1) (2) (1) (2)

0 3.516 3.516 3.516 3.516 22.034 22.034

2 1.516 1.516 5.516 5.516 24.034 24.034

3.5 0 0 7.016 7.016 25.534 25.534

4 – – 7.516 7.516 26.034 26.034

Then, to investigate characteristics of the beam with unsymmetrical cross section, two uni-
form beams with a semi-circular open cross section and with a channel cross section showed in
Fig. 2, are considered. Physical properties of the beams for validation are derived from (Bercin
and Tanaka, 1997), as shown in Table 2.

Fig. 2. The cross sections of the two beams studied

The first seven natural frequencies for the beams given in Fig. 2 are obtained by including
and excluding the effect of warping stiffness when the spinning speed is zero, and compared
with the results by Bercin and Tanaka (1997), as shown in Table 3. It is observed that when
the effect of warping is neglected, the errors associated with it become increasingly large as the
modal index increases.



Modeling and analysis of coupled flexural-torsional spinning beams... 221

Table 2. Physical properties of the beams studied

Parameters Example I Example II

EIy [Nm
2] 6380 1.436 · 105

EIz [Nm
2] 2702 2.367 · 105

GJ [N] 43.46 346.71

EΓ [Nm4] 0.10473 536.51

ρ [kg/m3] 2712 2712

A [m2] 3.08 · 10−4 1.57 · 10−3
L [m] 0.82 2.7

e [m] 0.0155 0.0735

Table 3. Natural frequencies [Hz] of the beam: (1) Bercin and Tanaka (1997); (2) present
approach including warping; (3) present approach excluding warping

Modal Example I Example II
index (1) (2) (3) (1) (2) (3)

1 63.79 63.79 62.65 11.03 11.02 8.332

2 137.7 137.7 130.4 – 18.10 18.10

3 – 149.7 149.7 39.02 39.02 23.92

4 278.4 278.4 261.5 58.19 58.20 36.74

5 484.8 484.8 422.5 – 113.4 47.42

6 663.8 663.8 613.3 152.4 152.4 67.41

7 – 768.4 656.3 209.4 209.4 86.64

4.2. Spinning speed

To examine the effect of the spinning speed on natural frequencies of the beam with an
unsymmetrical cross section, various values with the interval [0, 4] for the spinning speed pa-
rameter are considered for Example I and Example II, and the corresponding frequencies are
presented in Tables 4 and 5.

Table 4. Natural frequencies of Example I versus the spinning speed parameter

Spinning speed Natural frequency parameters (ω∗i )
parameter (Ω∗) ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 ω∗6

0 2.149 4.639 5.044 9.378 16.333 22.365

1 1.783 4.607 5.453 9.355 16.319 22.340

2 0.760 4.729 6.235 9.287 16.278 22.268

2.25 0 4.783 6.453 9.262 16.264 22.244

3 – 4.988 7.132 9.174 16.212 22.163

4 – 5.327 8.069 9.027 16.122 22.043

It is found that the spinning speed alters the natural frequencies, especially at the lower
vibration modes. With an increase of the spinning speed, the coupling between y-axial and
z-axial deformations becomes larger, which is demonstrated in Eq. (3.3). Therefore, mode shapes
of the system change due to larger coupling and natural frequencies vary correspondingly. Mostly,
as the modal index rises, the effect of spinning speed on natural frequencies weakens since
the motion amplitudes become smaller with an increasing frequency, which corresponds to an
insignificant change in the reference kinetic energy.
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Table 5. Natural frequencies of Example II versus the spinning speed parameter

Spinning speed Natural frequency parameters (ω∗i )
parameter (Ω∗) ω∗1 ω∗2 ω∗3 ω∗4 ω∗5 ω∗6

0 2.426 3.984 8.587 12.809 24.966 33.541

1 1.943 4.461 8.737 12.741 25.038 33.517

2 1.024 5.335 9.166 12.547 25.249 33.448

2.63 0 5.937 9.553 12.372 25.449 33.380

3 – 6.300 9.811 12.255 25.588 33.332

4 – 7.303 10.532 11.971 26.038 33.171

Figures 3a and 3b show variations of the first four non-dimensional natural frequencies with
respect to the spinning speed parameter. Because of the large difference between the bending
rigidities in the two principal planes, the natural frequencies start off with different values. The
fundamental frequencies of both examples decrease with the increasing spinning speed while the
others decrease or increase. At a certain spinning speed, which is defined as the critical speed,
the first natural frequency becomes negative, resulting in instability. For the spinning beam
with circular or rectangular cross-section, the natural frequencies are obtained by subtracting or
adding the natural frequencies when Ω∗ = 0 to the spinning speed parameter (Banerjee and Su,
2004). So the value of the critical spinning speed when the beam becomes unstable equals to the
first frequency of the beam with Ω∗ = 0. For the spinning beam with an unsymmetrical cross-
section, the noncoincidence of mass center and shear center induces coupled flexural-torsional
modes and alters the critical speed. Both values of the critical speed are larger than the first
frequencies for the examples studied.

Fig. 3. Natural frequencies versus the spinning speed for (a) Example I, (b) Example II

4.3. Warping effect

The relative errors of natural frequencies due to the warping effect are discussed in this
Section. Figures 4a and 4b show changes of natural frequencies with respect to the spinning
speed with inclusion and exclusion of the warping for Example I and II, respectively.

It is evident that the inclusion of the warping effect increases the natural frequencies. And
when the warping effect is neglected, the errors associated with it become increasingly larger as
the modal index increases. Additionally, errors in Example II are more severe than in Example I.
This is because the proportion of warping rigidity to bending rigidity in Example II is larger
than that in Example I. It is also observed that the exclusion of warping makes the critical speed
decrease.
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Fig. 4. Natural frequencies versus the spinning speed for (a) Example I, (b) Example II

Fig. 5. Mode shapes in Example I with the speed parameter for Ω∗ = 0

4.4. Mode shapes

The first four normalized modal shape functions in Example I are illustrated in Figs. 5 and 6.
It is concluded that in any case, the transverse deflection along the z-axis and torsional motion
about the x-axis are coupled. The first two modes are coupled vibration modes of z-axial bending
and x-axial torsion, while the third mode is the y-axial bending mode. When the spinning speed
parameter is set to 2.0, all the modes become strongly coupled. Moreover, the speed has caused
significant changes to the relative amplitudes between the z-axial displacement and x-axial
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torsional angle, especially for lower modes. The beams with unsymmetrical cross-sections show
different characteristics compared with symmetric cross-sectional beams, for which the effects
of spinning speed on mode shapes are marginal, as declared by Banerjee and Su (2004).

Fig. 6. Mode shapes in Example I with the speed parameter for Ω∗ = 2

5. Conclusions

This paper presents dynamic analysis of a spinning beam with an unsymmetrical cross section.
The governing equations are formulated based on the Euler-Bernoulli beam theory and the
Hamilton principle, and then natural frequencies and mode shapes are derived by the assumed
mode method. Effects of the spinning speed and warping on natural frequencies are investigated.
Numerical simulations are conducted in order to validate the present method and some main
conclusions are derived as follows.

The noncoincidence of centroid and shear center of the unsymmetrical cross section induces
the coupling of transverse deflection and torsional motion. The spinning speed induces coupling
between transverse deflections along two orthogonal axes. The value of the spinning speed is
critical to natural frequencies of the system. The mode shapes are notably changed due to the
spinning speed which is different compared to the beam with the symmetric cross section. Also
the critical speed increases for the spinning beam with unsymmetrical cross sections. It has also
shown that the warping effect has a significant influence on the natural frequencies. Moreover,
the effects of warping on the natural frequencies become increasingly large when the proportion
of warping rigidity to bending rigidity is notable.
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